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Abstract: Mass transfer is an omnipresent phenomenon in the chemical and related industries for
which effective diffusivities (Di,eff) constitute a useful and simple mathematical tool, especially when
dealing with multicomponent mixtures. Although several models have been published for Di,eff

they generally involve simplifying assumptions that severely restrict their use. The current work
presents the derivation of accurate analytical equations for Di,eff, which take into account the nonideal
behavior of multicomponent mixtures. Additionally, it is demonstrated that for an ideal mixture the
new model reduces to the well-known equations of Bird et al., which are the exact analytical solution
for ideal systems. The procedure for Di,eff estimation is described in detail and exemplified with two
chemical reactions: the liquid phase ethyl acetate synthesis and the high pressure gas phase methanol
synthesis. Relative to the Bird et al. ideal equations the effective diffusivities calculated with the new
model show differences up to 38% for ethyl acetate synthesis when using UNIFAC model to evaluate
activity coefficients. For methanol synthesis, deviations from −23% to 22% are found using PC-SAFT
equation of state (EoS) and from −49% to 24% when applying the Peng–Robinson EoS to estimate
fugacity coefficients. Comparisons are also performed with the models by Wilke, Burghardt and
Krupiczka, Kubota et al., and Kato et al. The worst results are achieved by the Wilke and Kubota
et al. equations for the liquid phase and gas phase reactions, respectively. Furthermore, it is shown
that substantial errors in effective diffusivity calculations may occur when deviations from the ideal
behavior are unaccounted for. This can be avoided by adopting the new rigorous approach here
presented.

Keywords: effective diffusivity; Maxwell–Stefan; modeling; multicomponent mass transfer

1. Introduction

Several areas within the chemical industry, ranging from chemical reactions (catalysis)
to separation processes (e.g., adsorption, membranes, extractions), involve multicomponent
mixtures. The mathematical description of diffusion mass transfer in such situations
becomes increasingly complex when compared with the simplicity of Fick’s first law for
binary mixtures, especially when deviations from the ideal behavior (ideal gas or ideal
solution) need to be accounted for. Significant drawbacks in process design involving
nonideal mixtures may appear if failing to do so. In the particular case of heterogeneous
reactors, the precise description of diffusion will impact the reactor mass balance equations
(e.g., axial and radial dispersion models) and even the observable reaction rate (e.g., internal
and external diffusion limitations) [1].

One approach to describe the molar diffusion flux in multicomponent mixtures is
Fick’s generalized equation, which in matrix representation is given by:

(J) = −CT [D](∇x) (1)

where (J) is the molar diffusion flux vector, CT is the total concentration of the mixture,
and (∇x) is the mole fraction gradient vector. For a system of n components, [D] is an
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(n− 1)× (n− 1) matrix in which the Dij pair diffusion coefficients are not symmetric and
do not hold the same physical meaning as the binary diffusion coefficients [2].

An alternative approach to describe multicomponent mass transfer is by Maxwell–
Stefan equations, which can be made explicit in terms of the molar diffusion flux. In matrix
notation, for a mixture of n components, (J) is described by [2]:

(J) = −CT [B]−1[Γ](∇x) (2a)

Bii =
xi

Ðin
+

n

∑
j=1
j 6=i

xj

Ðij
(2b)

Bij = −xi

(
1

Ðij
− 1

Ðin

)
(2c)

Γij = δij + xi
∂ ln γi

∂xj

∣∣∣∣
P,T,xk [k=1,2,...,n−1,k 6=j]

(2d)

δij =
∂xi
∂xj

=

{
δij = 0, i 6= j
δij = 1, i = j

(2e)

where [B] is an (n− 1) square matrix with main diagonal elements Bii and off-diagonal
elements Bij, [Γ] is an (n− 1) square matrix with elements Γij, Ðij represents the Maxwell–
Stefan diffusivity of ij pair, γi is the activity coefficient of component i, and δij is the
Kronecker function. In physical terms Ðij is equivalent to the inverse of a drag or friction
coefficient [2]. For a mixture of gases γi is replaced by the fugacity coefficient, φ̂i.

Equation (2a) is more rigorous than Equation (1), as deviations from the ideal behavior
(evaluated with an equation of state or activity coefficient model) can be incorporated into
Γij. However, due to the mathematical complexity of both approaches [2], a few simplified
methods have been developed over the years, such as the effective diffusivity concept,
which can be particularly advantageous for computing fluxes in material balances. The
effective diffusivity models express the molar diffusion flux of a component i, Ji, uniquely
as function of its composition gradient, ∇xi [2]:

Ji = −CT Di,eff∇xi (3)

where Di,eff is the effective diffusivity of species i. In matrix notation, it is given by:

(J) = −CT [Deff](∇x) (4)

where [Deff] is an (n− 1)× (n− 1) diagonal matrix containing the effective diffusivities.
Several equations to compute effective diffusivities have been published in the literature.
Wilke [3] developed a specific model for the unimolecular diffusion of a species i through a
film of stagnant gases:

