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Abstract: In Industry 4.0, data are sensed and merged to drive intelligent systems. This research
focuses on the optimization of selective assembly of complex mechanical products (CMPs) under
intelligent system environment conditions. For the batch assembly of CMPs, it is difficult to obtain the
best combinations of components from combinations for simultaneous optimization of success rate
and multiple assembly quality. Hence, the Taguchi quality loss function was used to quantitatively
evaluate each assembly quality and the assembly success rate is combined to establish a many-
objective optimization model. The crossover and mutation operators were improved to enhance the
ability of NSGA-III to obtain high-quality solution set and jump out of a local optimal solution, and
the Pareto optimal solution set was obtained accordingly. Finally, considering the production mode
of Human–Machine Intelligent System interaction, the optimal compromise solution is obtained by
using fuzzy theory, entropy theory and the VIKOR method. The results show that this work has
obvious advantages in improving the quality of batch selective assembly of CMPs and assembly
success rate and gives a sorting selection strategy for non-dominated selective assembly schemes
while taking into account the group benefit and individual regret.

Keywords: selective assembly; Taguchi quality loss; many-objective optimization; NSGA-III; VIKOR

1. Introduction

In the manufacturing environment of Industry 4.0, it becomes easy to accurately
collect various data during production. Relying on a large amount of data, intelligent
systems can optimize and make decisions in the production process. Most mechanical
products are manufactured by the processing and assembly of components [1]. Under the
condition of high requirements for product matching accuracy, due to the limitation of
component processing capacity and manufacturing cost, it is unrealistic and uneconomical
to completely rely on improving the accuracy of the processing process to meet and
improve the product matching accuracy [2]. In practice, the demand of producers is to
reduce manufacturing costs as much as possible while ensuring quality to obtain maximum
product competitiveness. Therefore, selective assembly is one of the feasible methods to
achieve high-precision assembly and reduce costs by using data and intelligent systems.

Researchers have made a lot of progress in selective assembly by researching the
grouping of assembly components [3,4]. However, due to the many limitations of these
methods, researchers have conducted further research on selective assembly methods
from other perspectives. With the development of research, some intelligent optimization
algorithms with better optimization effects have been used in the selective assembly field.
Kannan et al. [5] proposed a genetic algorithm for selective assembly. In this research, the
selective assembly process was analyzed, and a better combination was selected through
the use of genetic algorithms to minimize assembly differences. Kannan et al. [6] used a
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genetic algorithm to obtain the best combination of the selection group with the smallest
gap within the gap specification and at the same time minimized the deviation from the
objective value by minimizing the Taguchi loss function. Fei et al. [7] proposed a new group-
ing method and chromosome structure using genetic algorithms to minimize the remaining
components. Tan and Wu [8] summarized the research results of selective assembly and ex-
panded the concept of selective assembly, distinguishing between direct selective assembly,
using information directly obtained from measurements on component characteristics, and
fixed bin selective assembly using components sorted into bins. The branch-demarcation
algorithm is used to solve the selective assembly problem. Lu and Fei [9] proposed a new
grouping method using a genetic algorithm to minimize the remaining components of a
multidimensional chain and improved the genetic algorithm chromosome structure into a
two-dimensional structure, making it more competitive in solving multidimensional chain
problems. Manickam and De [10] proposed an optimal size selective assembly method,
which is suitable for small batch quantities with wide tolerances, and successfully applied
genetic algorithms in some components of the launch vehicle. Liu and Liu [11] proposed
a method to determine the number of assembly groups for remanufactured engines. By
improving the previous assembly method of specifically determining the number of groups,
the number and interval of the components to be assembled are variable to reduce the
waste of components. Wang [12] proposed the maximum assembly acceptance method
under the condition of a non-normal distribution in matching components and optimized
it by a genetic algorithm based on numerical experiments under different conditions. Kan-
nan et al. [13] proposed a new selective assembly model to obtain specified tolerances in
high-precision assembly and achieved a high success rate using genetic algorithms. Chu
et al. [14] proposed an improved genetic algorithm to conduct application research on
the selective assembly process of rotor vector (RV) reducers and verified the feasibility
and effectiveness of the method. Jeevanantham et al. [15] studied the accumulation and
extension of geometric and dimensional tolerances (GDTs) using tolerance analysis. By
integrating GDT, the size deviation of components is grouped, and the optimal combination
of component selective assembly is obtained by a genetic algorithm to obtain the minimum
assembly deviation.

Kannan et al. [16] used the particle swarm optimization algorithm (PSO) to obtain
the selective grouping and combination of component assembly, which significantly re-
duced the assembly deviation. Raj et al. [17] used the PSO algorithm to develop a code
suitable for solving selective assembly problems and assembled components in batches
to improve assembly efficiency. Rajesh et al. [18] studied the grouping selective assembly
process, established the assembly loss model by using the Taguchi quality loss function,
and obtained the combination of assembly losses that were as small as possible by using an
improved immune algorithm. Rajesh et al. [19] proposed the Taguchi quality loss function
based on symmetric intervals, studied the grouping selective assembly process, and used
the improved sheep flock heredity algorithm to minimize the assembly clearance variation.
Asha et al. [20] used a non-dominated sorting genetic algorithm (NSGA) to obtain the best
combination of the selection group with the smallest change in the assembly clearance
between the piston and the cylinder under the consideration of multiple characteristics.
Although the multiple-characteristics-related situation is not considered in the assembly
optimization process, it is of guiding significance for the selection of the processing and
manufacturing process of the components. Raj et al. [21] applied the NSGA-II to batch
selective assembly and applied it to complex components composed of pistons, piston
rings, and cylinders. They proved that the algorithm is superior to existing methods in the
literature in generating solutions with no remaining components and minimal gap changes.
Researchers have applied NSGA in selective assembly and have begun to pay attention to
solving the many-objective optimization problem in selective assembly.

Some of the latest research work has led to further development of selective assembly.
Sun [22] applied the Taguchi theory to group and match the three-dimensional uniform
transformation deviation, and the overall assembly quality was improved. Xing et al. [23],
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considering that the geometric error of the mating surface is an important factor affecting
assembly quality, proposed an optimization method of shaft hole selective assembly based
on relative entropy and dynamic programming, providing a new idea for the selective
assembly of multiple batches of precision components. Rezaei Aderiani et al. [24] used
digital twin technology to apply selective assembly methods to the assembly of automotive
sheet metal components, which significantly improved the geometric variation and average
deviation of the components. This research clearly discusses the difference between sheet
metal assembly and linear assembly and notes that the selective assembly problem should
be a many-objective optimization problem. Rezaei Aderiani et al. [25] improved the
genetic coding method of intelligent optimization algorithms for solving selective assembly
problems and proved in three cases that the effect of intelligent algorithms was better than
mixed integer linear programming and mixed integer nonlinear programming in selective
assembly, and this method could effectively reduce the calculation time. A methodology has
been proposed in [26,27], which defines system requirements formally and automatically
verifies and evaluates the system through simulation. Based on Formal Requirements
Modeling Language and the Modelica Language, it is verified in two practical engineering
project cases. This provides a theoretical basis and feasibility for formal confirmation of
system requirements and simulation verification.

In engineering practice, the assembly of CMPs involves a multidimensional assembly
dimension chain formed by multiple component sizes. From the literature survey, most
of the above works focus on the improvement of selective assembly scheme of single
dimension chain, less work has been done to model and research the quality loss of CMPs
with a multidimensional assembly dimension chain, and there are certain limitations:

(1) In most of works, the optimization objective in the selective assembly process is
relatively single. The assembly quality loss simply sums up the quality loss of each
separate assembly dimension chain without considering the independent quality of
each dimension chain;

(2) There have been very few previous studies considering the production mode of
Human–Machine Intelligent System interaction and could not order and make deci-
sions on the non-dominated solution set.

Therefore, this study aims to solve the problem of selective assembly in the manu-
facturing process of complex mechanical products, including quality optimization, cost
reduction, and scheme decision making.

The proposed problem can be solved in three stages. Firstly, the selective assembly
process of CMPs is described, and then this mathematical model is established using the
success rate and the Taguchi quality loss function. Secondly, taking the overall assembly
success rate and the quality loss of the closed loop of each single assembly dimension
chain as multiple optimization objectives, improved NSGA-III (NSGA-III-I) is used to
solve the simulation data to obtain the Pareto optimal solutions. Finally, considering
the production mode of the human–machine intelligent system interaction, fuzzy theory,
entropy theory, and the VIKOR method are used to obtain the optimal compromise scheme
for selective assembly.

The rest of the paper is organized as follows. In Section 2, the mathematical model and
optimization objectives of selective assembly problem for CMPs are introduced. Section 3
presents a case of selective assembly and the assembly of pistons, piston rings, and cylinders.
The proposed NSGA-III-I is described in Section 4. In particular, we introduced specific
coding, crossover, and mutation strategies to solve the problem of selective assembly.
In Section 5, the decision-making method combining fuzzy theory, entropy theory, and
VIKOR is described. In Section 6, the NSGA-III-I algorithm is used to optimize the case
selective assembly problem and achieved better results compared with other algorithms,
and the optimal scheme was obtained successfully from the set of non-dominated solutions
by using the proposed decision-making method. Finally, in the last section, conclusions
are drawn.
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2. Mathematical Model for Selective Assembly of CMPs

General CMP assembly has the following characteristics: Different quality charac-
teristics (QCs) of the same component constitute different dimension chain closed loops
(DCCLs), the same quality characteristics of the same component constitutes a plurality
of different DCCLs, and a CMP is composed of many different types and quantities of
components [28]. Based on the relationship between DCCLs and QCs, correlation analysis
and constraint conditions were established. The optimization mathematical model of the
selective assembly of CMPs was established through the assembly success rate and the
Taguchi quality loss function.

2.1. Correlation Analysis of Components to Be Assembled

In the process of mechanical product assembly, the dimension chain in the assembly
link refers to DCCLs composed of QCs from different components in a specific order.
DCCLs were used to indicate assembly accuracy during assembly. Therefore, the value
of DCCLs represents the actual value of quality requirements (QRs) of the assembly. The
correlation between QCs and QRs is the mathematical representation of the assembly
structure, and the assembly structure is the basis of selective assembly. The assembly
structure relationship of CMPs is shown in Figure 1.
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Figure 1. Assembly structure relationship of CMPs.

The assembly structure of CMPs is analyzed according to the following steps:
Step 1: CMPs are split into individual component, and QC of each component

is recorded.
Step 2: Various assembly relations of CMP are found and correspond to QCs of

components.
Step 3: Formally express the assembly structure by polychromatic set theory and

establish the assembly structure drawing. In this work, multiple dashed block diagrams
are used to replace different colors.

