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1 Detailed derivation of the new effective diffusivity model

The first step in the derivation involves equating the molar fraction gradients expressed in terms of effec-
tive diffusivities and the generalized Fick’s first law:

(J) = −CT [Deff](∇x) ⇐⇒ (∇x) = −[Deff]−1(J)
1

CT

(J) = −CT [D](∇x) ⇐⇒ (∇x) = −[D]−1(J)
1

CT

(SI-1.1)

which results in the following relation:

[Deff]−1(J) = [D]−1(J) (SI-1.2)

An ith row of equation (SI-1.2) is given by:

1
Di,eff

=

n−1∑
j=1

Dinv
i j

J j

Ji

, i = 1, ..., (n − 1) (SI-1.3)

where Dinv
i j represents the i j element of matrix [D]−1. This equation will then be used to derive the

effective diffusivity of the last component, Dn,eff. First, substituting the mole fraction restriction
∑n

j=1 x j =

1 ⇐⇒ xn = 1 −
∑n−1

j=1 x j into the molar diffusion flux of component n, Jn, one gets:

Jn = −CT Dn,eff∇xn = CT Dn,eff

n−1∑
j=1

∇x j (SI-1.4)

Then, since ∇x j = −J j/(D j,effCT ), equation (SI-1.4) gives rise to:

Jn = CT Dn,eff

n−1∑
j=1

−J j

CT D j,eff
= −Dn,eff

n−1∑
j=1

J j

D j,eff
(SI-1.5)

Rearranging the previous equation, one gets the expression for the effective diffusivity of species n:

1
Dn,eff

= −

n−1∑
j=1

1
D j,eff

J j

Jn

(SI-1.6)
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Taking into account the relationship between Maxwell-Stefan and generalized Fick’s first law equations:

(J) = −CT [D](∇x) = −CT [B]−1[Γ](∇x) (SI-1.7)

one obtains [D] = [B]−1[Γ], which can be substituted in equations (SI-1.3) and (SI-1.6) for calculation
purposes.

2 Effective diffusivity model for ideal mixtures

In this section it is derived the new effective diffusivity model for the special case of ideal mixtures, being
demonstrated that it corresponds to the model of Bird et al. [1]. In the particular case of ideal solutions,
γi = 1. Hence:

ln γi = 0 (i = 1, 2, ..., n) =⇒ Γi j = δi j ⇐⇒ [Γ] = [I]

Since [D] = [B]−1[Γ], then [D]−1 = [B]. Now the effective diffusivity can be calculated with the elements
of the [B] matrix, and an arbitrary row i of [Deff] is given by:

Ji

Di,eff
=

n−1∑
j=1

Bi jJ j = BiiJi +

n−1∑
j=1
j,i

Bi jJ j (SI-2.1)

where:

Bii =
xi

Ðin
+

n∑
j=1
j,i

x j

Ði j
(SI-2.2a)

Bi j = −xi

(
1

Ði j
−

1
Ðin

)
(SI-2.2b)

Replacing the definition of Bii and Bi j into equation (SI-2.1), one obtains:

1
Di,eff

Ji = Ji

 xi

Ðin
+

n∑
j=1
j,i

x j

Ði j

 − xi

n−1∑
j=1
j,i

J j

(
1

Ði j
−

1
Ðin

)

=
xiJi

Ðin
+ Ji

n∑
j=1
j,i

x j

Ði j
− xi

n−1∑
j=1
j,i

J j

Ði j
+ xi

n−1∑
j=1
j,i

J j

Ðin

= −xi

n−1∑
j=1
j,i

J j

Ði j
+

xi

Ðin


n−1∑
j=1
j,i

J j + Ji

 + Ji

n∑
j=1
j,i

x j

Ði j

(SI-2.3)
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Let us now focus the parenthesis term, taking into account the fundamental restriction
∑n

j=1 J j = 0:

n−1∑
j=1
j,i

J j + Ji =

n−1∑
j=1

J j = −Jn (SI-2.4)

Substituting this equation into equation (SI-2.3):

1
Di,eff

Ji = −xi

n−1∑
j=1
j,i

J j

Ði j
−

xiJn

Ðin
+ Ji

n∑
j=1
j,i

x j

Ði j

= −xi


n−1∑
j=1
j,i

J j

Ði j
+

Jn

Ðin

 + Ji

n∑
j=1
j,i

x j

Ði j
(SI-2.5)