DW
i,eff =

1− xi

∑n
j=1
j 6=i

xj
Ðij

(5)

Bird et al. [4] presented the exact analytical solution for the effective diffusivity in an
ideal mixture, which is given by:

DIdeal
i,eff =

Ni − NTxi

Ni ∑n
j=1
j 6=i

xj
Ðij
− xi ∑n

j=1
j 6=i

N j
Ðij

(6)

where Ni is the molar flux of i, and NT is the total molar flux. The molar flux is related with
the molar diffusion flux via the fundamental equation Ni = Ji + xi NT . Kubota et al. [5]
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reported an approximate model based on Equation (6), which was used to calculate catalyst
effectiveness in a three component gas mixture and is represented by:

1
DK

i,eff
=

n

∑
j=1
j 6=i

xj

Ðij

(
1−

xi N j

xjNi

)
(7)

Burghardt and Krupiczka developed a model for ideal mixtures in which the off-
diagonal elements of matrix [B] were neglected [2]:

1
DBK

i,eff
= Bii =

xi
Ðin

+
n

∑
j=1
j 6=i

xj

Ðij
(8)

Kato et al. [6] elaborated a model similar to Equation (8) by neglecting the off-diagonal
elements of matrix [D] [2], which is expressed by:

DKato
i,eff = Dii (9)

As can be seen, each equation has its intrinsic limitations due to the simplifying
assumptions made during their respective derivations, such as assuming ideal gas behavior
and/or unimolecular diffusion (stagnant film). This may introduce large errors and poor
predictive capabilities when these equations are used outside the scope for which they
were developed. The goal of this work is to present a new effective diffusivity model,
which is more rigorous in its approach, taking into consideration the nonideal behavior of
a mixture in the form of activity coefficients (for liquids) or fugacity coefficients (for gases).
For comparison purposes, the performance of the new model and the aforementioned
approaches are analyzed using two case studies: (1) a liquid phase reaction (ethyl acetate
synthesis) and (2) a gas phase reaction under high pressure (methanol synthesis).

2. New Effective Diffusivity Model

In this section the rigorous effective diffusivity model is derived and the basic steps
required for its application are delineated. It is also shown that, in the case of ideal mixtures,
the new model reduces to the equation developed by Bird et al. [4]. More derivation details
are described in the supporting information.

2.1. Derivation of Model Equations

For an arbitrary composition gradient (∇x) the molar diffusion flux (J) calculated with
Equation (2a) should yield the same result as the one obtained using effective diffusivities,
Equation (4). Thus, the following relation between matrices [Deff]

−1 and [D]−1 must be
satisfied:

[Deff]
−1(J) = [D]−1(J), where [D] = [B]−1[Γ] (10)

Since [Deff] is a diagonal matrix the elements of its inverse are simply given by the
inverse of the original matrix elements. The ith row of Equation (10) is given by:

1
Di,eff

=
n−1

∑
j=1

Dinv
ij

J j

Ji
(11)

where Dinv
ij represents the ij element of matrix [D]−1. Hence, Equation (11) allows one to

calculate the effective diffusivities for the first n− 1 components. It is also possible to derive
an equation for the effective diffusivity of the last component n, Dn,eff. First, recalling that
xn = 1−∑n−1

j=1 xj, the molar diffusion flux of component n gives:
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Jn = −CT Dn,eff∇xn = CT Dn,eff

n−1

∑
j=1
∇xj (12)

Moreover, since ∇xj = −J j/(Dj,effCT) the molar diffusion flux of species n becomes:

Jn = −Dn,eff

n−1

∑
j=1

J j

Dj,eff
(13)

which can be rearrenged as:
1

Dn,eff
= −

n−1

∑
j=1

1
Dj,eff

J j

Jn
(14)

This equation can be used to calculate Dn,eff after computing all Dj,eff, with
j = 1, . . . , (n− 1) via Equation (11).

2.2. Calculation Procedure

The following steps are necessary to calculate the effective diffusivities using the new
model:

1. Using tabulated experimental data or empirical correlations, collect the binary diffu-
sion coefficients at infinite dilution of all ij pairs of components, D◦ij. These are equal
to the infinite dilution binary Maxwell–Stefan (MS) diffusion coefficients, Ð◦ij = D◦ij.

