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Abstract: In this work, the feasibility of chemoenzymatically transforming biomass-derived D-xylose
to furfuryl alcohol was demonstrated in a tandem reaction with SO4

2−/SnO2-CS chemocatalyst
and reductase biocatalyst in the deep eutectic solvent (DES)–water media. The high furfural yield
(44.6%) was obtained by catalyzing biomass-derived D-xylose (75.0 g/L) in 20 min at 185 ◦C with
SO4

2−/SnO2-CS (1.2 wt%) in DES ChCl:EG–water (5:95, v/v). Subsequently, recombinant E. coli CF
cells harboring reductases transformed D-xylose-derived furfural (200.0 mM) to furfuryl alcohol
in the yield of 35.7% (based on D-xylose) at 35 ◦C and pH 7.5 using HCOONa as cosubstrate
in ChCl:EG–water. This chemoenzymatic cascade catalysis strategy could be employed for the
sustainable production of value-added furan-based chemical from renewable bioresource.

Keywords: furfural; furfuryl alcohol; biological reduction; D-Xylose; E. coli CF

1. Introduction

With the rapid consumption of fossil-fuels, together with the growing global warming
and environmental concerns, lignocellulosic biomass is regarded as ideal and promising
alternative for producing biofuels and bio-based chemicals [1,2]. Biomass or biomass-
derived D-xylose has been industrially used for the production of furfural (FAL) with
acid catalyst via dehydration reaction [1,3]. FAL is used in the production of furans, such
as furfuralcohol (FOL), furoic acid (FA), etc. [4–6]. It has a wide range of applications in
various industries, such as medicine, agriculture, chemicals, and cosmetics [7–9]. Recently,
most catalytic production of FAL has used a variety of heterogeneous solid acid, such as
sulfonated tin-based zeolite, sulfonated diamond powder (S-DP) and del-Nu-6(1) [4,5].
S-DP converted biomass-derived D-xylose to FAL with 76% yield at 200 ◦C in 5 min.
Catalyst del-Nu-6(1) catalyzed the conversion of biomass-derived D-xylose to FAL in 47%
yield within 4 h at 170 ◦C. Very recently, there has been great interest in utilizing biomass-
based solid acid catalysts using biomass as carriers for the production of furfural due to
the availability, abundance, and renewability of lignocellulosic materials. Catalyst CST,
which was obtained from teff straw by simultaneous carbonization and sulfonation, could
dehydrate D-xylose (20 g/L) to FAL at 62% yield in 0.5 h at 170 ◦C [6]. Sulfonated tin-based
argil catalyzed D-xylose into FAL in the yield of 57% at 180 ◦C in 20 min [7].

Due to the undesired side-reactions (e.g., FAL decomposition, self-coupling, or resinifi-
cation) in pure water, several organic solvent–water biphasic media, such as toluene–water,
γ-valerolactone (GVL)–water, and methyl isobutyl ketone (MIBK)–water, have been pre-
pared as reaction systems for promoting the formation of FAL and enhancing the produc-
tivity of FAL by the extraction in situ of product FAL into the organic phase and separation
of FAL from chemocatalysts [10]. In the past few years, unconventional and nonaqueous
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solvents such as ionic liquids (ILs) and deep eutectic solvents (DESs) have been designed
and prepared to enhance the yields of FAL [11]. DESs can be synthesized by mixing hydro-
gen bond acceptors (HBAs) (e.g., choline chloride) and a hydrogen bond donors (HBDs)
(e.g., amines, carboxylic acids, and polyols), which have gained a considerable interest
due to their properties close to those of ILs [12]. As one kind of green and environmen-
tally friendly solvent, DESs have been applied as pretreatment media for dissolving and
pretreating lignocellulosic materials, and have been utilized to remove lignin, hydrolyze
hemicelluloses, or synthesize FAL [13].

FAL is a versatile molecule for the synthesis of various furan-based chemicals [4,5]. As
a value-added FAL derivative, furfuryl alcohol (FOL), which contains a furan substituted
with a hydroxymethyl (–CH2OH) group, has been widely used for manufacturing synthetic
fiber, rubber resin, furan resin, ascorbic acid, lubricant, lysine, vitamin C, and hypergolic
fuel in rocketry [14,15]. According to statistics, 60% of FAL is used to produce FOL. A series
of catalysts (e.g., Cu/MgO-Al2O3, Ni-Cu/SiO2, Pt/m-CN-x and, Au/Cu-Al2O3) [16–19]
have been employed to prepare FOL from FAL via chemical approach. Although the
chemical production of FOL can give high yields and good selectivities, high-energy
consumption and environmental issues might limit its application. On the contrary, the
biological method is attracting much attention due to its energy-saving and environmen-
tally friendly performance [20–22]. FAL can be converted into FOL by some bacteria
(e.g., B. coagulans NL01, B. cereus, and E. coli CF) [7,20,22,23].