= −xi

n∑
j=1
j,i

J j

Ði j
+ Ji

n∑
j=1
j,i

x j

Ði j

=

n∑
j=1
j,i

Jix j − J jxi

Ði j

From the relation between molar and diffusion fluxes, the following substitutions can be made: J j =

N j − x jNT and Ji = N i − xiNT , which yields:

N i − xiNT

Di,eff
=

n∑
j=1
j,i

(N i − xiNT )x j − (N j − x jNT )xi

Ði j

=

n∑
j=1
j,i

N ix j − xiNT x j − N jxi + x jNT xi

Ði j

=

n∑
j=1
j,i

N ix j − N jxi

Ði j

= −xi

n∑
j=1
j,i

N j

Ði j
+ N i

n∑
j=1
j,i

x j

Ði j

(SI-2.6)

Isolating Di,eff in the left hand side of the previous equation, one obtains the expressions by Bird et al. [1]
for ideal mixtures:

DIdeal
i,eff =

N i − xiNT

−xi
∑n

j=1
j,i

N j

Ði j
+ N i

∑n
j=1
j,i

x j

Ði j

(SI-2.7)
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3 Subsidiary equations for liquid phase effective diffusivities - case
of ethyl acetate synthesis

3.1 UNIFAC model

UNIFAC is a group contribution thermodynamic model for the activity coefficient, which is calculated as
a sum of a combinatorial term and a residual term [2]:

ln γ j = ln γ j
COMB + ln γ j

RES (SI-3.1)

The combinatorial term is:

ln γ j
COMB = ln

Φ j

x j
+

[
1 −
Φ j

x j

]
− 5q j

[
ln
Φ j

θ j
+

(
1 −
Φ j

θ j

)]
(SI-3.2)

where Φ j represents a molecular volume fraction and θ j a molecular surface fraction, which are based on
relative molecule volumes r j and relative molecule surface areas q j:

Φ j =
x jr j∑
i xiri

and θ j =
x jq j∑
i xiqi

(SI-3.3)

The r j and q j values are calculated from tabulated group parameters Rk (group volume) and Qk (group
surface area):

r j =
∑

k

ν
( j)
k Rk and q j =

∑
k

ν
( j)
k Qk (SI-3.4)

where ν( j)
k is the number of groups k in molecule j.

The residual contribution is given by:

ln γ j
RES =

∑
k

ν
( j)
k [lnΓk − lnΓk

( j)] (SI-3.5)

where Γk is calculated assuming a hypothetical solution of groups found in the mixture, and Γ( j)
k is calcu-

lated assuming a hypothetical solution of groups in the case of pure component j.

lnΓk = Qk

1 − ln

 ∑
groups m

ΘmΨmk

 − ∑
groups n

ΘnΨkn∑
groups mΘmΨmn

 (SI-3.6)

Γk requires the following quantities:

• Molecular energy variable, based on tabulated energy of interaction parameters amn:

Ψmn = exp
(
−amn

T

)
(SI-3.7)
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• Mole fraction of group k:

Xk =

∑
molecules i ν

(i)
k xi∑

molecules i
∑

groups m ν
(i)
m xi

(SI-3.8)

• Surface area fraction of group k (the denominator represents summation across all groups in the
solution of functional groups):

Θk =
XkQk∑

groups m XmQm
(SI-3.9)

The energy of interaction between groups that appear in the molecules present in the ethyl acetate synthe-
sis reaction are given in Table SI-3.1. Table SI-3.2 contains the parameters Rk and Qk, and Table SI-3.3
contains information about the number of times each group appears in each molecule present in the ethyl
acetate synthesis reaction.

Table SI-3.1: UNIFAC energy of interaction parameters (K) [2]

Main/Secondary CH3 CH2 OH H2O CH3COO COOH

CH3 0 0 986.5 1318 232.1 663.5
CH2 0 0 986.5 1318 232.1 663.5
OH 156.4 156.4 0 353.5 101.1 199
H2O 300 300 -229.1 0 72.87 -14.09
CH3COO 114.8 114.8 245.4 200.8 0 660.2
COOH 315.3 315.3 -151 -66.17 -256.3 0

Table SI-3.2: UNIFAC group volume and surface area parameters [2]

k CH3 CH2 OH H2O CH3COO COOH

Rk 0.9011 0.6744 1 0.92 1.9031 1.3013
Qk 0.848 0.540 1.2 1.4 1.728 1.224

Table SI-3.3: Groups per molecule

Molecule/Groups CH3 CH2 OH H2O CH3COO COOH

CH3COOH 1 0 0 0 0 1
CH3CH2OH 1 1 1 0 0 0
CH3COOC2H5 1 1 0 0 1 0
H2O 0 0 0 1 0 0
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3.2 Estimation of infinite dilution binary diffusion coefficients