2.2. Constraints in Assembly Process

Assembly quality and function of CMPs are determined by the value of each QR.
When any QR-value exceeds the upper limit of the objective interval or is lower than the
lower limit of the objective interval, the product assembly fails. If all QR-values are within
the objective interval, the assembly is said to be qualified. Accordingly, the constraint
matrix of QRs is constructed:

Y =

[
ymin,1 ymin,2 ymin,3 ymin,4 . . . ymin,n
ymax,1 ymax,2 ymax,3 ymax,4 . . . ymax,n

]
(1)
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where ymin,n and ymax,n denote the lower and upper limits of the design interval value of
the nth QR, respectively.

Each element in the vector y is the actual value of each QR of the assembly after
assembly. When each element in the vector y is within the scope of the upper and lower
limits, the assembly is successful. The vector y is as follows:

y =
[

y1 y2 y3 y4 . . . yn
]

(2)

2.3. Taguchi Quality Loss Function

In the process of processing, due to the existence of various random factors, the pro-
cessed components cannot be completely consistent, and the actual value of the component
size has a certain deviation compared with the ideal value. When the deviation is within
the acceptable interval, it is called the dimensional tolerance of the component, and the
dimensional tolerance of the component determines the QR value of the assembly.

The traditional basis for judging whether a product is qualified is to judge whether
the actual QR-value meets the design interval value. As long as it meets the design interval
value, the product is considered qualified. Only products that exceed the design interval
value are reworked, repaired, or scrapped, and quality loss occurs; according to Taguchi’s
loss function approach [29], even if it is a qualified product (the actual QR-value is within
the design value interval), the fluctuation of the QR-value can still cause losses to users
and society. The farther the QR-value is from the ideal value, the greater the loss will be.
Therefore, the QR-value should be as close as possible to their ideal value. Two views of
quality loss are shown in Figure 2.

Processes 2021, 9, x FOR PEER REVIEW 5 of 34 
 

2.2. Constraints in Assembly Process 

Assembly quality and function of CMPs are determined by the value of each QR. 

When any QR-value exceeds the upper limit of the objective interval or is lower than the 

lower limit of the objective interval, the product assembly fails. If all QR-values are 

within the objective interval, the assembly is said to be qualified. Accordingly, the con-

straint matrix of QRs is constructed: 

 Y =   �
y

min,1
y

min,2
y

min,3
y

min,4
… y

min,n

y
max,1

y
max,2

y
max,3

y
max,4

… y
max,n

� (1)

where y
min,n

 and y
max,n

 denote the lower and upper limits of the design interval value 

of the nth QR, respectively. 

Each element in the vector y is the actual value of each QR of the assembly after as-

sembly. When each element in the vector y is within the scope of the upper and lower 

limits, the assembly is successful. The vector y is as follows: 

 y = [ y1
y

2
y

3
y

4
… y

n ] (2)

2.3. Taguchi Quality Loss Function 

In the process of processing, due to the existence of various random factors, the 

processed components cannot be completely consistent, and the actual value of the 

component size has a certain deviation compared with the ideal value. When the devia-

tion is within the acceptable interval, it is called the dimensional tolerance of the com-

ponent, and the dimensional tolerance of the component determines the QR value of the 

assembly. 

The traditional basis for judging whether a product is qualified is to judge whether 

the actual QR-value meets the design interval value. As long as it meets the design in-

terval value, the product is considered qualified. Only products that exceed the design 

interval value are reworked, repaired, or scrapped, and quality loss occurs; according to 

Taguchi’s loss function approach [29], even if it is a qualified product (the actual 

QR-value is within the design value interval), the fluctuation of the QR-value can still 

cause losses to users and society. The farther the QR-value is from the ideal value, the 

greater the loss will be. Therefore, the QR-value should be as close as possible to their 

ideal value. Two views of quality loss are shown in Figure 2. 

  

(a) (b) 

Figure 2. Two views of quality loss: (a) Traditional view of quality loss; (b) Taguchi’s quality loss 

approach. 

Taguchi proposed three types of quality loss functions, loss functions for the larg-

er-the-better, the smaller-the-better, the nominal-the-best characteristics, as follows: 

Figure 2. Two views of quality loss: (a) Traditional view of quality loss; (b) Taguchi’s quality
loss approach.

Taguchi proposed three types of quality loss functions, loss functions for the larger-
the-better, the smaller-the-better, the nominal-the-best characteristics, as follows:

Larger-the-Better : L(y) = k
1
y2 (3)

Nominal-the-Best : L(y) = k(y−M)2 (4)

Smaller-the-Better : L(y) = ky2 (5)

where L denotes the Taguchi quality loss, k denotes a constant of proportionality indepen-
dent of y, y is the actual value of QR, and M is the ideal value of QR.

In engineering practice, the nominal-the-best Taguchi quality loss model is often used
for the quality loss of each QR of assembly, and it can be guaranteed that the QR-value falls
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within the design interval [18,30]. For the assembly meeting the design interval, when the
QR-value is close to the ideal value, the quality loss caused by the deviation is 0. The quality
loss will increase accordingly when the QR-value deviates from the ideal value. If the
QR-value exceeds the objective interval value, the quality loss is equal to the cost of product
treatment or rework. Therefore, the quality loss of QR is calculated by Formulas (6)–(9):

λ = k∆2 (6)

k =
λ

∆2 (7)

∆2= T2[max (α, β)
]

(8)

L(y) =

{
λ

T2[max (α, β)]
(y−M)2, y ∈ [M − αT] ∪ [M + βT]

λ, y ∈ (−∞, M− αT) ∪ (M + βT,+∞)
(9)

where ∆ denotes the maximum difference between the tolerance boundary and the ideal
value, T denotes the width of the design interval, λ denotes the quality loss of assembly
failure, and α and β denote the partitioning ratios of the values of the design interval,
α + β = 1. The functional image of the nominal-the-best Taguchi quality loss model in
assembly is shown in Figure 3.
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2.4. Many-Objective Optimization Model of Selective Assembly for CMPs

In the selective assembly process, a comprehensive and reasonable evaluation of the se-
lective assembly scheme of CMPs requires comprehensive consideration of all quantifiable
influencing factors. In selective assembly, the overall success rate and the degree of each
QR close to the ideal value are the most representative evaluation indices of the scheme.

2.4.1. Assessment Based on Assembly Success Rate

In the selective assembly of existing components to be assembled, more successful
assemblies should be obtained as far as possible under the condition of meeting assembly
requirements, and the surplus of mismatched components should be reduced. Assembly
success rate is defined in the range [0, 1]. The assembly success rate in optional scheme X
can be calculated by Formula (10):

ηs(X) =
ns(X)

na(X)
(10)
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where na denotes the number of assemblies to be assembled; ns denotes number of quali-
fied assemblies obtained through selective assembly; X denotes the scheme for selective
assembly; and ηs denotes the success rate of selective assembly.

2.4.2. Assessment Based on Quality Loss of Individual QR

In previous studies, the multidimensional chain was often converted into a single-
dimensional chain when the quality loss of the assembly was modeled, and the simple
linear addition of the quality loss was used to set an optimization objective. This will lead to
product quality requirement confusion, and it is not easy to judge the effect of the assembly
scheme. The optimization effect of product assembly is not ideal, and the performance of
schemes with the same quality loss varies greatly. Based on the characteristics of general
CMPs, the proposed work takes the average quality loss function of a single QR as the
optimization objective function as calculated by Formulas (11) and (12):

L(yi) =
1
q

q

∑
j=1

L(yij) (11)

L(yij) =

{
λ

T2
i [max(α,β)]

(yij −Mi)
2, yij ∈ [M− αTi] ∪ [M + βTi]

λ, yij ∈ (−∞, Mi − αTi) ∪ (Mi+βTi,+∞)
(12)

where Ti denotes the width of the design interval for the ith QR, yij denotes the actual
value of the ith QR of the jth assembly, and Mi denotes the objective value of the ith QR.
L(yij) denotes the quality loss of the ith QR of the jth assembly, and L(yi) denotes the mean
value of the sum of the quality loss of the ith QR of all assemblies in the selective assembly
scheme; q denotes the number of components of the same type.

2.4.3. Many-Objective Optimization Model of Selective Assembly for CMPs

The pros and cons of CMP batch selective assembly schemes are jointly evaluated
by the overall assembly success rate and product quality loss. To unify the optimization
direction of a set of objective functions to the minimum direction, the first objective function
is deformed. From the formula in this chapter, the mathematical model (Formula (13)) of
the many-objective optimization for selective assembly can be obtained as follows:

Min f (X) =
[

f1(X) f2(X) f3(X) · · · fm(X)
]

s.t.



f1(X)= 1− ηs(X)
f2(X)= L(y1)
f3(X)= L(y2)

. . .
fm(X)= L(ym−1)

X =
{

x1, x2, . . . , xp
}

x1, x2, . . . , xp ∈ Oq

(13)

where m denotes the number of optimization objective functions, m = n + 1, n denotes
the number of QR; f (X) denotes the objective vector, f1(X), f2(X), . . . , fm(X) denote each
element value in the vector, and X denotes the selective assembly scheme; xp denotes the
full permutation of the pth type of components; Oq denotes the domain of x1, x2, . . . , xp,
which is the full permutation of 1 to q; q denote the number of components of the same type.

3. Case Analysis

An example of the selective assembly of pistons and cylinders proposed by Asha [20]
is used to verify the selective assembly of CMPs in this work. The assembly structure is
shown in Figure 4.
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3.1. Components QCs and QRs of the Assembly

The assembly is composed of three components: a piston, a piston ring, and a cylinder.
The considered QCs of the components are listed in Table 1.

Table 1. QCs and processing parameters of each component in the assembly.

Mating
Component

Code

Quality Characteristic Manufacturing Details

Name Description Code Specification Basic Dimension
(mm)

Tolerance Achieved
(µm)

Standard
Deviation

Min Max Mean (σ)

C1 Piston
Piston groove diameter A 42+0.000

−0.018 42.0 0 18 9 6
Piston diameter B 50+0.012

−0.000 50.0 0 12 6 4
Piston groove thickness C 3.2+0.000

−0.012 03.2 0 12 6 4

C2 Piston ring
Piston ring width D 4+0.000

−0.018 04.0 0 18 9 6
Piston ring thickness E 3+0.000

−0.006 03.0 0 6 3 2
Piston ring outer

diameter F 50+0.028
−0.004 50.0 0 24 12 8

C3 Cylinder Cylinder inner diameter G 50+0.028
−0.004 50.0 0 24 12 8

The QCs of all the components of the piston and cylinder assembly are analyzed and
QRs that need to be analyzed and calculated during the selective assembly process of the
assembly are obtained, as shown in Figure 5.
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Figure 5 shows four QRs: y1, y2, y3, and y4. The corresponding QCs are A-D-G, C-E,
B-G, and F-G. This assembly selection process involves three components, seven QCs, and
four QRs.