In this study, the production of FOL was conducted via chemical-enzymatic cascade
conversion of biomass-derived D-xylose in a tandem reaction by sequential catalysis with
biomass-based solid acid SO4

2−/SnO2-CS chemocatalyst and E. coli CF whole-cells biocata-
lyst in DES ChCl:EG–water system. The effects of various chemical reaction parameters
(e.g., ChCl:EG dosage, SO4

2−/SnO2-CS dose, performance temperature, and catalytic
time) on the production of FAL were investigated using biomass-derived D-xylose as
feedstock. In addition, various biological reduction reaction parameters (e.g., HCOONa
loading, performance pH, bio-reduction temperature, metal ion additives, and substrate
FAL loading, etc.) were tested on the biotransformation of FAL into FOL using whole-cells
of recombinant E. coli CF harboring reductase. Finally, one-pot chemical-enzymatic synthe-
sis of FOL from biomass-derived D-xylose was demonstrated by sequential dehydration
with bio-compatible solid acid SO4

2−/SnO2-CS and bio-reduction with recombinant E. coli
CF cells.

2. Materials and Methods
2.1. Materials and Reagents

Corn stalks (CS) were collected from Lianyungang Farm (Changzhou Jiangsu province,
P.R. China). Choline chcloride (ChCl), ethylene glycol (EG), D-xylose, glucose, SnCl4·5H2O,
sodium formate (HCOONa), NADPH, sulfuric acid (H2SO4), and other chemicals were
purchased from Sino pharm Group Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Chemical Conversion of D-Xylose to FAL in ChCl:EG–Water System

The preparation of SO4
2−/SnO2-CS solid acid catalyst: milled CS was soaked in

H2SO4. The acid-treated CS (AT-CS) was mixed with SnCl4-5H2O and anhydrous ethanol,
then ammonia was slowly dripped into the mixture; the resulting colloidal solution was
dried in an oven, the dried solid powder was dried after sulfonation in dilute H2SO4 and
finally calcined in a muffle furnace to obtain SO4

2−/SnO2-CS [24].
The conversion of D-xylose to FAL with SO4

2−/SnO2-CS: in an autoclave reactor,
D-xylose (3.0 g) and SO4

2−/SnO2-CS (0–3.6 wt%) were mixed in 40 mL DES–water media
(ChCl:EG, 0–40 v%). This mixture was then blended by stirring (500 rpm) and heated to
the desired performance temperature (160–195 ◦C) for reaction time (10–50 min). After the
catalytic reaction was complete, the reactor was allowed to cool down to room temperature
in an ice–water cooling bath immediately.
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2.3. Bio-Reduction in FAL to FOL with CF Whole-Cells

To enhance the bio-reduction efficiency of CF whole-cells, several biological reaction
factors were investigated on the biotransformation of D-xylose-derived FAL. To investigate
the effect of ChCl:EG loading on the bio-reduction activity, CF wet cells (0.050 g/mL) were
incubated 40 mL DES–water (DES ChCl:EG dosage 0–40 v%) were blended with D-xylose-
derived FAL (200.0 mM), HCOONa (3.0 mol HCOONa/mol FAL), and NADPH (1.0 µmol
NADPH/mol FAL) at 35 ◦C. To evaluate the effect of the amount of cosubstrate HCOONa
on bio-reduction activity, different amounts of HCOONa (HCOONa/FAL = 0–5/1 mol/mol)
were loaded to 40 mL DES–water (ChCl:EG 5 v%, pH 7.5) with D-xylose-derived FAL
(200.0 mM), CF wet cells (0.050 g/mL), and NADPH (1.0 µmol NADPH/mol FAL) at 35 ◦C.
To test the effect of temperature and pH on the biocatalytic activity, D-xylose-derived FAL
(200.0 mM) and CF wet cells (0.050 g/mL) were incubated in 40 mL DES–water (ChCl: EG
5 v%, pH pH 5.0–9.5) containing HCOONa (3.0 mol HCOONa/mol FAL) and NADPH
(1.0 µmol NADPH/mol FAL) at 25–50 ◦C. To evaluate the effect of metal ion additives on
bio-reduction activity, several metal ions (Sn4+, Zn2+, Co2+, Fe3+, Mn2+, Fe2+, Al3+, Ca2+,
Cu2+, Mg2+, and Li+) (0.50 mM) were separately added to 40 mL DES–water (ChCl:EG
5 v%, pH 6.5) with D-xylose-derived FAL (200.0 mM), CF wet cells (0.050 g/mL), HCOONa
(3.0 mol HCOONa/mol FAL), and NADPH (1.0 µmol NADPH/mol FAL) at 35 ◦C. To
evaluate the effect of Sn4+ on the bio-reduction activity, different doses of Sn4+ (0–5.0 mM)
were added to 40 mL DES–water media (pH 7.5) with D-xylose-derived FAL (200.0 mM),
CF wet cells (0.050 g/mL), HCOONa (3.0 mol HCOONa/mol FAL), and NADPH (1.0 µmol
NADPH/mol FAL) at 35 ◦C. The contents of FAL and FOL were determined by HPLC.