The Wilke-Chang equation, due to its simplicity and reliable results [3], is employed to estimate diffusion
coefficients at infinite dilution in dense phases:

D◦i j =
7.4 × 10−8(ϕM j)1/2T

µ jV0.6
i,bp

(SI-3.10)

D◦i j = diffusion coefficient of dilute component i in solvent j (cm2/s)

M j = molecular weight of solvent j (g/mol)

ϕ = solvent association factor, equal to 2.6 for water, 1.5 for ethanol, and 1.0 for unassociated
solvents.

T = temperature (K)

µ j = solvent viscosity (cP)

Vi,bp = liquid molar volume of solute i at its normal boiling point (cm3/mol)

Table SI-3.4 contains the necessary data to apply equation (SI-3.10). All data from Table SI-3.4 were
taken from The Properties of Gases and Liquids [3], except the viscosities at the desired temperature,
which were estimated using the following empirical equation taken from Perry’s Chemical Engineers’

Handbook [4]:
µ = exp (C1 +C2/T +C3 ln T +C4TC5) (SI-3.11)

Constants C1, C2, C3, C4, C5 are listed in Table SI-3.5. The calculated diffusion coefficients of all pairs
of components are given in Table SI-3.6.

Table SI-3.4: Component data for Wilke-Chang equation

Property/Molecule CH3COOH CH3CH2OH CH3COOC2H5 H2O

M (g/mol) [3] 60.0520 46.0684 88.1051 18.0153
ϕ [3] 1 1.5 1 2.6
µ (cP) at 78 ◦C [4] 0.5728 0.4409 0.2504 0.3650
Vbp (cm3/mol) [3] 66.0 60.85 106.3 18.8
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Table SI-3.5: Constants for viscosity estimation [4] by equation (SI-3.11)

Constants CH3COOH CH3CH2OH CH3COOC2H5 H2O

C1 -9.03 7.875 14.354 -52.843
C2 1212.3 781.98 -154.6 3703.6
C3 -0.322 -3.0418 -3.7887 5.866
C4 0 0 0 −5.8729 × 10−29

C5 0 0 0 10

Table SI-3.6: Estimated binary diffusion coefficients (cm2/s) at infinite dilution using the Wilke-Chang
equation at 351.15 K

Solvent
Solute CH3COOH CH3CH2OH CH3COOC2H5 H2O

CH3COOH - 3.9666 × 10-5 7.8877 × 10-5 3.9452 × 10-5

CH3CH2OH 2.9882 × 10-5 - 8.2817 × 10-5 4.1422 × 10-5

CH3COOC2H5 2.1382 × 10-5 2.9800 × 10-5 - 2.9640 × 10-5

H2O 6.0461 × 10-5 8.4266 × 10-5 16.7564 × 10-5 -

4 Subsidiary equations for gas phase effective diffusivities - case of
methanol synthesis

4.1 Peng-Robinson equation of state

The Peng-Robinson (PR) equation of state (EoS) in its dimensionless, cubic polynomial format is given
by [2]:

Z3 − (1 − B)Z2 + (A − 3B2 − 2B)Z − (AB − B2 − B3) = 0 (SI-4.1)

where:

A = a · P
R2T 2

B = b · P
RT

a = 0.45723553R2T 2
c

Pc
α

α = [1 + κ(1 −
√

TR)]2

κ = 0.37464 + 1.54226ω − 0.26992ω2

b = 0.07779607R Tc
Pc

Tc = critical temperature (K)
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Pc = critical pressure (MPa)

TR = T/Tc = reduced temperature

ω = acentric factor

Z = P
ρRT = compressibility factor

R = 8.31446 cm3MPa/(K mol) = ideal gas constant

Roots with imaginary parts, if present, are ignored. If the result consists of three real roots, the highest
value corresponds to the gas phase compressibility factor. This value is then used to calculate the pure
gas molar density (mol/cm3):

ρ =
1
Z

P
RT

(SI-4.2)

The PR expression for the fugacity coefficient of component i, ϕ̂i, in a gas mixture is [2]:

ln(ϕ̂i) = − ln(Z − B) +
Bi

B
(Z − 1) −

A

B
√

8
ln

Z + (1 +
√

2)B

Z + (1 −
√

2)B
·

(
2
∑

j x jAi j

A
−

Bi

B

) (SI-4.3)

where:

Bi = bi ·
P

RT

Ai = ai ·
P

R2T 2

Ai j = (Ai · A j)1/2 · (1 − ki j)

B =
∑

j x jB j

A =
∑

i
∑

j xix jAi j

ki j = binary interaction parameters

The pure component data necessary for the calculations can be found in Table SI-4.1. The pure compo-
nent densities at 0.1 MPa and 10 MPa estimated by the PR EoS are listed in Table SI-4.2.