Piston groove diameter
Piston ring width

Cylinder inner diameter

y1

Piston groove thickness
Piston ring thickness

}
y2

Piston diameter
Cylinder inner diameter

}
y3

Piston ring outer diameter
Cylinder inner diameter

}
y4

If the components are assembled through the principle of interchangeability, the
tolerances of four QRs will be the sum of the tolerances of the corresponding component
QCs, which is the maximum tolerance. Consider the center value of each design tolerance
interval as the ideal value of each QR, and the design tolerance intervals of each QR of the
assembly are listed in Table 2.

Table 2. Related data of each QR of the assembly.

Quality
Requirements

Maximum
Tolerance Design Tolerance

Interval
Ideal Value

y1 0+0.082
+0.004 0+0.062

+0.024 0.043
y2 0.2+0.006

−0.012 0.2+0.002
−0.008 0.197

y3 0+0.028
−0.008 0+0.019

+0.001 0.010
y4 0+0.024

−0.024 0+0.012
−0.012 0.000

According to the design tolerance interval of each QR of the assembly, the constraint
matrix is obtained as follows:

Y =

[
0.062 2.002 0.019 0.012
0.024 1.992 0.001 −0.012

]
The ideal value vector of QRs is as follows:

M =
[

0.043 0.197 0.010 0
]

The objective tolerance interval of QRs is as follows:

[M i − 0.5Ti] ∪ [M i+0.5Ti]
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3.2. Optimization Objectives of the Case Selective Assembly

According to the many-objective selective assembly optimization model established in
this work and the assembly QRs of the piston and cylinder assembly in the case study, the
optimization objectives in the selective assembly process of the piston and cylinder group
are established as follows:

Min f (X) =
[

f1(X) f2(X) f3(X) f4(X) f5(X)
]

s.t.



f1(X)= 1− ηs(X)
f2(X)= L(y1)
f3(X)= L(y2)
f4(X)= L(y3)
f5(X)= L(y4)

X ={x1, x2, x3}
x1, x2, x3 ∈ O50

3.3. Data Simulation of Each Component

In this work, the purpose of the proposed method was to maximize the success
rate of assembly while reducing the quality loss of each quality requirement as much as
possible. To verify the feasibility of the scheme, the Monte Carlo simulation method was
used to obtain the QC data of each component. A total of 300 sets of components were
simulated and randomly divided into 6 groups, each with 50 components. Simulating
the component QC data in the actual production process through the discrete normal
distribution probability mass function (Formula (14)) is defined as:

pmf (h)= Pr(x− 0.5 < H ≤ x + 0.5) for h ∈ Z (14)

where H denotes the normal distribution of QCs of the component, Z denotes the set of
integers, and the size table of the components is listed in Table A1.

4. NSGA-III-I

The selective assembly model of the CMPs constructed by the above content was a
many-objective optimization model with multiple objectives that needed to be optimized
at the same time, and the optimization objectives were often greater than three. An NSGA-
III-I selective assembly many-objective optimization algorithm suitable for this model
was designed.

The NSGA-III is a new many-objective optimization algorithm proposed on the basis
of the NSGA-II [31]. The NSGA-II selects individuals of the same non-dominant level by
calculating the distance of individual crowding degrees. It was believed that the larger the
crowding degree distance is, the better. This method was particularly suitable for solving
the optimization problem of two objectives. However, when it solves optimization problems
with more than three objectives, the individuals selected by crowding distance sorting are
not uniformly distributed on the non-dominated layer, which easily falls into the local
optimum, which affects the performance of the algorithm. The NSGA-III selects individuals
based on the method of reference points and optimizes the selection by calculating the
shortest distance between individuals and reference points. When facing many-objective
optimization problems with three or more objectives, the algorithm can be ensured to
converge to a uniformly distributed Pareto surface [32].

The NSGA-III algorithm is limited by the coding method and completely random
initial solution generation rules, resulting in the algorithm performance being greatly
dependent on the initial solution set, and the feasible solution space of the constructed
selective assembly model increases exponentially with the increase in components. It greatly
increases the risk of obtaining a local optimal solution. To improve the global searching
ability of the NSGA-III, a new mapping method between genotype and phenotype was
selected, and the idea of a simulated annealing algorithm was introduced into crossover



Processes 2022, 10, 34 11 of 31

and mutation operators to enhance the ability of the algorithm to obtain the global Pareto
front (PF).

4.1. Pareto Optimal Solution

The solution set finally obtained by the NSGA-III algorithm is the Pareto optimal
solution set. When the optimization direction is the minimum value direction, the solution
set is defined as follows:

For any two decision variables Xa, Xb ∈ X f , where X f is the feasible solution set:

(1) ∀ j ={1, 2, · · · , k} : f j(Xa) ≤ f j(Xb);
(2) ∃ j ={1, 2, · · · , k} : f j(Xa) < f j(Xb).

If and only if the above conditions are met, Xb is dominated by Xa. In the solution
space, there is a solution set X, which is not dominated by any solution; it is the Pareto
optimal solution [33].

4.2. Input Module

For the experimental problems considered in this paper, the required input data are as
follows:

• Problem data:

(1) Batch size;
(2) Number of component types in the assembly;
(3) Dimensional data of components.

• Algorithm Parameters:

(1) Population size;
(2) Crossover probability;
(3) Mutation probability;
(4) Termination Index.

4.3. Initializing Module
4.3.1. Encoding

Selective assembly is a many-objective combinatorial optimization problem. The way
to solve the problem is to find the best possible selective assembly scheme. Traditional
binary coding will produce a large number of infeasible solutions when contending with
selective assembly problems, which increases the difficulty of the algorithm in solving the
problem. Kannan et al. [5] proposed a classic coding method to solve the selective assembly
problem using genetic algorithms (Figure 6a). However, this kind of coding scheme still
encounters failure in achieving a one-to-one correspondence between the selective assembly
scheme and the chromosome. In the case of different genotypes, it can match the same
selective assembly scheme, which will cause the performance of the algorithm to decrease.
Therefore, Rezaei Aderiani et al. [25] proposed a new coding scheme that can ensure that
the dyeing and selection scheme is one-to-one, and the dotted lines indicate that the genes
are fixed and immutable, as shown in Figure 6b. Taking an assembly consisting of two
components A and B as an example, five for each component, (A1B4), (A2B3), (A3B5),
(A4B1), and (A5B2), this combination can be expressed as:
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4.3.2. Initialization of Algorithm Parameters

Initialize the population and randomly generate N chromosomes;
Initialize the number of iterations, Gen = 0;
Initialize to reference points.

4.4. New Population Generation Module

The new population generation module was divided into a crossover module and a
mutation module. In NSGA-III, the gene mutation method with fixed crossover and muta-
tion probability was adopted. This strategy keeps the crossover and mutation probability
unchanged during the operation of the algorithm and cannot consider the global search
performance and convergence performance required by the algorithm. Aiming at the
many-objective optimization problem in the CMP selective assembly, the adaptive change
idea of a simulated annealing algorithm was used to improve crossover and mutation
operators to enhance the searching ability and convergence of the algorithm.

4.4.1. New Crossover Operator

Notably, when the crossover probability of the algorithm was small, it was beneficial
to maintaining population diversity and increasing global search ability. In contrast, when
the crossover probability was large, the efficiency of local search was strong, and the
convergence ability of the algorithm was improved. Therefore, the crossover operator
was improved according to the crossover probability characteristics of the algorithm. In
particular, the crossover probability was small in the early stage of the algorithm operation
to maintain population diversity, and the crossover probability was large in the late stage
to improve the convergence ability of the algorithm. The crossover strategy (Formula (15))
is as follows:

ProC = 1− pC1 ×
pC2

2

pC2
2+Gen2 (15)

where ProC denotes the crossover probability, pC1 and pC2 denote the crossover parameters,
and Gen denotes the number of iterations. In this work, pC1 = 0.6 and pC2 = 50 are selected.

Step 1: Select crossed chromosomes and generate a random number r for each pair
of chromosomes, if r < ProC, corresponding chromosomes are selected for the crossover
operation.

Step 2: The chromosomes selected for crossover are paired, and crossover operations
are performed between the same substrings of different chromosomes. To avoid invalid
chromosomes, the crossover point is placed between the second and thirds substrings,
and a single point crossover is performed. An example of a two-chromosome crossing
operation to produce two offspring chromosomes is shown in Figure 7.
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4.4.2. New Mutation Operator

The mutation operator locally changes the genes of the chromosomes, hoping to create
better chromosomes. When the algorithm mutation probability is too low, it will greatly



Processes 2022, 10, 34 13 of 31

increase the risk of falling into the local optimum; when the algorithm mutation probability
is too high, it will cause the algorithm solution set to fail to converge. Therefore, by
improving the mutation strategy of the algorithm, this study makes the mutation probability
relatively high at the beginning of the algorithm, increases the diversity and richness of the
population, and gradually decreases with the increase in the number of iterations, making
it easier to retain more excellent individuals and improving the convergence performance
of the algorithm. The mutation strategy (Formula (16)) is as follows:

ProM = 1− pm1 ×
pm2

2

pm22+Gen2 (16)

where ProM denotes the mutation probability, pm1 and pm2 denote mutation parameters,
and Gen denotes the number of iterations. In this work, pm1 = 0.6 and pm2 = 50 are selected.

Mutation operations are used to target genes on each chromosome. To avoid the oc-
currence of invalid chromosomes, the neighborhood swapping method is used to generate
a random number r for each gene; if r < ProM during the mutation process, the selected
gene is swapped with the previous gene. An example of the mutation operation is shown
in Figure 8.
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4.5. Merging of Parent and Offspring Populations

The combined population Rt with population size 2N was obtained by merging
the parent population Pt with population size N and the offspring population Qt with
population size N. Rt is the transition population between population Pt and the next
population Pt+1.

4.6. Evaluation Module and Environment Selection Module

The fitness vector elements of each chromosome correspond to the five objective
function values of f1(X), f2(X), f3(X), f4(X), and f5(X). The five objective function values
of N chromosomes are calculated.

4.6.1. Selected Individuals

The transition group Rt with a population size of 2N is merged by the current group
Pt and its progeny group Qt. To make the size of Pt+1 meet the requirements of population
size and ensure that the overall performance is better than Pt, a non-dominated sorting
operation is performed on Rt, and individuals are selected with higher non-dominated
levels and added to Pt+1 until the size of Pt+1 cannot accommodate individuals at the next
level of dominance, and this dominance level is recorded as Fl .

The associated reference point operations on individuals in the current population
(excluding individuals in Fl) are performed, the reference point j with the least associated
individuals is selected and its associated number is recorded as ρj. Then, the situation of
this reference point can be elaborated as follows:
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(1) If there is no individual associated with the reference point in Fl , a new reference point
vector is selected.

(2) If the number of population individuals associated with this reference point is 0
(ρj = 0), but there are individuals in Fl that are related to this reference point vector,
then the individual with the smallest distance from it is found and extracted from Fl ,
which is then added it to the selected next-generation population, set ρj = ρj + 1.