2.4. Analytical Methods

The yield of FAL from D-xylose was calculated by the following formula:

FAL yield (%) =
FAL produced (mM)

D − Xylose (mM)
× 100% (1)

The FOL yield was obtained using the below equation:

FOL yield (%) =
FOL produced (mM)

Initial FAL (mM)
× 100% (2)

Furan-based compounds (e.g., FAL and FOL) were measured with HPLC (LC-2030C 3D
SHIMADZU, Kyoto, Japan) equipped with reverse-phase C18 (Discovery C18, 3.9 mm ×150 mm,
4 µm) (Bellefonte, PA, USA), which were eluted by 0.4% (NH4)2SO4/CH3OH (95:5, v/v) at a flow
rate of 0.6 mL/min. FAL and FOL were assayed at 254 and 210 nm, respectively.

3. Results and Discussion
3.1. Optimization of Conditions for FAL Production

DESs have been utilized in the sustainable chemical processes due to their unique
properties [25], which have been regarded as a green cosolvent to promote the generation
of FAL in the aqueous system [22]. It is very likely that the established DES–water media
can facilitate the formation of FAL molecules and prevent the undesired degradation or
cross polymerization of FAL [24]. In this study, DES (ChCl:EG) was used as additive for the
establishment of ChCl:EG–water media for catalyzing D-xylose into FAL. The volumetric
ratio of ChCl:EG to water phase had a profound effect on the dehydration of D-xylose.
Different loading of ChCl:EG were separately mixed with water to form various ChCl:EG–
water media. In 40 mL aqueous media, the ChCl:EG dosage was varied as 0–40 v%. The
synthesis of FAL was carried out by using SO4

2−/SnO2-CS as catalyst at 185 ◦C for 20 min.
As illustrated in Figure 1a, as the ChCl:EG loading increased from 0 to 5 v%, the FAL yield
were gradually raised. When the ChCl:EG dose reached 5 v%, the yield of FAL was 44.6%.
By increasing ChCl:EG content from 5 to 40 v%, the FAL yields decreased considerably.
Thus, the optimum ChCl:EG loading was 5 v%. When the DES ChCl:EG loading increased
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in ChCl:EG–water, it was very likely that the rehydration and degradation reaction of FAL
would be weakened. However, an excessive addition of ChCl:EG might reduce the contact
opportunity of substrate D-xylose to catalyst SO4

2−/SnO2-CS, which would result in the
decreased FAL yields.
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Figure 1. Effects of DES ChCl:EG (0–40 v%) on the FAL production via D-xylose dehydration (a);
Effects of solid acid dose (0–3.6 wt%) on the FAL production via D-xylose dehydration in ChCl:EG–
water (5:95, v/v) (b); Effects of dehydration temperature (160–195 ◦C) on the FAL production
via D-xylose dehydration in 20 min in ChCl:EG–water (5:95, v/v) (c); Effects of dehydration
time (10–50 min) on the FAL production via D-xylose dehydration at 185 ◦C in ChCl:EG–water
(5:95, v/v) (d).