Table SI-4.1: Pure component data/properties [3]

Property CO CH3OH H2 H2O CH4 CO2

Tc (K) 132.85 512.64 33.25 647.14 190.56 304.12
Pc (MPa) 3.494 8.097 1.297 22.064 4.599 7.374
Vc (cm3/mol) 93.1 118.0 65.00 55.95 98.6 94.07
ω 0.045 0.565 -0.216 0.344 0.011 0.225
M (g/mol) 28.010 32.042 2.016 18.015 16.043 44.010
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Table SI-4.2: Pure component densities (mol/cm3) at high and low pressure, at 573.15 K, estimated by
PR EoS

Component P = 0.1 MPa P = 10 MPa

CO 2.0978 × 10-5 2.0264 × 10-3

CH3OH 2.1049 × 10-5 3.1088 × 10-3

H2 2.0979 × 10-5 2.0450 × 10-3

H2O 2.1038 × 10-5 3.1133 × 10-3

CH4 2.0984 × 10-5 2.0794 × 10-3

CO2 2.0993 × 10-5 2.1553 × 10-3

4.2 PC-SAFT equation of state

SAFT (Statistical Associating Fluid Theory) is an equation of state adequate for associating fluids. Since
its conception [5], the original model has been modified by several independent research groups. One of
the most widely used variations is the PC-SAFT (Perturbed Chain-SAFT) equation of state, developed
by Gross and Sadowski [6], which uses a hard-chain fluid as reference instead of spherical molecules.

For associating components, five pure component parameters must be known in order to apply the model
(three for non-associating components). The parameters are estimated from regression of experimental
data, usually vapor pressure and liquid densities, in a wide range of temperatures [7]. They are:

• m = number of segments in the chain (chain length)

• ε = dispersion energy of interaction between segments (J)

• σ = temperature-independent Lennard-Jones segment diameter (Å)

• εAB = association energy (for associating compounds only) (J)

• κAB = association volume (for associating compounds only) (dimensionless)

In the context of the methanol synthesis reaction considered in this article, the necessary pure component
parameters are given in Table SI-4.3. The pure component densities at 0.1 MPa and 10 MPa calculated
with PC-SAFT EoS are listed in Table SI-4.4.
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Table SI-4.3: Pure component parameters for PC-SAFT EoS calculations

Parameter
CO
[6]

CH3OH
[8]

H2

[9]
H2O
[10]

CH4

[6]
CO2

[6]

m 1.3097 1.5143 0.8285 1.0953 1.0000 2.0729
σ (Å) 3.2507 3.2564 2.973 2.8898 3.0739 2.7852
ε/kB (K) 92.15 193.76 12.53 365.96 150.03 169.21
κAB - 0.03522 - 0.03487 - -
εAB/kB (K) - 2847.81 - 2515.7 - -

kB ≡ Boltzmann constant

Table SI-4.4: Pure component densities (mol/cm3) at high and low pressure, at 573.15 K, estimated by
PC-SAFT EoS

Component P = 0.1 MPa P = 10 MPa

CO 2.0988 × 10-5 2.0170 × 10-3

CH3OH 2.1048 × 10-5 2.8603 × 10-3

H2 2.0988 × 10-5 2.0298 × 10-3

H2O 2.1033 × 10-5 2.6455 × 10-3

CH4 2.0995 × 10-5 2.0861 × 10-3

CO2 2.1006 × 10-5 2.1848 × 10-3

4.3 Estimation of low pressure viscosity, µ∗

The viscosity of polar gases that can establish hydrogen bonds (e.g., methanol and water) at relatively low
pressures (0.2 - 5 atm) and reduced temperature TR ≤ 2.0 can be estimated by equation (SI-4.4) [11]. For
polar gases without hydrogen bonding, equation (SI-4.5) is applicable. For non-polar gases, equations
(SI-4.6) and (SI-4.7) may be used, below TR = 1.5 and above TR = 1.5 [11].