2. Compute the MS diffusion coefficients, Ðij, for the specific mixture composition using
the following mixing rule:

Ðij = (Ð◦ij)
(1−xi+xj)/2 · (Ð◦ji)

(1−xj+xi)/2 (15)

In the special case of binary mixtures Equation (15) reduces to the Vignes equation [7]:

Ð12 = (Ð◦12)
x2 · (Ð◦21)

x1 (16)

3. Calculate the elements of the [B] matrix, via Equation (2b,c), and compute its inverse,
[B]−1.

4. Compute the [Γ] matrix by applying Equation (2d), which requires an appropriate
thermodynamic model to describe the nonideal behavior of the mixture. The partial
derivatives can be computed numerically using, for instance, central finite differences.
The increments in the mole fraction of a component j are absorbed by negative
increments in the nth component in order to maintain the sum of all mole fractions
equal to 1. For instance:

∂ ln γi
∂xj

∣∣∣∣
P,T,xk [k=1,2,...,n−1,k 6=j]

=

1
2h
[
ln γi(P, T, x1, . . . , xj + h, . . . , xn − h)− ln γi(P, T, x1, . . . , xj − h, . . . , xn + h)

] (17)

where h is the step size.
5. Obtain matrix [D] = [B]−1[Γ] and its inverse [D]−1.
6. Calculate the effective diffusivity, Di,eff, with Equations (11) and (14). The method to

obtain the molar diffusion fluxes ratios depends on the complexity of the chemical
reaction(s) and is a function of the stoichiometric coefficients of the species that
participate in the reaction(s).
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2.3. Effective Diffusivity for Ideal Mixtures

In the particular case of ideal mixtures ln γi = 0 and thus [Γ] reduces to the identity
matrix [I]. Hence, [D] = [B]−1[Γ] = [B]−1 and [D]−1 = [B]. Accordingly, the new model
(Equation (11)) is simplified to:

1
Di,eff

=
n−1

∑
j=1

Dinv
ij

J j

Ji
⇐⇒ 1

Di,eff
Ji =

n−1

∑
j=1

Bij J j = Bii Ji +
n−1

∑
j=1
j 6=i

Bij J j (18)

Replacing the definition of Bii (Equation (2b)) and Bij (Equation (2c)) in Equation (18)
yields, after rearrangement:

Ji
Di,eff

=
n

∑
j=1
j 6=i

Jixj − J jxi

Ðij
(19)

From the relationship between fluxes (Jk = Nk − xk NT) one may substitute Jk in terms
of Nk to obtain:

Ni − xi NT
Di,eff

=
n

∑
j=1
j 6=i

(Ni − xi NT)xj − (N j − xjNT)xi

Ðij
= −xi

n

∑
j=1
j 6=i

N j

Ðij
+ Ni

n

∑
j=1
j 6=i

xj

Ðij
(20)

Isolating Di,eff in the left-hand side of Equation (20) yields the equation of Bird et al.,
Equation (6).

3. Examples of Application

The new model is applied in order to estimate effective diffusivities in multicomponent
nonideal systems, using appropriate thermodynamic models for the activity and fugacity
coefficients. Two examples are studied: the first one corresponds to a liquid phase reaction
(esterification of ethanol and acetic acid) and the second to a high pressure gas phase
reaction (methanol synthesis). The results obtained with the new model are then compared
with those achieved by the Wilke, Bird et al., Kubota et al., Burghardt and Krupiczka, and
Kato et al. equations cited in Section 1. Comparisons with the equations of Bird et al. and
Wilke are further emphasized due to their popularity in the literature.

3.1. Liquid Phase Reaction: Ethyl Acetate Synthesis

Ethyl acetate may be synthesized via a Fisher esterification reaction of acetic acid and
ethanol, as described by:

CH3COOH + CH3CH2OH −−⇀↽−− CH3COOCH2CH3 + H2O (21)

The number of moles of a component i in the mixture, ni, is determined as function of
the number of moles initially present, ni0, the stoichiometric coefficient νi (with νi > 0 for
products and νi < 0 for reactants), and the extent of reaction, ξ:

ni = ni0 + νiξ (22)

The mole fraction of component i can be computed by:

xi =
ni
nT

=
ni0 + νiξ

nT0
(23)

where nT is the total number of moles, which remains constant throughout the reaction,
nT = nT0, given that the sum of stoichiometric coefficients is zero for this particular
reaction.
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The goal for this reaction system is to calculate the effective diffusivity across a range
of different compositions, from ξ = 0 up to the maximum extent of reaction (at equilibrium),
ξeq. The thermodynamic equilibrium constant, K, is described by:

K =
n

∏
j=1

a
νj
j =

n

∏
j=1

(xjγj)
νj =

n

∏
j=1

x
νj
j ×

n

∏
j=1

γ
νj
j = KxKγ (24)

where aj is the activity of component j, and Kx and Kγ are defined as Kx ≡ ∏n
j=1 x

νj
j ,

Kγ ≡ ∏n
j=1 γ

νj
j .

The group contribution method UNIFAC [8] is employed to estimate the activity
coefficients (see the supporting information for further details). For any initial mixture com-
position the extent of reaction at equilibrium, at any given temperature, can be calculated
numerically using the following iterative method:

1. Obtain K or Kx from the literature.
2. Make an initial guess for the extent of reaction at equilibrium, ξeq.
3. Compute equilibrium compositions (xi,eq) for the assumed ξeq (via Equation (23)) and

then the respective activity coefficients, γi,eq.
4. Calculate the equilibrium constant via Equation (24), Kcalc.
5. Compute the square of the deviation (Kcalc − K)2.
6. Repeat steps 2–5 until the squared error is below a predetermined tolerance.