To further promote the FAL yields, it is necessary to obtain the optimum reaction
conditions [26,27]. In ChCl:EG–water (5:95, v/v), SO4

2−/SnO2-CS loading (0–3.6 wt%),
performance temperature (160–195 ◦C), and reaction time (10–50 min) were optimized
using D-xylose as feedstock. Upon raising SO4

2−/SnO2-CS dose from 0 to 1.2 wt%, the
FAL yields gradually increased (Figure 1b). The highest yield of FAL reached 44.6%.
When the SO4

2−/SnO2-CS loading was raised from 1.2 wt% to 3.6 wt%, FAL yields had
no significant change. Thus, the optimum dose of SO4

2−/SnO2-CS was 1.2 wt%. When
D-xylose dehydration reactions were culminated at diverse dehydration reaction time
(10, 20, 30, 40 and 50 min) and diverse reaction temperature (160, 170, 180, 185, 190, and
195 ◦C), the highest FAL yield was obtained at 185 ◦C in 20 min (Figure 1d). Moreover, the
conversion rate of xylose to FAL was 96.0%. Higher temperatures (190–195 ◦C) resulted in
a lower yield of FAL, probably because higher temperatures accelerated the occurrence of
undesired side-reactions. Clearly, SO4

2−/SnO2-CS catalyzed dehydration of D-xylose into
FAL (223.0 mM) in the highest yield of 44.6% in ChCl:EG–water (5:95, v/v).

3.2. Optimization for Bio-Reduction in FAL to FOL

The bio-reduction in carbonyl compounds into alcohols has attracted considerable
interest due to the product specificity, mild reaction, and high efficiency [7,28–30]. To
effectively transform FAL to FOL with CF cells in ChCl:EG–water, various parameters
(e.g., cosubstrate HCOONa, bio-reduction pH, bio-reduction temperature, metal ion addi-
tives, cell dosage, etc.).
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Upon raising the HCOONa concentration from 0 to 3 mol HCOONa/mol FAL, the
catalytic activity gradually increased (Figure 2a). By increasing HCOONa loading from 3 to
5 mol HCOONa/mol FAL, the biocatalytic activity gradually decreased. It is likely that the
viscosity of reaction media increased so that the FAL reducing activity decreased. Thus, the
appropriate molar ratio of cosubstrate HCOONa to FAL was 3:1. Biocatalytic temperature
had a profound influence on the FOL formation. The biocatalytic activity increased with the
increase in reaction temperature from 25 to 35 ◦C. High bio-redcution activity was observed
at 35 ◦C (Figure 2b). When the performance temperature exceeded 35 ◦C, the reductase
activity dropped considerably, possibly due to the thermal deactivation of reductase in
whole-cells during the bio-reduction [2,7]. Significantly, the optimal reaction temperature
was 35 ◦C. By increasing the reaction pH from 5.0 to 7.5 at 35 ◦C, the biocatalytic activity
reached the highest value (Figure 2c). Over pH 7.5, the biocatalytic activity decreased
clearly. Thus, the optimum reaction pH was 7.5.
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The effects of various metal ions (0.50 mM) on the reductase activity were also ex-
amined in the ChCl:EG–water at 35 ◦C and pH 7.5. Metal ions types and dosages could
significantly influence the activities of alcohol dehydrogenases [31]. In this study, SnCl4,
ZnCl2, CoCl2, FeCl3, MnCl2, FeCl2, AlCl3, CaCl2, CuCl2, MgCl2, and LiCl (0.50 mM) were
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separately added into bio-reduction system. Clearly, Mg2+ and Li+ inhibited the reduc-
tase activity. While Sn4+, Zn2+ Co2+, and Fe3+ could significantly promote the reductase
activity (Figure 3a). Sn4+ could give the highest reductase activity. During the utilization
of SO4

2−/SnO2-CS, element Sn might be dissolved in the reaction system. The effects of
different loading of Sn4+ (0–5.0 mM) on the bio-reduction activity were also tested. It was
observed that 0.1–0.8 mM Sn4+ could be promote reductase activity. Clearly, the optimal
Sn4+ dose was 0.50 mM, and the reductase activity of CF cells was increased by 1.2-fold
compared to the control in the absence of Sn4+ (Figure 3b). By increasing Sn4+ dosage
from 0.9 to 5.0 mM, the activity gradually dropped from 2.1% to 17.9%. These results indi-
cated that Sn4+ and SO4

2−/SnO2-CS were compatible towards reductase in CF whole-cells
to some extent. From the view of biochemical aspect, this property would facilitate the
chemoenzymatic conversion of biomass-derived D-xylose into FOL without removal Sn4+

and SO4
2−/SnO2-CS. To further enhance the FAL-reducing activity, the combination of

Sn4+ and other metal ion (Zn2+, Co2+, Fe3+, Fe2+ or Mn2+) on conversion of FAL with E. coli
CF is under progress.
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Furthermore, the CF cell dosage might have significant influence on the FOL yield.
As illustrated in Figure 4, the FOL formation clearly increased with increased cell dosage
from 0.025 to 0.050 (wet weight)/mL. At 0.050 g/mL, 150 mM FAL could be completely
catalyzed into FOL. By increasing CF cell dosage from 0.050 to 0.075 g/mL, no significant
change was observed on the FOL yield. Over 0.075 g/mL, the FOL yield dropped gradually.
It is likely that the high-loading of cells might cause the increase in the reaction system’s
viscosity, and the FOL yield significantly decreased.
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3.3. Chemical-Enzymatic Conversion of D-Xylose into FOL