(3) If ρj > 0, there are multiple individuals in Fl that are associated with this reference
point vector, and then individuals in Fl are randomly selected that are associated with
the reference point until the population size is N.

4.6.2. Associated Reference Point

According to the fitness vector of all individuals in the population, the minimum
value of each objective function is calculated, the ideal point is updated, the hyperplane is
updated, each individual is associated to the reference point and reference vector according
to the strategy, and the number of individuals associated with the reference point is
calculated. The specific association strategy is as follows:

Step 1 Generate hyperplane:
First, select the minimum value of each objective function in the current population,

calculate the ideal point, take the ideal point as the origin and the objective function as the
coordinate axis, and normalize the individual using Formula (17):

f ′j (X)= f j(X)− zmin
j , for j = 1, 2, . . . m (17)

where zmin
j denotes the ideal point; f j(X) denotes the jth fitness value of each individual in

the population; and f ′j (X) denotes jth fitness value of each individual after normalization
in the population.

Next, the achievement scalarizing function (ASF(X , w) =
m

max
j = 1

f ′j (X)/ wj) is used

to calculate the extreme points. An extreme point refers to the individual whose objective
function value of one dimension is very large and the objective function value of the other
dimensions is very small; then, the population is traversed, and the extreme points zmax

i
of each dimension are found. Then, a hyperplane is constructed based on these extreme
points, and the intersection of the hyperplane and the coordinate axis is the intercept ai.
Taking the three-object problem as an example, the hyperplane is obtained as shown in
Figure 9.
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In NSGA-III, it is necessary to obtain a hyperplane equidistant from the origin and
normalize the individuals of the population according to the intercept of the coordinate axes
so that a standard hyperplane can be obtained in each generation. After this transformation
operation, the individuals of the population are normalized to the plane where the reference
point is. The conversion Formula (18) is as follows:

f ′′j (X) =
f ′j (X)

aj
, for j = 1, 2, . . . , m (18)

Step 2 Generate reference points:
This study adopted the reference point establishment method proposed by Das and

Dennis [34]: The reference point is placed on a normalized m − 1 dimensional standard
hyperplane, which is evenly inclined to all objective axes and has an intercept on each axis.
H points are uniformly generated on the hyperplane, and the boundary crossing method is
used to construct weights. If the objective dimension is divided into p equal parts, the total

number of reference points H in the m-objective problem is (
m + p− 1

p
).

Taking the three-objective problem as an example, the reference point is created in the
triangle plane with (0, 0, 1), (0, 1, 0), and (1, 0, 0) as the vertices. If the coordinate axis is

divided into four equal parts, p = 4, H = (
3 + 4− 1

4
)= 15. The distribution of reference

points is shown in Figure 10.

Processes 2021, 9, x FOR PEER REVIEW 16 of 34 
 

This study adopted the reference point establishment method proposed by Das and 

Dennis [34]: The reference point is placed on a normalized m−1 dimensional standard 

hyperplane, which is evenly inclined to all objective axes and has an intercept on each 

axis. H points are uniformly generated on the hyperplane, and the boundary crossing 

method is used to construct weights. If the objective dimension is divided into p equal 

parts, the total number of reference points H in the m-objective problem is �m + p � 1
p

�. 

Taking the three-objective problem as an example, the reference point is created in 

the triangle plane with (0, 0, 1), (0, 1, 0), and (1, 0, 0) as the vertices. If the coordinate axis 

is divided into four equal parts, p = 4, H =�3+4�1
4

�=15. The distribution of reference 

points is shown in Figure 10. 

 

Figure 10. Reference point distribution of the standard hyperplane for the three-objective optimi-

zation problem. 

In this experiment, the problem to be solved is a five-objective problem, and the 

reference point is created in the hyperplane with (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), 

(0, 0, 0, 1, 0), and (0, 0, 0, 0, 1) as vertices. 

Step 3 Associated reference point: 

Each reference vector is constructed by connecting each reference point and the 

origin. For each individual in the population, the reference vector was traversed to find 

the reference point nearest to the individual, and the association information and dis-

tance were recorded. The association between the individual and the reference point was 

completed. The distance between the individual and the reference vector will be de-

scribed by the Euclidean distance. 

4.7. Termination Criterion 

When the number of iterations reaches the maximum number or other relevant set-

ting conditions are met, the algorithm terminates. In the experiment in this paper, the 

maximum number of iterations of the algorithm is set to 500. 

4.8. Output Module 

The output of the algorithm is the 500th generation population, and the population 

size is N. Decoding can obtain N non-dominated selective assembly schemes. 

The basic search process of the proposed algorithm is shown in Figure 11. 

Figure 10. Reference point distribution of the standard hyperplane for the three-objective
optimization problem.

In this experiment, the problem to be solved is a five-objective problem, and the
reference point is created in the hyperplane with (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0,
0, 0, 1, 0), and (0, 0, 0, 0, 1) as vertices.

Step 3 Associated reference point:
Each reference vector is constructed by connecting each reference point and the origin.

For each individual in the population, the reference vector was traversed to find the
reference point nearest to the individual, and the association information and distance were
recorded. The association between the individual and the reference point was completed.
The distance between the individual and the reference vector will be described by the
Euclidean distance.

4.7. Termination Criterion

When the number of iterations reaches the maximum number or other relevant setting
conditions are met, the algorithm terminates. In the experiment in this paper, the maximum
number of iterations of the algorithm is set to 500.
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4.8. Output Module

The output of the algorithm is the 500th generation population, and the population
size is N. Decoding can obtain N non-dominated selective assembly schemes.

The basic search process of the proposed algorithm is shown in Figure 11.
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5. VIKOR Method to Sort the Solution Set

The Pareto optimal solution set obtained by the NSGA-III-I algorithm solving the
selective assembly high-dimensional many-objective optimization model is actually a
non-dominated solution set, which includes a large number of mutually non-dominated
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solutions. It is impossible to determine the priority of each scheme from the numerical
relationship, so the schemes of selective assembly need to be sorted and selected by means
of human-machine intelligent system interaction. The VIKOR method is a multi-criteria
decision-making method proposed by Opricovic [35], which is an optimal compromise
decision-making method based on ideal points, as well as an optimal compromise solution.
It is developed from the Lp-metric distance measure function (Formula (19)):

Lp−metric(Xi) =

{
m

∑
j=1

[
ωj ( f ∗j − fij)/( f ∗j − f−j )

]p
}1/p

(19)

where Xi denotes the ith scheme; p denotes the distance parameter of the Lp-metric distance
measure function; fij denotes the evaluation value of the ith scheme in the jth index; f ∗j and
f−j denote the best and worst evaluation values of the jth index; ωj denotes the weight of
the jth index.

5.1. Calculation of the Weight of Each Indicator

In the decision-making process of human-machine intelligent system interaction, it is
necessary to assign weight to each optimization objective, and the index weight is a measure
reflecting the relative importance of each optimization objective. In this paper, the entropy
weight method is used to calculate the objective weight of the index. The triangular fuzzy
number is used to fuzzily quantify the engineering decision maker language variables, and
then the subjective weight of the indicators is solved. Finally, the subjective weight and the
objective weight are combined into a combination weight with high robustness.

5.1.1. Entropy Method to Determine the Objective Weight

The entropy method is an approach to obtain the weight [36]. According to the basic
principles of information theory, information is a measure of the order degree of a system,
and entropy is a measure of the disorder degree of a system. If the information entropy
of the indicator is smaller, then the amount of information provided by the indicator is
larger, and it should play a larger role in the comprehensive evaluation such that the weight
should be higher.

According to the definition of information entropy in information theory, the infor-
mation entropy of a set of data, and the objective weights of each indicator are calculated
using Formulas (20)–(22):

Ej = −
1

ln n

n

∑
i=1

pij ln pij (20)

pij= f ij/
n

∑
i=1

fij (21)

ω′ j =
1− Ej

m −∑ Ej
, j = 1, 2, . . . , m (22)

where Ej denotes the information entropy, pij denotes the proportion of fij in the jth
indicator data, n is the number of decision-making schemes, and fij denotes the value of
the jth objective function in the ith scheme after normalization. ω′ j denotes the objective
weight of the jth indicator.

5.1.2. Triangular Fuzzy Numbers to Determine Subjective Weights

Taking into account the uncertainty and ambiguity in the decision making process, a
triangular fuzzy number was introduced to establish a subjective weight matrix [37]. The
correspondence between linguistic variables and triangular fuzzy numbers is determined,
as listed in Table 3:
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Table 3. Mapping table of language variables and trigonometric fuzzy numbers.

The Importance of Each Criterion Triangular Fuzzy Set

Very low (0, 0, 0.2)
Low (0, 0.1, 0.25)

Medium low (0, 0.3, 0.45)
Medium (0.25, 0.5, 0.65)

Medium high (0.45, 0.7, 0.8)
High (0.55, 0.9, 0.95)

Very high (0.85, 1, 1)

Different engineering decision makers may have different views on each index. The
fuzzy weight vector of decision makers Bk on the optimization objective is
ω′′ jk =

{
(ω′′ jk1, ω′′ jk2, ω′′ jk3)| j = 1, 2, . . . , m

}
. Therefore, after gathering different de-

cision makers to evaluate the indicators, each element of the subjective weight matrix is
expressed using Equations (23) and (24):

ω′′ j =
{
(ω′′ j1, ω′′ j2, ω′′ j3)| j = 1, 2, . . . , m

}
, (23)

ω′′ j1 = min
k

{
ω′′ jk1

}
ω′′ j2 = 1

K

K
∑

k=1

{
ω′′ jk2

}
ω′′ j3 = max

k

{
ω′′ jk3

} (24)

Then, the subjective weight of the indicator is obtained. Because each element of the
subjective weight matrix is a triangular fuzzy number, the mean area method is used for
defuzzification to obtain the subjective weight of each indicator (Equation (25)):

ω′′ j =
(ω′′ j1+2ω′′ j2+ω′′ j3)/4

∑m
j=1 (ω′′ j1+2ω′′ j2+ω′′ j3)/4

(25)

5.1.3. Determination of the Combination Weight

In order to balance the impact of the subjective and objective factors on the result of
the selective assembly scheme, multiplication and division were selected to determine the
combined weight of the subjective weight and the objective weight. The calculation method
of the combined weight uses Equation (26):

ωj =
(ω′ j)

γ′ ·(ω′′ j)γ′′

∑m
j=1

[
(ω′ j)

γ′ ·(ω′′ j)γ′′
] (26)

where γ′ and γ′′ denote the proportion coefficients of the objective weight and subjective
weight in the total weight, respectively. Generally, γ′+γ′′= 1. In this work, γ′= γ′′= 0.5.