In order to apply the procedure described in Section 2.2, the molar diffusion fluxes
ratio of each ij pair of components must be known. This particular reaction constitutes a
case of equimolar counterdiffusion (NT = 0), thus Ni = Ji and that ratio is simply given by:

J j

Ji
=

N j

Ni
=

νj

νi
=

{
1, when i and j are both reactants or products
−1, when i is a reactant and j is a product, or vice-versa

(25)

In the absence of experimental data the binary diffusion coefficients at infinite di-
lution and at the desired temperature can be estimated using the Wilke–Chang equa-
tion [9], and the liquid pure component viscosities by an empirical correlation from
Perry’s Chemical Engineers’ Handbook [10] (see the supporting information).

For an initial equimolar mixture of reactants at 78 ◦C (for which the experimental
Kx = 2.67 [11], the calculated Kγ using UNIFAC model is Kγ = 3.72, thus K = 9.94) and
total number of moles nT0 = 3 mol, the extent of reaction at equilibrium is ξeq = 0.931.
The compositions at equilibrium are given in Table 1 along with the initial and final
DNew

i,eff /DModel
i,eff ratios, which are used to assess the deviation of the new model relative to

others. It should be noted that the model by Kubota et al. [5] is not listed since it yields the
same result as the ideal equation for this particular reaction, given that NT = 0. Moreover,
apart from the new model and the ideal Bird et al. equation none of the other expressions
allows for the determination of the effective diffusivity of the nth component (chosen as
H2O for this reaction). The graphical comparison in terms of DNew

i,eff /DIdeal
i,eff (with DIdeal

i,eff
given by Equation (6)) and DNew

i,eff /DW
i,eff (with DW

i,eff given by Equation (5)) is illustrated in
Figure 1.

In Figure 1a, it can be seen that water is the component that exhibits the greatest
effective diffusivity deviation from the ideal model (Equation (6)). This deviation increases
rapidly from ξ = 0 reaching 38.4% at equilibrium. Acetic acid starts with a 37.8% difference
at the beginning of the reaction being reduced to 12.4% at equilibrium. In absolute terms,
the average deviation across all components was 16.2%, with the average per component
being 22.9% for acetic acid, −18.3% for ethanol, 15.1% for water, and −8.5% for ethyl
acetate. Thus, neglecting the impact of the activity coefficients in the [Γ] matrix generates
significant errors in the effective diffusivity computation of all components in this highly
nonideal reaction system, as DNew

i,eff 6= DIdeal
i,eff for ξ ≥ 0.
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Table 1. Effective diffusivities ratios DNew
i,eff /DModel

i,eff calculated at beginning (ξ = 0; values enclosed in
parentheses) and equilibrium (ξeq = 0.931) for an initial equimolar reactants mixture at 78 ◦C using
UNIFAC model to estimate the activity coefficients.

Component CH3COOH CH3CH2OH CH3COOCH2CH3 H2O

Initial mole fractions 0.500 0.500 0.000 0.000

Calculated equilibrium mole fractions 0.190 0.190 0.310 0.310

Ratio Reference Model

DNew
i,eff /DIdeal

i,eff
Ideal (Bird et al.) [4],

Equation (6)
(1.379)
1.124

(0.737)
0.904

(1.000)
0.809

(1.000)
1.384

DNew
i,eff /DW

i,eff Wilke [3], Equation (5) (1.536)
1.212

(1.066)
1.029

(1.000)
0.694

-

DNew
i,eff /DBK

i,eff
Burghardt and

Krupiczka [2], Equation (8)
(1.254)
1.188

(0.793)
0.999

(1.0000)
0.650

-

DNew
i,eff /DKato

i,eff Kato et al. [6], Equation (9) (1.086)
1.048

(0.780)
1.039

(1.000)
1.625

-
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Figure 1. Effective diffusivities ratios from ξ = 0 up to equilibrium (ξeq = 0.931) for an initial
equimolar reactants mixture at 78 ◦C: (a) DNew

i,eff /DIdeal
i,eff , and (b) DNew

i,eff /DW
i,eff.

Comparing the new model with the Wilke equation, Figure 1b, acetic acid achieves
the largest deviation (53.6% at ξ = 0), followed by ethyl acetate (−30.6% at equilibrium),
while the difference for ethanol remains quite low throughout the reaction. The average
deviations are 36.8% for acetic acid, −15.3% for ethyl acetate, and 4.4% for ethanol. The
overall average absolute deviation is equal to 18.8%.