(µ∗ξ)Z5/4
c = [7.55TR − 0.55] × 10−5 (SI-4.4)

(µ∗ξ)Z2/3
c = [1.90TR − 0.29]4/6 × 10−4 (SI-4.5)

µ∗ξ = 34.0 × 10−5T 0.94
R , TR ≤ 1.50 (SI-4.6)

µ∗ξ = 17.78 × 10−5[4.58TR − 1.67]5/8, TR > 1.50 (SI-4.7)

In the previous equations, ξ is a viscosity parameter given by:

ξ =
T 1/6

c

M1/2P2/3
c

(SI-4.8)

with Pc in atm, M (molecular weight) in g/mol and Tc in K.
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µ∗ = low pressure (0.2 - 5 atm) viscosity (cP)

TR = T/Tc = reduced temperature

Zc = PcVc/(RTc) = compressibility factor at the critical point

The low pressure (0.1 MPa) viscosity estimated for all components can be found in Table SI-4.5.

Table SI-4.5: Pure component viscosity at low pressure (0.1 MPa) and 573.15 K

Component µ∗ (cP)

CO 0.022257
CH3OH 0.018992

H2 0.011661
H2O 0.020188
CH4 0.017950
CO2 0.026661

4.4 Estimation of high pressure viscosity, µ

Correlations for viscosity at high pressure have been developed as function of reduced density by Jossi,
Stiel and Thodos [12]. The general equation over a wide range of reduced densities (0.002 - 4) is given
by:

[(µ − µ∗)ξ + 10−4]1/4 = 0.10230 + 0.023364ρR + 0.058533ρ2
R − 0.040758ρ3

R + 0.0093324ρ4
R (SI-4.9)

Less complex expressions have been developed by the same authors for a restricted range of reduced
densities:

(µ − µ∗)ξ = [23.12e1.079ρR − 25] × 10−5, 0.3 ≤ ρR ≤ 2.0 (SI-4.10)

(µ − µ∗)ξ = 11.0 × 10−5[e1.584ρR − 1], ρR < 0.3 (SI-4.11)

The relationship described by equation (SI-4.9) deviates significantly for hydrogen and water. For these
substances, the following expressions are valid:

• Hydrogen

[(µ − µ∗)ξ + 10−4]1/4 = 0.10616 − 0.042426ρR + 0.17553ρ2
R − 0.12295ρ3

R + 0.028149ρ4
R (SI-4.12)

• Water

[(µ−µ∗)ξ+10−4]1/4 = 0.10721+0.040646ρR+0.0026282ρ2
R−0.0054430ρ3

R+0.0017979ρ4
R (SI-4.13)
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where:

ξ = viscosity parameter (equation (SI-4.8))

µ∗ = low pressure viscosity (cP) (calculated in Section 4.3)

ρR = ρ/ρc = ρ · Vc = reduced density, with ρ calculated with an equation of state (in this work, PR
and PC-SAFT EoS)

µ = high pressure viscosity (cP)

The estimated viscosity at high pressure for all components, using the densities calculated by both PR
and PC-SAFT EoS, is given in Table SI-4.6.

Table SI-4.6: Pure component viscosities at high pressure (10 MPa) and 573.15 K with densities com-
puted with PR and PC-SAFT EoS

Component µPR (cP) µPC-SAFT (cP)

CO 0.023208 0.023203
CH3OH 0.022462 0.022065

H2 0.011722 0.011722
H2O 0.023893 0.023562
CH4 0.018847 0.018850
CO2 0.028519 0.028549

4.5 Estimation of low pressure gas diffusion coefficients, D∗i j

The Fuller-Giddings-Schettler equation can be utilized to estimate binary diffusion coefficients of gases
at low pressure [3]. In this case, composition does not heavily affect binary diffusivities, therefore infinite
dilution coefficients are obtained from equation (SI-4.14) directly, D∗i j = D∗ji = D∗◦ji = D∗◦i j .