5.2. VIKOR Method for Multicriteria Decision-Making

VIKOR’s basic point of view is to fully consider the subjective preferences of decision
makers and, at the same time, to trade-off the limited decision-making schemes by maxi-
mizing group benefits and minimizing individual regrets, making the decision results more
reliable. The compromise solution Fc is the closest to the ideal solution F∗, which is the
result of mutual concessions between the two criteria, as shown in Figure 12.
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The step-by-step procedure is given below:

(1) Summarize the m fitness values of the n Pareto optimal solutions under the correspond-
ing optimization objectives and normalize them. n is the number of Pareto optimal
solutions in the final population, and m is the number of optimization objectives. In
this experiment, n = 126, m = 5.

(2) Establish a standard decision matrix ω∆ fij based on the weight matrix ω; positive and
negative ideal solutions and critical evaluation values are determined. Positive ideal
solution F∗ =

{
f ∗1 , f ∗2 , . . . , f ∗m

}
and negative ideal solution F− =

{
f−1 , f−2 , . . . , f−m

}
,

and f ∗j and f−j are the best and worst evaluation values of the j-th index, respectively.

(3) Calculate the group utility value Si and individual regret value Ri of each Pareto
optimal solution by using Equations (27) and (28):

Si =
n

∑
j=1

ωj( f ∗j − fij)/( f ∗j − f−j ) (27)

Ri = max
j

ωj ( f ∗j − fij)/( f ∗j − f−j ) (28)

(4) Calculate the compromise value Qi of each Pareto optimal solution scheme by using
Equation (29):

Qi =
v (Si − Smin)

(Smax − Smin)
+

(1− v) (Si − Rmin)

(Rmax − Rmin)
(29)

where Smax, Smin, Rmax, and Rmin are the maximum and minimum values of Si and
Ri, respectively.

(5) Sort the Pareto optimal solution set X according to the increasing Qi-value: X1, X2, . . .,
Xi, Xn. If X1 is the solution with the smallest Q-value and both Condition 1 and
Condition 2 are satisfied, X1 is the stable optimal solution.

Condition 1: Q(X2)−Q(X1) ≥ 1/(n− 1);
Condition 2: After the solutions are sorted based on the Q-value, the S-value, or R-value of

the first-ranked solution X1 is better than the second-ranked solution X2.

If the above two conditions cannot be established at the same time, a compromise
solution will be obtained, which can be divided into two cases:

Case 1: If only Condition 2 is not satisfied, the compromise solution is X1, X2;
Case 2: As long as Condition 1 is not satisfied, the compromise solution is X1, X2, . . ., Xi,

where i is the maximized value determined by Q(Xi)−Q(X1) ≥ 1/(n− 1).
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6. Results and Discussions
6.1. Analysis of Simulation Results of Different Algorithms

In order to verify the effectiveness of the NSGA-III-I algorithm in solving many-
objective selective assembly optimization problems, a comparative simulation experiment
was designed for the NSGA-III-I algorithm, interchangeable assembly (IA), NSGA-II,
and NSGA-III. The basic parameters and operating environment of each algorithm were
consistent. The original code for each algorithm comes from PlatEMO [38]. All of the
algorithms were programmed with MATLAB and conducted on an AMD Ryzen 5 2400 G
Processor computer. The parameters of each algorithm are as shown in Table 4.

Table 4. Parameters of each algorithm.

Algorithms Population Generation Crossover
Probability

Mutation
Probability

NSGA-II 126 500 0.6 0.05
NSGA-III 126 500 0.6 0.05

NSGA-III-I 126 500 - -

6.1.1. Analysis of Final Solution Set of Each Algorithm

The hypervolume (HV) index was used to compare the performance of different
algorithms for selective assembly problems. Suppose the solution set obtained by the
algorithm is Xp, Ref = (r1, r2, · · · , rm) is the reference point and is dominated by any
of the solutions in Xp. The HV value is the spatial hypervolume of the solution set Xp
bounded by the reference point Ref. It is calculated by using Formula (30):

Hv(Xp)= Leb( ∪
X∈Xp

[ f1(X), r1]× [ f2(X), r2]× · · · × [ fm(X), rm]) (30)

where Leb(Xp) denotes the Lebesgue measure of the solution set Xp and [ f1, r1]× [ f2, r2]×
· · · × [ fm, rm] denote a hypercube surrounded by all points that are dominated by the
solution in Xp but not dominated by Ref.

The HV index is sensitive to the selection of reference point Ref when measuring the
performance of different algorithms. To minimize the influence of the selection of reference
points on the HV value, the final solution set of multiple algorithms was combined, and
nondominated sorting was conducted to obtain the approximate real PF for the same set of
experimental data, taking the reference point Ref = (1, 1, · · · , 1) [38]. The HV index is a
positive index, and the larger the HV value is, the better the comprehensive performance of
the algorithm is. When the HV value is 0, it indicates that the comprehensive performance
of the algorithm is poor and that the solution set does not converge to the PF.

The 300 sets of component data were equally divided into 6 batches, each with 50 sets
of components. Each algorithm was run 6 times per batch to reduce the influence of
randomness, and the performance of each algorithm in the selection of assembly problems
was compared according to the running results. The optimal value of the HV value of each
algorithm solution set, the median value, the worst value and the mean value are listed
in Table 5. Rows 1–4 in each group show the optimal, median, worst, and average HV
values of the IA, NSGA-II, NSGA-III, and NSGA-III-I, respectively. The bolded data are the
maximum value of each row. NSGA-III-I obtained the maximum optimal value, maximum
worst value, maximum median value and maximum mean value of the HV value in six
groups of simulation experiments. NSGA-III-I has better overall performance compared
with other algorithms.
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Table 5. Performance comparison between the proposed algorithm and other algorithms on the
experimental problem with a batch size of 50.

Batch.no IA NSGA-II NSGA-III NSGA-III-I

1

0 1.388 × 10−2 2.418 × 10−2 4.804 × 10−2

0 5.641 × 10−3 1.471 × 10−2 3.254 × 10−2

0 6.238 × 10−5 4.188 × 10−3 1.775 × 10−2

0 5.485 × 10−3 1.416 × 10−2 3.323 × 10−2

2

0 1.691 × 10−2 1.978 × 10−2 3.275 × 10−2

0 7.422 × 10−3 1.136 × 10−2 2.273 × 10−2

0 1.271 × 10−3 2.986 × 10−3 1.084 × 10−2

0 7.792 × 10−3 1.201 × 10−2 2.197 × 10−2

3

0 3.606 × 10−2 2.161 × 10−2 7.844 × 10−2

0 2.854 × 10−3 1.045 × 10−2 4.722 × 10−2

0 0 2.897 × 10−3 1.046 × 10−2

0 9.258 × 10−3 1.162 × 10−2 4.829 × 10−2

4

0 1.808 × 10−2 2.539 × 10−2 4.295 × 10−2

0 6.214 × 10−3 9.664 × 10−3 3.645 × 10−2

0 5.581 × 10−5 2.044 × 10−3 1.821 × 10−2

0 6.814 × 10−3 1.232 × 10−2 3.432 × 10−2

5

0 3.070 × 10−2 5.397 × 10−2 1.298 × 10−1

0 2.422 × 10−2 2.288 × 10−2 7.950 × 10−2

0 9.908 × 10−3 4.829 × 10−3 3.517 × 10−2

0 2.270 × 10−2 2.976 × 10−2 8.157 × 10−2

6

0 8.226 × 10−3 1.042 × 10−2 2.895 × 10−2

0 1.478 × 10−3 4.212 × 10−3 1.433 × 10−2

0 5.620 × 10−4 5.032 × 10−5 9.303 × 10−3

0 2.771 × 10−3 4.408 × 10−3 1.744 × 10−2

The content in bold is the maximum value of each row.

To reflect the advantages and disadvantages of the Pareto optimal solution set of
each algorithm more clearly, the Pareto optimal solution set obtained by the group of
experiments of the first batch (batch size = 50) was used to describe the algorithms. Six
random simulation experiments of each algorithm used the HV value to sort, and then
the solution sets of different algorithms with the same serial number were classified and
compared. The parallel coordinate diagrams of the solution sets of the three algorithms in
the first group of experiments are shown in Figure 13.

In this group of experiments, a partial dominance relationship existed in the corre-
sponding solution set after sorting the HV values of the solution set of each algorithm.
The average value of each objective of the IA method was selected, and the partial non-
dominated solutions obtained by each algorithm were compared, as shown in Table A2.

In the six repeated experiments of the first batch, under the condition that the solution
sets obtained by each algorithm are the current non-dominated solutions, the solution sets
obtained by NSGA-III-I in the six experiments all have a certain number of solutions domi-
nating the solutions of other methods. It shows that the NSGA-III-I has better performance
in solving the problem of many-objective optimization in the selective assembly than other
methods in the study, and the success rate increased from 57% (IA method) to 96–98%
(NSGA-III-I) while the quality loss of each quality requirement was significantly reduced.
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6.1.2. Analysis of Convergence of Each Algorithm

In the experiments, the convergence process of each algorithm is described by the
variation of the minimum value of each objective function in each generation. The mean
value of six repeated experiments is used to reduce the error (Figure 14).
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The results show that each objective function value of the NSGA-II and NSGA-III
decreases rapidly in the iterative process but gradually falls into the local optimum around
200 generations, and it is difficult to jump out. In the NSGA-III-I, each objective function
value keeps a relatively stable decline rate and can finally explore a solution set closer to
the real Pareto frontier.
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6.1.3. Analysis of the Influence of Components Batch Size on Algorithm

To further study the influence of batch size and quantity on the performance of each al-
gorithm, the same basic parameters and operating environment were used to repeat the test
on the same 300 sets of components. The experiment is repeated for the same 300 mating
components with 12 batches of 25 components each, 4 batches of 75 components each, and
3 batches of 100 components each. The results are shown in Tables A3–A5 respectively.

The results show that when the number of components in each batch is small (batch
size = 25), the proposed algorithm obtains the maximum value in the optimal value, the
maximum value in the median value and the maximum value in the worst value of HV in
most experimental groups. With the increase in the number of components in each batch,
the algorithm obtained the maximum value of the optimal value, the maximum value of
the median value, and the maximum value of the worst value of all experimental groups.

As the number of components in each batch increases, some algorithms have gradually
failed to converge (Figure 15). The results show that the IA method completely fails to
converge to the approximate PF. With the increase in the number of components in each
batch, both the NSGA-II and NSGA-III fail to converge to varying degrees. Only the
NSGA-III-I algorithm can still converge to the approximate PF, with better performance
than other algorithms and a better selective assembly scheme obtained.
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6.2. The VIKOR Method to Sort the Optimal Compromise Scheme

Taking the first set of experiments with 50 components per batch as an example, the
Pareto solution set obtained by the NSGA-III-I algorithm is used as a decision matrix. The
ideal solution in this experiment F−= Min f (x)= (0.0200, 0.1658, 0.2320, 0.1731, 0.1537).
The step-by-step procedures and results are given below.