3.2. High-Pressure Gas Phase Reaction: Methanol Synthesis

Two independent equations describing the reactions that occur during the catalytic
gas phase methanol synthesis were considered. The first (I) is the methanol synthesis from
carbon monoxide and the second (II) is the water–gas shift reaction [12]:

(I): CO + 2 H2 −−⇀↽−− CH3OH (26)

(II): CO2 + H2 −−⇀↽−− CO + H2O (27)

The equilibrium constants for reactions I and II are given by:
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K I =
n

∏
j=1

a
νI

j
j =

n

∏
j=1

[
φ̂jyjP

P◦

]νI
j

=
yCH3OH

yCO · y2
H2

×
φ̂CH3OH

φ̂CO · φ̂2
H2

×
(

P
P◦

)−2
(28)

K I I =
yH2O · yCO

yCO2 · yH2

×
φ̂H2O · φ̂CO

φ̂CO2 · φ̂H2

(29)

where νI
j is the stoichiometric coefficient of component j in reaction I, yj is the mole fraction

of j in the gas phase, φ̂j is its fugacity coefficient, P is the system pressure, and P◦ is the
standard pressure (1 bar).

Several equilibrium expressions can be found in the literature. According to Chinchen
et al. [12], the expressions by Cherednichenko (Equation (30)) and Besset (Equation (31)) [13]
have been successfully employed in the analysis of a commercial methanol synthesis plant
and thus were chosen in the present work. In terms of thermodynamic constants as function
of temperature, they are given by:

K I = 9.740× 10−1 × exp
(

21.225 +
9143.6

T
− 7.492 ln T + 4.076× 10−3T − 7.161× 10−8T2

)
(30)

K I I = exp
(

13.148− 5639.5
T
− 1.077 ln T − 5.44× 10−4T + 1.125× 10−7T2 +

49170
T2

)
(31)

where T is the absolute temperature (in K). It has been reported that over copper-based
catalysts, the water–gas shift reaction is approximately 2–3 orders of magnitude faster
than methanol synthesis [14]. Therefore, it is possible to assume that reaction II reaches
equilibrium instantaneously.

Given the presence of two reactions, the number of moles of an arbitrary component i
depends on the extents of both reactions, ξ I and ξ I I = ξ I I

eq, by:

dni = νI
i dξ I + νI I

i dξ I I
eq (32)

where νI
i and νI I

i represent the stoichiometric coefficients of species i in reactions I and II,
respectively. The total number of moles in the mixture is given by:

nT =
n

∑
j=1

nj = nT0 − 2ξ I (33)

Using Equation (33) and the integrated form of Equation (32), the mole fraction of
component i can then be calculated by:

yi =
ni
nT

=
ni0 + νI

i ξ I + νI I
i ξ I I

eq

nT0 − 2ξ I (34)

Because there are two reactions the method for determining the molar diffusion fluxes
ratio is more complex. Using CO as reference component (since it takes part in both
reactions) Equation (35) can be written to compute the molar diffusion fluxes ratio, J j/Ji.

J j

Ji
=

N j − yjNT

Ni − yi NT
=

N j/NCO − yjNT/NCO

Ni/NCO − yi NT/NCO
(35)

Inside the catalyst pellet the rate of disappearance of a species due to the chemical
reactions is proportional to the flux of said species, thus:

Ni

NCO
=

ri
rCO

=
dni

dnCO
=

νI
i dξ I + νI I

i dξ I I
eq

−dξ I + dξ I I
eq

=
νI

i + νI I
i

dξ I I
eq

dξ I

−1 +
dξ I I

eq
dξ I

(36)
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where ri and rCO are the reaction rates of components i and CO, respectively. The NT/NCO
ratio, which also must be determined in order to apply Equation (35), is simply obtained
by summing up Equation (36) over all species.

NT

NCO
=

n

∑
j=1

N j

NCO
=

−2

−1 +
dξ I I

eq
dξ I

(37)

A specific procedure can be developed to determine the ratios J j/Ji for this reaction
system before the effective diffusivities can be evaluated:

1. For a given temperature, pressure and initial mixture composition calculate the final
values of the extents of reaction, ξ I

eq and ξ I I
eq, as described in Section 3.1.

2. Calculate the corresponding ξ I I
eq for each ξ I in the span of [0, ξ I

eq] by solving Equation (38)
numerically:

K I I,calc

K I I − 1 = 0 ⇐⇒
yH2O · yCO

yCO2 · yH2

×
φ̂H2O · φ̂CO

φ̂CO2 · φ̂H2

× 1
K I I − 1 = 0 (38)

Since the mole fractions are functions of the extent of reactions (Equation (34)),
Equation (38) is implicit in ξ I I

eq. The fugacity coefficients are functions of mole fractions,
temperature, and pressure, and K I I is given by Equation (31).

3. Once ξ I I
eq has been determined as function of ξ I (over [0, ξ I

eq]), the derivatives
dξ I I

eq
dξ I can

be calculated numerically using finite differences, for instance.
4. The fluxes ratios Ni/NCO can be determined via Equation (36) and then replaced in

Equation (35) to obtain the molar diffusion fluxes ratios J j/Ji.
5. The effective diffusivities can then be evaluated following the procedure delineated

in Section 3.1.