In the past few years, chemical-enzymatic cascade catalysis has been applied to
synthesize highly value-added chemicals [32]. In the DES-water system, catalysis of
D-xylose to FAL with SO4

2−/SnO2-CS and bio-reduction in FAL to FOL with recombinant
E. coli CF were combined into the transformation of D-xylose to FOL in a cascade reaction
manner. In an autoclave reactor containing 40 mL ChCl:EG–water (5:95, v/v) at 185 ◦C,
3.0 g D-xylose could give 223.0 mM FAL in 20 min. Then, after adjusting pH value to
7.5, the FAL liquor A obtained was diluted with KPB (100 mM, pH 7.5) to form FAL
liquor B (50–200 mM FAL). E. coli CF whole cells (0.050 g/mL), Sn4+ (0.50 mM), HCOONa
(3.0 mol HCOONa/mol FAL), and NADPH (1.0 µmol NADPH/mmol FAL) were added
to initiate the bioconversion of FAL liquor B at 35 ◦C. Time courses for the bioconversion
of dilute D-xylose-derived FAL (50–200 mM) were monitored (Figure 5). It was found
that 50–100 mM FAL could be completely converted into FOL at 35 ◦C within 6 h, while
150 mM FAL could be fully catalyzed to FOL within 8 h. At 200 mM, FOL was obtained
in the yield of 80.0%. Conversion of D-xylose to FOL in 35.7%–44.6% yield (based on
D-xylose) was conducted via sequential catalysis with SO4

2−/SnO2-CS and CF cells in
ChCl:EG–water system. Compared with previous reports [14,33], this strategy could be
used to utilize FAL for FOL production within a relatively short reaction time. In this study,
an effective chemical-enzymatic strategy for transforming D-xylose to FOL via sequential
SO4

2−/SnO2-CS catalysis and CF whole-cell bio-reduction was successfully demonstrated.
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This study provided a tandem catalytic process for chemoenzymatically valorizing
D-xylose to FOL in one same autoclave reactor (Figure 6). This process might cut down the
equipment input and reduce the usage of solvents (e.g., water and DES). The concentration
of FAL in this tandem catalytic process was not very high, by using D-xylose as feedstock.
The FAL yield need to be drastically enhanced for the efficient production of FOL. Be-
sides the effectiveness of catalysts for high yield and high selectivity in the formation of
products, solvents also play an important role in enhancing products yield [34,35]. DESs
are inexpensive, easy to prepare, lower toxicity and environmentally friendly solvents,
which have been utilized to conduct chemocatalysis and biocatalysis reactions [36–39].
This combined chemical-enzymatic strategy for tandemly transforming D-xylose to FOL
by SO4

2−/SnO2-CS and E. coli CF whole-cells in DES ChCl:EG–water. HCOONa was
chosen as the cosubstrate for the bio-reduction in FAL into FOL. Compared with glu-
cose as cosubstrate [27,31], this developed process using HCOONa as cosubstrate was
regarded as greener approach in the industrial applications [40]. From the view of indus-
trial biotechnology applications, it was of great interest to develop a cost-effective process
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for the enhancement of FAL production [27,41], and to further promote FOL formation
with high reductase activity. This established one-pot chemoenzymatic strategy might
facilitate the conversion of biomass resource into value-added furan-based chemicals in an
environmentally friendly reaction media.
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4. Conclusions

In the D-xylose dehydration, high FAL yield (44.6%) was achieved by catalyzing
D-xylose (75.0 g/L) with SO4

2−/SnO2-CS (1.2 wt%) in DES ChCl:EG–water (5:95, v/v) at
185 ◦C within 20 min. Subsequently, E. coli CF whole cells could convert D-xylose-derived
FAL (50–200 mM) into FOL in the yield of 80–100% (based on FAL) within 8 h at 35 ◦C
and pH 7.5 using HCOONa as cosubstrate. The one-pot conversion of D-xylose to FOL
at 35.7%–44.6% yield (based on D-xylose) was conducted via sequential catalysis with
SO4

2−/SnO2-CS and CF cells in ChCl:EG–water. This combined catalytic strategy provides
an environmentally friendly idea for the conversion of biomass-derived D-xylose to FOL.
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