Step 1: The entropy method to obtain the objective weight (listed in Table 6).
Step 2: Triangular fuzzy numbers to determine the subjective weights of the assembly

quality requirements. Six engineering decision makers were invited to evaluate the impor-
tance of each optimization objective in the cylinder–piston assembly selection optimization
model (listed in Table 7). The comparison table converts semantic variables into triangular
fuzzy numbers (listed in Table 8). The defuzzification method (Equation (24)) is performed
to obtainthe subjective weights (listed in Table 9).
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Table 6. Objective weight of each index.

Indicators Information Entropy Objective Weight ω
′
j

f1 0.9779 0.2613
f2 0.9814 0.2197
f3 0.9877 0.1457
f4 0.9810 0.2246
f5 0.9874 0.1486

Table 7. Evaluation of the importance of each indicator by engineering decision makers.

Decision
Makers f1 f2 f3 f4 f5

B1 Very high Medium Medium high High Low
B2 Very high Medium high Medium High Medium low
B3 High Medium low Medium low Very high Medium
B4 Very high Medium high Medium High Medium
B5 High Medium high Medium low Very high Medium high
B6 Very high High Very Low High Medium

Table 8. Importance evaluations transformed from semantic variables to triangular fuzzy numbers.

Decision
Makers f1 f2 f3 f4 f5

B1 (0.85, 1, 1) (0.25, 0.5, 0.65) (0.45, 0.7, 0.8) (0.55, 0.9, 0.95) (0, 0.1, 0.25)
B2 (0.85, 1, 1) (0.45, 0.7, 0.8) (0.25, 0.5, 0.65) (0.55, 0.9, 0.95) (0, 0.3, 0.45)
B3 (0.55, 0.9, 0.95) (0, 0.3, 0.45) (0, 0.3, 0.45) (0.85, 1, 1) (0.25, 0.5, 0.65)
B4 (0.85, 1, 1) (0.45, 0.7, 0.8) (0.25, 0.5, 0.65) (0.55, 0.9, 0.95) (0.25, 0.5, 0.65)
B5 (0.55, 0.9, 0.95) (0.45, 0.7, 0.8) (0, 0.3, 0.45) (0.85, 1, 1) (0.45, 0.7, 0.8)
B6 (0.85, 1, 1) (0.55, 0.9, 0.95) (0, 0, 0.2) (0.55, 0.9, 0.95) (0.25, 0.5, 0.65)

Table 9. Triangular fuzzy matrix and subjective weight of each index.

Indicators Triangular Fuzzy Matrix Subjective Weight ω”
j

f1 (0.55, 0.97, 1) 0.2831
f2 (0, 0.63, 0.95) 0.1792
f3 (0, 0.38, 0.8) 0.1265
f4 (0.55, 0.93, 1) 0.2766
f5 (0, 0.43, 0.8) 0.1346

Step 3: Combination weightings are calculated by using Equation (25) (listed in
Table 10).

Table 10. The combined weight of each index.

Indicators ω
′
j ω”

j ωj

f1 0.2613 0.2831 0.2729
f2 0.2197 0.1792 0.1991
f3 0.1457 0.1265 0.1362
f4 0.2246 0.2766 0.2500
f5 0.1486 0.1346 0.1419

Step 4: Calculation of the S-value, R-value, and Q-value of each Pareto solution in
turn. The six optimal schemes sorted according to the Q-values are listed in Table 11.
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Table 11. Information on the 6 schemes with the best Q-value sorting.

Experiment No Chromosome No. f1 f2 f3 f4 f5 Q S R

1 51 0.0200 0.1808 0.2352 0.2119 0.2032 0.0020 0.1739 0.1017
2 84 0.0200 0.2027 0.2544 0.2119 0.1690 0.0278 0.1998 0.1017
3 60 0.0200 0.1765 0.2496 0.2158 0.1882 0.0333 0.1750 0.1120
4 12 0.0200 0.1753 0.2352 0.2168 0.2054 0.0452 0.1793 0.1146
5 68 0.0200 0.1730 0.2448 0.2178 0.1890 0.0454 0.1719 0.1172
6 56 0.0200 0.1807 0.2320 0.2168 0.1988 0.0467 0.1808 0.1146

Step 5: Discussions and decision making based on the above results. The analysis
of the calculation results in Table 11 shows that (1) Q(X2)− Q(X1) ≥ 1/(126− 1), and
(2) when sorting according to the Q-value, scheme X1 is the optimal choice; when sorting
according to the R value, scheme X1 is still the optimal choice; and when sorting according
to the S value, scheme X1 is superior to scheme X2. According to VIKOR theory, when the
decision maker has a compromising attitude towards all schemes (v = 0.5), scheme X1 can
be selected as the optimal scheme among all non-dominated schemes (listed in Table 12).

Table 12. Selective assembly scheme corresponding components number combination.

Component Best Combination of Mating Components

Piston

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50

Piston ring

18, 32, 14, 29, 38, 15, 8, 6, 23, 30, 34, 22, 25, 16,
12, 7, 42, 1, 9, 36, 27, 21, 33, 41, 17, 3, 13, 43, 37,
49, 26, 20, 10, 11, 46, 45, 50, 48, 2, 40, 5, 39, 28,

19, 47, 44, 31, 24, 4, 35

Cylinder

35, 33, 36, 22, 27, 3, 2, 28, 21, 7, 6, 43, 41, 37, 8, 9,
50, 29, 4, 1, 45, 30, 40, 32, 17, 13, 15, 18, 44, 49,
42, 48, 47, 39, 25, 26, 5, 20, 11, 34, 16, 38, 24, 23,

12, 19, 14, 31, 46, 10
The content in bold is the only set that cannot be successfully assembled in the 50 sets of components.

According to the above five steps, we conclude that scheme X1 is the optimal compro-
mise solution. Table 12 shows the detailed content of scheme X1, where each row repre-
sents the sequence number arrangement of the same type of components. The 50 pistons,
50 piston rings, and 50 cylinders are assembled in one-to-one correspondence. For example,
piston #1 lines up with piston ring #18 and cylinder #35, and they are all located at the first
position in their respective arrangement sequence. In particular, piston #44, piston ring
#19, and cylinder #23 is the only set that cannot be successfully assembled in the 50 sets
of components.

7. Conclusions

This research focuses on the optimization of selective assembly of complex mechanical
products (CMPs) under intelligent system environment conditions. A general method based
on the NSGA-III-I and VIKOR was proposed to solve the many-objective optimization
and decision-making problem in the selective assembly of CMPs, which could optimize
the assembly effect more effectively and select the assembly scheme rationally. The main
contributions are as follows:

(1) A mathematical model of selective assembly based on the success rate and the Taguchi
quality loss was constructed, dimensional constraints and quality requirements were
established through assembly structure analysis, and multiple optimization objectives
s were established on this basis.
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(2) For several optimization objectives, the NSGA-III-I was proposed, and the simulation
case was solved. Experiments were designed to compare the NSGA-III-I with the IA,
NSGA-II, and NSGA-III methods, and the performance changes of each algorithm
under different batch conditions were studied. The results show that the proposed
algorithm has obvious advantages in solving many-objective selective assembly prob-
lems. The proposed method increases the assembly success rate from 57% (IA) to
96–98% (NSGA-III-I), while reducing quality loss significantly. It effectively avoids
falling into the local optimum compared with the NSGA-II and NSGA-III.

(3) Considering the production mode of human–machine intelligent system interaction,
the optimal compromise solution is obtained by using fuzzy theory, entropy theory,
and the VIKOR method. The planning scheme can simultaneously maximize group
benefits and minimize individual regret.

Future research work will add a quantitative method and constraint conditions of form
and position tolerance on the basis of the proposed selective assembly model so that the
method can be more widely used in the selective assembly process of almost all components.
Therefore, it can be integrated into a digital manufacturing execution system (MES) and
systematically applied to CMP manufacturing enterprises. After designing for specific
problems, the proposed method can be applied to many different types of many-objective
combinatorial optimization, such as a production scheduling problem, a vehicle routing
problem, and a distributed network resource allocation optimization problem, etc.
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Appendix A

Table A1. Data of the example problem.

Batch
no. Component Characteristic Tolerances (µm) of the Quality Characteristics of Individual

Components (for Component no. 1–50)

1 C1 A 13, 6, 11, 7, 13, 8, 9, 3, 2, 4, 6, 12, 5, 5, 10, 17, 1, 8, 16, 13, 15, 7, 13, 1, 3, 0,
7, 10, 8, 7, 2, 9, 11, 14, 10, 11, 12, 15, 13, 1, 14, 13, 3, 10, 11, 11, 15, 4, 7, 11

B 4, 4, 0, 6, 2, 4, 11, 2, 10, 4, 6, 4, 8, 5, 7, 7, 6, 4, 7, 6, 4, 9, 1, 4, 8, 3, 2, 7, 3, 5,
10, 3, 4, 3, 12, 12, 1, 1, 6, 3, 4, 5, 0, 5, 3, 6, 3, 8, 10, 6

C 3, 12, 4, 9, 9, 2, 1, 9, 8, 11, 9, 6, 7, 0, 9, 7, 2, 3, 5, 6, 7, 10, 9, 11, 4, 7, 11, 7,
5, 7, 9, 0, 12, 4, 5, 8, 0, 6, 1, 10, 5, 11, 3, 12, 7, 8, 6, 6, 9, 8,

C2 D 1, 10, 6, 11, 1, 9, 7, 10, 7, 10, 7, 15, 8, 2, 9, 5, 3, 12, 0, 9, 6, 11, 10, 8, 16, 11,
5, 7, 9, 6, 0, 9, 4, 12, 3, 10, 5, 8, 4, 5, 11, 9, 9, 7, 5, 13, 0, 7, 13, 7

E 0, 1, 3, 5, 2, 6, 3, 1, 2, 4, 2, 2, 4, 2, 3, 0, 1, 2, 4, 0, 3, 2, 3, 3, 2, 5, 3, 1, 5, 4, 2,
4, 2, 5, 3, 2, 2, 5, 4, 6, 5, 1, 4, 2, 5, 3, 4, 2, 4, 1

F
6, 8, 12, 9, 11, 12, 18, 19, 6, 23, 20, 16, 6, 16, 16, 1, 3, 16, 20, 8, 15, 14, 11,
23, 11, 22, 12, 6, 20, 20, 12, 11, 4, 16, 12, 10, 7, 8, 15, 12, 17, 4, 18, 6, 19,

16, 13, 4, 18, 7

C3 G
15, 23, 18, 11, 5, 15, 9, 15, 18, 9, 15, 3, 13, 6, 11, 13, 12, 16, 7, 13, 16, 11,
23, 0, 23, 19, 4, 8, 2, 16, 23, 10, 8, 10, 14, 5, 9, 13, 16, 6, 16, 19, 8, 11, 11,

15, 16, 14, 16, 6
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Table A1. Cont.