The binary diffusion coefficients at infinite dilution are estimated using the correlation
developed by Riazi and Whitson [9], which requires: (1) viscosity data for the components
at low pressure and high pressure, that can be estimated by Stiel and Thodos [15] and Jossi
et al. [16] equations; (2) binary diffusion coefficients at low pressure, estimated with the
Fuller-Giddins-Schettler equation [9]; (3) high pressure and low pressure density of all pure
components, evaluated using an equation of state (EoS). Auxiliary equations can be found
in the supporting information.

The equations of state used in the present work are Peng–Robinson (PR) and PC-
SAFT. The greatest limitation of the former is its reliance on the kij binary interaction
parameters, which are adjusted to experimental data. In the absence of such data the
embodied kij are assumed to be equal to 0 for each pair of components. Thus, the results
may deviate significantly from reality, especially in the presence of polar molecules that
can establish hydrogen bonds, such as CH3OH and H2O. In order to account for such
limitations effective diffusivities are also evaluated with PC-SAFT EoS. Although this
equation can also incorporate binary interaction parameters fitted to experimental data,
due to its theoretical foundations in statistical mechanics it tends to be highly reliable in
its predictive capability as shown for several binary systems in the work by Gross and
Sadowski [17].

The effective diffusivities are calculated for the system at 573.15 K and 10 MPa with
100 moles initially present in the mixture (nT0 = 100 mol). The initial mole fractions of the
mixture are taken from Cappelli et al. [18] representing a typical feed for a methanol synthe-
sis reactor operating at high pressure. After normalization to exclude N2 they are: 12.14%
CO, 0.12% CH3OH, 70.94% H2, 0.16% H2O, 14.90% CH4 (inert) and 1.74% CO2. Fugacity
coefficients from PR EoS are computed with a self-developed program. The code developed
by Ángel Martín is used to compute fugacity coefficients with PC-SAFT EoS [19,20].
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Tables 2 and 3 present effective diffusivity ratios of the new model relative to all models
using PR EoS and PC-SAFT EoS, respectively, at initial and equilibrium compositions.
The ratios DNew

i,eff /DIdeal
i,eff and DNew

i,eff /DW
i,eff as function of ξ I are shown in Figures 2 and 3,

respectively. The results in Figure 3 exclude methane (due to ratios above 6 obscuring the
differences among the remaining components) and carbon dioxide (chosen as component n
and thus unable to be computed by Wilke equation).

A more direct comparison between the results achieved by the two equations of state
can be seen in Table 4, which shows DNew

i,eff,PR/DNew
i,eff,PC-SAFT at ξ I = 0 and ξ I = 7.3797. Note

that the extent of reaction II and mixture composition will differ slightly due to differences
between the PR and PC-SAFT fugacity coefficients, which are involved in the calculation of
ξ I I

eq. The fugacity coefficients calculated with PR EoS and PC-SAFT EoS for all components
are shown in Figure 4.

Table 2. Effective diffusivities ratios DNew
i,eff /DModel

i,eff calculated at beginning (ξ I = 0; ξ I I
eq = 0.1014;

values enclosed in parentheses) and equilibrium (ξ I
eq = 7.5068; ξ I I

eq = 0.2994), using Peng–Robinson
EoS at 573.15 K and 10 MPa.

Component CO CH3OH H2 H2O CH4 CO2

Initial mole fractions 0.1224 0.0012 0.7084 0.0026 0.1490 0.0164

Calculated equilibrium mole fractions 0.0580 0.0897 0.6545 0.0054 0.1753 0.0170

Ratio Reference Model

DNew
i,eff /DIdeal

i,eff
Ideal (Bird et al.) [4],

Equation (6)
(1.011)
0.9961

(0.9994)
0.9612

(0.9436)
0.8708

(0.8817)
0.9465

(0.5557)
0.5118

(1.2423)
1.0446

DNew
i,eff /DW

i,eff Wilke [3], Equation (5) (0.6340)
0.8241

(0.9992)
0.9414

(0.6826)
0.6808

(1.3416)
1.1576

(5.2983)
10.3318

-

DNew
i,eff /DK

i,eff
Kubota et al. [5],

Equation (7)
(0.7529)
0.8717

(1.0018)
1.1376

(0.2793)
0.3119

(1.2530)
1.0454

- -

DNew
i,eff /DBK

i,eff
Burghardt and Krupiczka [2],

Equation (8)
(0.8063)
0.8912

(1.0015)
1.1119

(0.7403)
0.6922

(1.3480)
1.1658

(6.8448)
12.9857

-

DNew
i,eff /DKato

i,eff Kato et al. [6], Equation (9) (0.7775)
0.8782

(1.0023)
1.1822

(0.7162)
0.7011

(1.3473)
1.1656

(6.7167)
12.7846

-

Table 3. Effective diffusivities ratios DNew
i,eff /DModel

i,eff calculated at beginning (ξ I = 0; ξ I I
eq = 0.0935;

values enclosed in parentheses) and equilibrium (ξ I
eq = 7.3797; ξ I I

eq = 0.2894) using PC-SAFT EoS at
573.15 K and 10 MPa.

Component CO CH3OH H2 H2O CH4 CO2

Initial mole fractions 0.1223 0.0012 0.7085 0.0025 0.1490 0.0165

Calculated equilibrium mole fractions 0.0592 0.0880 0.6557 0.0053 0.1748 0.0170

Ratio Reference Model

DNew
i,eff /DIdeal

i,eff
Ideal (Bird et al.) [4],

Equation (6)
(1.0100)
1.0007

(0.9994)
0.9569

(0.9424)
0.8695

(0.8339)
0.9152

(0.7685)
0.8996

(1.2238)
1.0319

DNew
i,eff /DW

i,eff Wilke [3], Equation (5) (0.6525)
0.8441

(1.0330)
0.9738

(0.6962)
0.6976

(1.2542)
1.1845

(4.6316)
8.1610

-

DNew
i,eff /DK

i,eff
Kubota et al. [5],

Equation (7)
(0.7749)
0.8963

(1.0357)
1.1687

(0.2848)
0.3231

(1.1762)
1.1586

- -

DNew
i,eff /DBK

i,eff
Burghardt and

Krupiczka [2], Equation (8)
(0.8298)
0.9148

(1.0354)
1.1466

(0.7551)
0.7100

(1.2599)
1.1928

(5.9837)
10.2637

-

DNew
i,eff /DKato

i,eff Kato et al. [6], Equation (9) (0.7943)
0.8986

(1.0362)
1.2237

(0.7450)
0.7306

(1.2591)
1.1923

(5.8233)
10.0110

-



Processes 2022, 10, 2042 11 of 15

0 1 2 3 4 5 6 7 8
I

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

D
i,e

ff
N

ew
/D

i,e
ff

Id
ea

l

(a)

0 1 2 3 4 5 6 7 8
I

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

D
i,e

ff
N

ew
/D

i,e
ff

Id
ea

l

CO
CH

3
OH

H
2

H
2
O

CH
4

CO
2

(b)
Figure 2. Effective diffusivities ratios DNew

i,eff /DIdeal
i,eff as function of extent of reaction I, up to equilib-

rium, using (a) Peng–Robinson EoS (ξ I
eq = 7.5068; ξ I I

eq = 0.2994), and (b) PC-SAFT EoS (ξ I
eq = 7.3797;

ξ I I
eq = 0.2894).
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Figure 3. Effective diffusivities ratios DNew

i,eff /DW
i,eff as function of extent of reaction I, up to equilibrium,

using (a) Peng–Robinson EoS (ξ I
eq = 7.5068; ξ I I

eq = 0.2994), and (b) PC-SAFT EoS (ξ I
eq = 7.3797;

ξ I I
eq = 0.2894).

Table 4. Effective diffusivities ratios DNew
i,eff,PR/DNew

i,eff,PC-SAFT at ξ I = 0 (values enclosed in parentheses)
and ξ I = 7.3797, at 573.15 K and 10 MPa.

Component CO CH3OH H2 H2O CH4 CO2

Initial mole fractions (PR) 0.1224 0.0012 0.7084 0.0026 0.1490 0.0164

Initial mole fractions (PC-SAFT) 0.1223 0.0012 0.7085 0.0025 0.1490 0.0165

Calculated final mole fractions (PR) 0.0593 0.0880 0.6557 0.0053 0.1748 0.0170
Calculated final mole fractions (PC-SAFT) 0.0592 0.0880 0.6557 0.0053 0.1748 0.0170

DNew
i,eff,PR/DNew

i,eff,PC-SAFT
(0.9716)
0.9722

(0.9672)
0.9678

(0.9805)
0.9754

(1.0697)
0.9796

(1.1438)
1.2379

(0.9140)
0.9343
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Figure 4. Fugacity coefficients as function of extent of reaction I computed with (a) Peng–Robinson
EoS and (b) PC-SAFT EoS.

Comparing the DNew
i,eff /DIdeal

i,eff ratios (Figure 2), the maximum deviation using PR EoS
(Figure 2a) is for CH4 at equilibrium (−48.8%) and in second place for CO2 at the beginning
of the reaction (24.2%). For PC-SAFT EoS (Figure 2b), the largest and second largest
deviations are for the same components, although with lower deviations for CH4 (−23.1%)
and CO2 (22.4%) both at ξ I = 0. Other components exhibit significant differences (above
10%) with the exception of CO, whose deviation is less than 1% in magnitude. Thus, only
the results for CO are in good agreement with the ideal model for this reaction system at
the aforementioned temperature and pressure conditions. The average absolute deviation
across all components is 13.1% and 9.0% for PR EoS and PC-SAFT EoS, respectively, with
the largest average deviation being for CH4 (PR EoS: −45.8%, PC-SAFT EoS: −18.2%),
followed by CO2 (PR EoS: 13.0%, PC-SAFT EoS: 11.1%).