Batch
no. Component Characteristic Tolerances (µm) of the Quality Characteristics of Individual Components (for

Component no. 1–50)

2 C1 A 11, 10, 4, 16, 7, 7, 8, 7, 12, 9, 17, 6, 3, 4, 17, 11, 10, 12, 13, 11, 4, 11, 12, 5, 12, 7, 14, 12, 5,
10, 6, 6, 13, 11, 8, 5, 11, 9, 2, 12, 13, 16, 5, 10, 8, 9, 15, 17, 2, 8

B 2, 8, 8, 5, 6, 9, 6, 9, 5, 5, 5, 1, 3, 6, 5, 6, 5, 10, 7, 1, 3, 6, 8, 3, 3, 6, 5, 5, 2, 2, 7, 10, 2, 10, 7, 4,
4, 11, 2, 12, 2, 4, 6, 3, 12, 6, 5, 4, 9, 3

C 12, 7, 2, 9, 10, 5, 7, 8, 6, 9, 3, 5, 2, 4, 9, 8, 4, 5, 11, 7, 4, 6, 12, 11, 10, 9, 7, 11, 7, 8, 2, 7, 0, 5,
9, 4, 1, 12, 6, 4, 11, 6, 10, 11, 9, 2, 7, 5, 9, 2

C2 D 2, 10, 12, 7, 4, 2, 15, 4, 7, 13, 17, 17, 6, 9, 1, 9, 8, 11, 11, 7, 11, 5, 18, 7, 13, 12, 14, 12, 5, 13,
8, 13, 14, 7, 9, 12, 10, 11, 14, 5, 14, 1, 4, 6, 15, 2, 10, 12, 10, 15

E 5, 2, 0, 5, 2, 2, 1, 5, 4, 2, 3, 4, 5, 4, 3, 2, 2, 2, 1, 4, 4, 4, 1, 3, 3, 5, 3, 1, 3, 6, 2, 2, 0, 4, 0, 4, 2,
2, 4, 1, 2, 5, 4, 5, 4, 1, 5, 5, 2, 2

F 7, 17, 19, 16, 13, 11, 10, 15, 14, 9, 6, 14, 11, 12, 21, 21, 11, 21, 15, 7, 6, 9, 16, 18, 3, 17, 18,
4, 16, 9, 9, 15, 4, 13, 13, 10, 14, 6, 13, 12, 9, 17, 23, 13, 24, 16, 12, 19, 15, 17

C3 G 14, 13, 9, 20, 22, 15, 8, 10, 1, 13, 24, 15, 14, 17, 12, 11, 18, 23, 10, 7, 17, 11, 1, 21, 17, 23, 3,
1, 10, 15, 18, 5, 11, 8, 16, 23, 10, 0, 10, 24, 2, 12, 1, 18, 3, 4, 20, 9, 12, 7

3 C1 A 16, 9, 5, 8, 4, 9, 5, 16, 11, 14, 12, 16, 7, 6, 5, 6, 15, 17, 0, 13, 6, 16, 7, 13, 7, 12, 7, 13, 13, 10,
12, 9, 15, 3, 7, 14, 6, 5, 13, 13, 3, 1, 6, 16, 3, 15, 11, 1, 5, 6

B 4, 6, 4, 5, 5, 9, 2, 8, 6, 5, 5, 4, 7, 11, 7, 12, 12, 9, 0, 9, 4, 5, 5, 5, 9, 9, 10, 2, 8, 8, 6, 11, 6, 6, 1,
7, 4, 2, 2, 7, 12, 1, 3, 2, 3, 9, 10, 1, 4, 6

C 7, 11, 8, 5, 5, 3, 2, 10, 5, 5, 2, 5, 8, 9, 2, 8, 3, 7, 1, 5, 7, 6, 9, 11, 11, 7, 7, 8, 8, 9, 5, 12, 12, 5,
8, 3, 4, 6, 9, 9, 4, 1, 5, 11, 7, 4, 5, 5, 0, 7

C2 D 10, 5, 9, 13, 11, 2, 18, 11, 16, 10, 13, 15, 9, 13, 16, 8, 17, 11, 5, 15, 9, 15, 7, 13, 13, 13, 11, 3,
8, 14, 1, 9, 16, 0, 17, 12, 3, 5, 6, 13, 11, 8, 10, 10, 1, 13, 8, 15, 9, 4

E 3, 1, 2, 2, 5, 3, 4, 2, 4, 3, 2, 4, 3, 3, 4, 4, 4, 5, 5, 6, 1, 3, 6, 2, 3, 3, 4, 1, 3, 5, 1, 0, 1, 6, 1, 4, 4,
6, 2, 1, 5, 2, 4, 0, 4, 2, 5, 3, 1, 6

F 13, 8, 9, 18, 9, 20, 5, 13, 5, 9, 12, 12, 16, 15, 20, 12, 21, 4, 12, 12, 3, 23, 18, 6, 18, 16, 15, 11,
15, 9, 15, 9, 17, 11, 2, 9, 13, 14, 8, 13, 8, 7, 18, 3, 11, 1, 7, 8, 5, 6

C3 G 20, 4, 4, 17, 23, 8, 6, 7, 22, 6, 12, 11, 7, 12, 14, 6, 5, 5, 18, 16, 5, 21, 15, 18, 20, 6, 9, 9, 15,
20, 7, 7, 8, 15, 6, 11, 13, 10, 11, 17, 5, 15, 11, 14, 12, 5, 22, 22, 24, 19

4 C1 A 11, 3, 11, 2, 7, 5, 3, 3, 9, 8, 13, 16, 9, 2, 9, 11, 7, 4, 7, 10, 6, 11, 15, 15, 9, 7, 4, 9, 5, 15, 9, 8,
1, 3, 1, 1, 16, 8, 7, 15, 10, 17, 9, 4, 12, 12, 8, 11, 4, 5

B 5, 2, 10, 5, 8, 7, 10, 6, 7, 1, 2, 8, 4, 6, 1, 6, 8, 1, 3, 1, 5, 4, 3, 10, 9, 5, 1, 5, 2, 10, 10, 4, 6, 7, 7,
7, 6, 8, 1, 3, 5, 7, 4, 11, 12, 2, 7, 8, 9, 9

C 9, 7, 7, 5, 12, 10, 7, 9, 7, 3, 2, 8, 7, 10, 8, 6, 8, 7, 9, 11, 9, 5, 5, 5, 7, 7, 4, 10, 6, 6, 1, 3, 8, 7, 3,
6, 9, 3, 6, 7, 5, 6, 1, 6, 6, 10, 4, 5, 4, 11

C2 D 1, 9, 6, 11, 3, 12, 10, 12, 2, 5, 7, 10, 17, 6, 11, 7, 16, 15, 10, 14, 10, 9, 2, 7, 7, 8, 4, 14, 14, 11,
10, 12, 16, 12, 18, 16, 6, 8, 9, 14, 12, 9, 9, 15, 10, 12, 10, 12, 8, 6

E 5, 5, 2, 3, 2, 1, 3, 4, 1, 4, 6, 3, 4, 2, 1, 4, 4, 6, 5, 4, 2, 2, 1, 6, 5, 3, 2, 4, 2, 2, 2, 2, 2, 4, 4, 1, 4,
3, 3, 2, 1, 3, 5, 3, 2, 1, 1, 4, 3, 4

F 5, 19, 11, 22, 16, 7, 13, 8, 16, 6, 8, 18, 6, 13, 22, 15, 9, 7, 17, 16, 13, 23, 11, 20, 14, 14, 15, 6,
17, 17, 21, 17, 20, 15, 9, 21, 23, 17, 14, 6, 10, 8, 14, 19, 13, 9, 15, 7, 11, 5

C3 G 10, 16, 12, 7, 3, 1, 13, 4, 6, 20, 12, 8, 23, 14, 10, 3, 0, 20, 2, 6, 14, 15, 2, 8, 16, 5, 19, 10, 9,
11, 15, 6, 10, 23, 12, 13, 21, 20, 8, 13, 18, 15, 16, 16, 16, 7, 17, 6, 21, 4

5 C1 A 7, 3, 5, 8, 18, 5, 11, 15, 10, 1, 10, 16, 12, 7, 7, 12, 7, 8, 4, 14, 4, 12, 8, 17, 10, 17, 17, 16, 8,
12, 4, 6, 9, 10, 10, 12, 11, 3, 3, 16, 2, 15, 9, 13, 11, 14, 4, 13, 8, 13

B 5, 7, 3, 5, 8, 4, 3, 7, 6, 9, 9, 4, 4, 7, 11, 10, 4, 7, 10, 6, 2, 5, 9, 3, 6, 9, 12, 5, 7, 1, 8, 11, 0, 4, 8,
8, 11, 6, 6, 4, 3, 10, 6, 2, 6, 0, 7, 6, 7, 4

C 8, 10, 5, 4, 1, 7, 5, 7, 0, 6, 4, 10, 4, 2, 7, 9, 4, 6, 9, 10, 10, 7, 3, 8, 4, 10, 10, 7, 5, 2, 5, 4, 0, 9,
5, 3, 7, 2, 10, 11, 5, 11, 7, 2, 1, 6, 5, 8, 4, 10

C2 D 15, 4, 16, 9, 7, 4, 17, 15, 12, 11, 12, 12, 12, 1, 5, 14, 5, 5, 8, 6, 2, 15, 8, 1, 4, 15, 7, 8, 13, 11,
17, 8, 14, 18, 11, 1, 2, 4, 5, 6, 0, 17, 17, 9, 5, 7, 11, 16, 11, 8

E 3, 2, 3, 5, 3, 4, 2, 5, 2, 2, 4, 5, 5, 3, 4, 1, 5, 6, 4, 5, 6, 2, 4, 5, 2, 5, 2, 3, 5, 1, 2, 5, 0, 3, 4, 4, 2,
6, 3, 4, 4, 4, 3, 4, 3, 5, 2, 3, 2, 1

F 9, 8, 13, 21, 9, 6, 11, 22, 7, 10, 5, 6, 5, 21, 11, 8, 14, 15, 13, 9, 14, 16, 20, 16, 10, 24, 17, 1,
12, 8, 6, 7, 1, 13, 20, 11, 10, 7, 20, 10, 6, 16, 15, 16, 14, 9, 16, 4, 1, 4

C3 G 2, 20, 18, 9, 13, 12, 12, 15, 17, 6, 23, 11, 7, 22, 16, 11, 14, 11, 16, 9, 11, 6, 7, 6, 3, 13, 14, 17,
10, 9, 14, 10, 11, 7, 11, 9, 16, 22, 12, 20, 10, 21, 15, 16, 22, 14, 10, 4, 11, 18

6 C1 A 18, 10, 13, 18, 13, 13, 5, 13, 6, 14, 15, 11, 7, 13, 10, 17, 7, 16, 12, 9, 5, 9, 12, 6, 16, 14, 7, 3,
1, 6, 9, 5, 7, 8, 5, 9, 12, 13, 16, 8, 6, 6, 6, 10, 13, 16, 12, 10, 11, 9

B 8, 1, 8, 2, 4, 5, 9, 5, 7, 4, 7, 4, 4, 9, 8, 7, 10, 8, 7, 5, 9, 4, 6, 2, 11, 8, 4, 2, 2, 10, 6, 5, 3, 2, 9, 2,
9, 8, 6, 12, 11, 8, 10, 4, 7, 7, 9, 10, 6, 11

C 7, 4, 2, 2, 5, 4, 3, 12, 8, 4, 0, 5, 6, 9, 12, 5, 8, 3, 6, 11, 8, 7, 9, 4, 1, 10, 1, 1, 4, 7, 6, 8, 6, 3, 9,
5, 8, 5, 4, 6, 5, 7, 7, 8, 8, 10, 9, 12, 5, 6

C2 D 2, 14, 14, 2, 1, 2, 8, 11, 7, 12, 9, 3, 9, 15, 10, 10, 10, 10, 3, 10, 12, 7, 2, 8, 17, 8, 9, 13, 5, 6, 7,
14, 7, 7, 8, 2, 6, 9, 14, 10, 2, 10, 5, 4, 5, 13, 5, 14, 16, 13

E 3, 4, 2, 2, 1, 6, 5, 3, 4, 2, 2, 3, 2, 2, 1, 4, 2, 3, 4, 4, 2, 3, 3, 3, 5, 2, 2, 3, 6, 4, 1, 3, 2, 5, 3, 1, 2,
3, 1, 2, 3, 3, 2, 2, 6, 2, 2, 1, 4, 1

F 7, 7, 5, 9, 7, 19, 5, 7, 13, 23, 6, 10, 19, 18, 15, 11, 6, 24, 18, 6, 19, 7, 12, 16, 6, 16, 13, 18, 19,
12, 19, 20, 16, 14, 2, 11, 16, 18, 11, 11, 7, 5, 5, 10, 9, 7, 22, 16, 19, 20

C3 G 7, 19, 17, 4, 18, 20, 22, 13, 12, 4, 4, 6, 14, 6, 6, 22, 24, 16, 4, 0, 16, 2, 24, 11, 21, 15, 24, 20,
17, 16, 12, 19, 16, 17, 21, 17, 19, 12, 4, 8, 2, 18, 22, 4, 18, 9, 19, 9, 23, 22
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Table A2. The dominant relation of the partial solution of each algorithm.

Experiment
no

Selective
Assembly
Method

f1 f2 f3 f4 f5

1

IA 0.4343 0.5523 0.6112 0.5709 0.5642
NSGA-II 0.0800 0.1783 0.3456 0.3143 0.3408
NSGA-III 0.0400 0.1690 0.3136 0.2491 0.2274

NSGA-III-I 0.0200 0.1474 0.2896 0.2153 0.1636

2

IA 0.4330 0.5481 0.6107 0.5689 0.5614
NSGA-II 0.0800 0.2023 0.2960 0.2746 0.3018
NSGA-III 0.0600 0.1973 0.2832 0.2627 0.2347

NSGA-III-I 0.0200 0.1736 0.2448 0.2178 0.1890

3

IA 0.4263 0.5435 0.6048 0.5616 0.5606
NSGA-II 0.0600 0.2053 0.3656 0.3835 0.2415
NSGA-III 0.0400 0.1878 0.3368 0.2667 0.2281

NSGA-III-I 0.0200 0.1459 0.3160 0.2565 0.1888

4

IA 0.4267 0.5465 0.6108 0.5636 0.5577
NSGA-II 0.0800 0.2301 0.3680 0.2533 0.3369
NSGA-III 0.0600 0.1987 0.3352 0.2479 0.2731

NSGA-III-I 0.0400 0.1409 0.2992 0.2262 0.2114

5

IA 0.4238 0.5405 0.6041 0.5632 0.5560
NSGA-II 0.1000 0.2482 0.3064 0.3859 0.3333
NSGA-III 0.0800 0.1966 0.3056 0.2743 0.2590

NSGA-III-I 0.0200 0.1874 0.2912 0.2395 0.1500

6

IA 0.4284 0.5469 0.6085 0.5628 0.5602
NSGA-II 0.1000 0.2352 0.4840 0.2689 0.2649
NSGA-III 0.0600 0.2135 0.3864 0.2546 0.2278

NSGA-III-I 0.0400 0.1981 0.2872 0.2195 0.2099
The content in bold is the highest priority non-dominated solution.

Table A3. Performance comparison between the proposed algorithm and other algorithms on the
experimental problem with a batch size of 25.

Batch.no IA NSGA-II NSGA-III NSGA-III-I

1

IA NSGA-II NSGA-III NSGA-III-I
0 3.247 × 10−2 5.987 × 10−2 8.406 × 10−2

0 2.924 × 10−2 4.715 × 10−2 5.229 × 10−2

0 1.232 × 10−2 3.989 × 10−2 3.894 × 10−2

2

0 2.663 × 10−2 4.848 × 10−2 5.599 × 10−2

0 5.847 × 10−2 1.086 × 10−1 1.283 × 10−1

0 3.972 × 10−2 9.298 × 10−2 1.179 × 10−1

0 1.297 × 10−2 4.729 × 10−2 7.856 × 10−2

3

0 3.888 × 10−2 8.671 × 10−2 1.105 × 10−1

0 8.940 × 10−2 1.303 × 10−1 1.356 × 10−1

0 7.876 × 10−2 7.324 × 10−2 6.705 × 10−2

0 4.991 × 10−2 2.916 × 10−2 5.357 × 10−2

4

0 7.551 × 10−2 7.376 × 10−2 8.221 × 10−2

0 4.312 × 10−2 4.730 × 10−2 4.246 × 10−2

0 1.503 × 10−2 2.280 × 10−2 1.839 × 10−2

0 4.162 × 10−3 1.804 × 10−3 1.282 × 10−2

5

0 1.902 × 10−2 2.424 × 10−2 2.172 × 10−2

0 8.281 × 10−2 7.696 × 10−2 1.246 × 10−1

0 3.813 × 10−2 5.625 × 10−2 1.032 × 10−1

0 2.131 × 10−2 1.101 × 10−2 7.887 × 10−2



Processes 2022, 10, 34 29 of 31

Table A3. Cont.

Batch.no IA NSGA-II NSGA-III NSGA-III-I

6

0 4.739 × 10−2 5.330 × 10−2 1.026 × 10−1

0 9.702 × 10−2 1.650 × 10−1 1.809 × 10−1

0 2.543 × 10−2 1.164 × 10−2 1.582 × 10−1

0 4.678 × 10−3 4.501 × 10−3 1.510 × 10−1

7

0 4.020 × 10−2 5.816 × 10−2 1.639 × 10−1

0 6.026 × 10−2 7.701 × 10−2 1.060 × 10−1

0 2.017 × 10−2 4.252 × 10−2 5.693 × 10−2

0 1.437 × 10−2 2.038 × 10−2 3.206 × 10−3

8

0 2.590 × 10−2 4.805 × 10−2 5.784 × 10−2

0 1.998 × 10−1 2.089 × 10−1 2.664 × 10−1

0 1.501 × 10−1 1.750 × 10−1 2.388 × 10−1

0 1.213 × 10−1 1.689 × 10−1 1.949 × 10−1

9

0 1.537 × 10−1 1.818 × 10−1 2.315 × 10−1

0 1.423 × 10−1 1.870 × 10−1 2.259 × 10−1

0 1.289 × 10−1 1.455 × 10−1 1.813 × 10−1

0 3.925 × 10−3 1.870 × 10−1 2.259 × 10−1

10

0 1.011 × 10−1 1.536 × 10−1 1.787 × 10−1

0 1.233 × 10−1 1.265 × 10−1 1.437 × 10−1

0 7.368 × 10−2 7.051 × 10−2 1.195 × 10−1

0 4.386 × 10−3 6.628 × 10−3 8.995 × 10−2

11

0 7.120 × 10−2 6.839 × 10−2 1.195 × 10−1

0 1.486 × 10−2 1.762 × 10−2 5.549 × 10−2

0 3.852 × 10−3 9.424 × 10−3 3.040 × 10−2

0 8.100 × 10−4 2.206 × 10−3 1.817 × 10−2

12

0 5.997 × 10−3 9.203 × 10−3 3.161 × 10−2

0 3.858 × 10−2 9.113 × 10−2 1.107 × 10−1

0 2.890 × 10−2 4.795 × 10−2 8.209 × 10−2

0 7.884 × 10−3 2.141 × 10−2 7.060 × 10−2

The content in bold is the maximum value of each row.

Table A4. Performance comparison between the proposed algorithm and other algorithms on the
experimental problem with a batch size of 75.

Batch.no IA NSGA-II NSGA-III NSGA-III-I

1

0 5.532 × 10−4 4.049 × 10−4 1.364 × 10−2

0 0 7.551 × 10−5 7.339 × 10−3

0 0 0 6.041 × 10−4

0 1.804 × 10−4 1.210 × 10−4 6.862 × 10−3

2

0 6.621 × 10−4 3.098 × 10−3 1.851 × 10−2

0 4.643 × 10−4 8.197 × 10−4 1.252 × 10−2

0 1.854 × 10−4 3.277 × 10−5 6.627 × 10−3

0 4.497 × 10−4 1.276 × 10−3 1.225 × 10−2

3

0 7.173 × 10−4 5.674 × 10−3 2.628 × 10−2

0 2.273 × 10−4 1.301 × 10−4 2.521 × 10−2

0 0 0 1.375 × 10−3

0 2.521 × 10−4 1.469 × 10−3 1.934 × 10−2

4

0 1.569 × 10−3 4.199 × 10−3 2.218 × 10−2

0 2.479 × 10−4 4.340 × 10−5 1.170 × 10−2

0 0 0 9.357 × 10−4

0 4.618 × 10−4 7.978 × 10−4 1.192 × 10−2

The content in bold is the maximum value of each row.
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Table A5. Performance comparison between the proposed algorithm and other algorithms on the
experimental problem with a batch size of 100.

Batch.no IA NSGA-II NSGA-III NSGA-III-I

1

0 3.850 × 10−7 3.488 × 10−4 7.787 × 10−3

0 0 0 4.805 × 10−3

0 0 0 2.558 × 10−3

0 6.417 × 10−8 6.714 × 10−5 5.110 × 10−3

2

0 2.206 × 10−5 6.050 × 10−5 1.788 × 10−2

0 0 0 8.503 × 10−3

0 0 0 6.618 × 10−4

0 5.479 × 10−6 1.465 × 10−5 8.875 × 10−3

3

0 1.965 × 10−4 1.872 × 10−4 6.665 × 10−3

0 0 1.842 × 10−5 3.867 × 10−3

0 0 1.152 × 10−21 5.807 × 10−4

0 4.083 × 10−5 4.665 × 10−5 3.702 × 10−3

The content in bold is the maximum value of each row.
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