With regards to the DNew
i,eff /DW

i,eff ratios (Figure 3), when using the PR EoS (Figure 3a
and Table 2), the maximum deviation is also attributed to CH4, which reaches 933.8%
at ξ I = ξ I

eq, followed by CO with −36.6% at ξ I = 0. The component that exhibits the
lowest ratio is methanol, reaching a maximum of 5.9%. The same pattern is observed with
PC-SAFT EoS (Figure 3b and Table 3) but in lower percentages (716.1% for CH4, −34.8% for
CO). Although the CO deviation reduces as the first reaction approaches equilibrium, that
of H2 remains high throughout the entire range of ξ I resulting in a higher average deviation
for this component (PR EoS: −32.1%, PC-SAFT EoS: −30.5%) than for CO. However, once
again the highest average deviation is for CH4 (PR EoS: 604.6%, PC-SAFT EoS: 494.2%). The
overall absolute averages are 138.3% and 114.8% for PR EoS and PC-SAFT EoS, respectively,
with the numbers being skewed toward high values due to CH4.

Analyzing Table 4 one can observe a large difference between the predicted effective
diffusivities obtained with PR EoS and PC-SAFT EoS for CH4, while slight deviations are
achieved for CO, CH3OH, and H2. The DNew

i,eff,PR/DNew
i,eff,PC-SAFT ratio for H2O decreases as the

extent of reaction increases, exhibiting a maximum value of 7.0% at ξ I = 0. Such deviations
are likely caused by the presence of dipole-dipole and hydrogen bonding interactions that
are not accurately accounted by the PR EoS. Figure 4 emphasizes the distinct performance
of both equations of state since very different fugacity coefficients are calculated for water
and ethanol, notwithstanding their similar trends along reaction progression.

4. Conclusions

A new model for multicomponent effective diffusivity has been developed taking
account of the nonideal behavior in compressed gas and liquid mixtures by incorporating
fugacity or activity coefficients. It can be used to calculate the effective diffusivity of all
species, including the nth component, and it does not have any underlying restrictive
assumption such as equimolar counterdiffusion, unimolecular diffusion or infinite dilution.
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It is demonstrated that when nonidealities are ignored the new model results in the well
known equation of Bird et al., which is the exact analytical solution for ideal mixtures. The
application of the new model is illustrated for two catalytic reactions, the liquid phase
synthesis of ethyl acetate and the gas phase synthesis of methanol, and in both cases the
importance of accounting for the nonideal behavior of the mixture is enlightened. From the
models adopted for comparison the worst results based on the overall absolute average
deviation are achieved by the Wilke (for ethyl acetate synthesis) and Kubota et al. equations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr10102042/s1. It contains the detailed derivations of the new model,
all subsidiary equations required for the multicomponent effective diffusivity calculation (i.e., density,
viscosity, binary diffusivities, activity coefficient, fugacity coefficient), and more detailed results for
the liquid and high pressure gas phase reactions chosen as case studies. References [21–25] are listed
in Supplementary Materials.
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Nomenclature

a Activity
B Coefficients defined by Equation (2b,c), s/cm2

CT Total concentration, mol/cm3

D Diffusion coefficient, cm2/s
Ð Maxwell–Stefan diffusion coefficient, cm2/s
EoS Equation of state
h Finite difference step size
J Molar diffusion flux, mol/(cm2 s)
K Equilibrium constant
kij Binary interaction parameter
MS Maxwell–Stefan
N Molar flux, mol/(cm2 s)
n Number of moles, mol, or number of components in a mixture
P Pressure, MPa
PC-SAFT Perturbed-Chain Statistical Associating Fluid Theory
PR Peng–Robinson
r Reaction rate, mol/(cm3s)
T Temperature, K
x Mole fraction in the liquid phase
y Mole fraction in the gas phase

https://www.mdpi.com/article/10.3390/pr10102042/s1
https://www.mdpi.com/article/10.3390/pr10102042/s1
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Greek Letters
Γij Element of [Γ] matrix as defined by Equation (2d)
γ Activity coefficient
δ Kronecker function
ν Stoichiometric coefficient
ξ Extent of reaction
φ Solvent association factor of Wilke–Chang equation
φ̂ Fugacity coefficient
Subscripts
0 Initial condition
eff Effective
eq Equilibrium
ij Refers to the pair of components i and j
i, j, k, n Arbitrary component identification
T Total
Superscripts
◦ Infinite dilution or Standard State
I, I I Reaction identification
calc Calculated value
BK Burghardt and Krupiczka effective diffusivity model
Ideal Ideal (Bird et al.) [4] effective diffusivity model
inv Element of inverse matrix
K Kubota et al. [5] effective diffusivity model
Kato Kato et al. [6] effective diffusivity model
New New effective diffusivity model
W Wilke effective diffusivity model
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