D∗i j = D∗ji =
0.00143T 1.75

PM1/2
i j [υ1/3

i + υ
1/3
j ]2

(SI-4.14)

where:

D∗i j = binary diffusion coefficient at low pressure (cm2/s)

T = temperature (K)

Mi j = 2[(1/Mi) + 1/M j]−1, Mi and M j are component molecular weights (g/mol)

P = pressure (bar)

υ = diffusion volume of the molecule (can be estimated by the summation of tabulated atomic
diffusion volumes)
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Necessary data to apply this correlation are presented in Table SI-4.1. The required diffusion volumes
are: 18.0 (CO), 31.25 (CH3OH), 6.12 (H2), 13.1 (H2O), 25.14 (CH4) and 26.9 (CO2). The diffusion
coefficients at low pressure for all pairs of components are given in Table SI-4.7.

Table SI-4.7: Estimated binary diffusion coefficients at infinite dilution (cm2/s) using the Fuller-Giddings-
Schettler equation at 0.1 MPa and 573.15 K. Note: D∗◦i j = D∗◦ji

Components CO CH3OH H2 H2O CH4 CO2

CO - 0.5274 2.5000 0.8273 0.6900 0.5201
CH3OH 0.5274 - 1.9885 0.6592 0.5618 0.4174

H2 2.5000 1.9885 - 2.8766 2.2402 2.0999
H2O 0.8273 0.6592 2.8766 - 0.8338 0.6625
CH4 0.6900 0.5618 2.2402 0.8338 - 0.5638
CO2 0.5201 0.4174 2.0999 0.6625 0.5638 -

4.6 Estimation of high pressure diffusion coefficients, Di j

Binary diffusion coefficients at high pressure can be estimated by the correlation developed by Riazi and
Whitson [3]:

ρDi j

(ρDi j)∗
= 1.07

(
µ

µ∗

)b+cPR

(SI-4.15)

where:

b = −0.27 − 0.38ω

c = −0.05 + 0.1ω

ω = xiωi + x jω j = acentric factor of the binary mixture

µ∗ = viscosity at low pressure

PR = P/Pc = reduced pressure of the mixture

Pc = xiPci + x jPc j = critical pressure of the binary mixture

(ρDi j)∗ = product of density and binary diffusion coefficient evaluated at low pressure

In the present work, only infinite dilution binary coefficients are needed. Thus, the physical properties of
the mixture are approximated by the solvent properties: as xi → 0, Pc → Pc j, ω → ω j, µ → µ j, ρ → ρ j,
Di j → D◦i j.

Tables SI-4.8 and SI-4.9 contain the high pressure binary diffusion coefficients at infinite dilution calcu-
lated with pure component densities obtained with PR and PC-SAFT EoS, respectively.
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Table SI-4.8: Binary diffusion coefficients at infinite dilution (cm2/s) of each pair of components at 573.15
K and high pressure (10 MPa). Densities were estimated by PR EoS

Solvent
Solute CO CH3OH H2 H2O CH4 CO2

CO - 0.003527 0.027337 0.005585 0.007314 0.005279
CH3OH 0.005740 - 0.021743 0.004449 0.005955 0.004236

H2 0.027213 0.013298 - 0.019417 0.023745 0.021313
H2O 0.009006 0.004408 0.031455 - 0.008838 0.006724
CH4 0.007511 0.003757 0.024496 0.005628 - 0.005723
CO2 0.005661 0.002791 0.022962 0.004472 0.005976 -

Table SI-4.9: Binary diffusion coefficients at infinite dilution (cm2/s) of each pair of components at 573.15
K and high pressure (10 MPa). Densities were estimated by PC-SAFT EoS

Solvent
Solute CO CH3OH H2 H2O CH4 CO2

CO - 0.003866 0.027553 0.006608 0.007293 0.005209
CH3OH 0.005770 - 0.021915 0.005265 0.005938 0.004180

H2 0.027355 0.014577 - 0.022976 0.023679 0.021030
H2O 0.009053 0.004832 0.031703 - 0.008813 0.006635
CH4 0.007550 0.004118 0.024690 0.006660 - 0.005647
CO2 0.005691 0.003060 0.023143 0.005291 0.005960 -

5 Detailed results for the liquid and gas phase effective diffusivities

This section contains detailed figures and results for the models that were not emphasized in the main
text of the article, namely those by Burghardt and Krupiczka [13], Kubota et al. [14], and Kato et al.

[15].

5.1 Liquid phase reaction: ethyl acetate synthesis

Results for the DModel
i,eff /D

Ideal
i,eff ratios at the initial and final (equilibrium) compositions of the reaction

mixture are shown in Table SI-5.1. Figure SI-5.1 illustrates these ratios as function of the extent of
reaction for the new model and other models, except that by Kubota et al.
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Table SI-5.1: Effective diffusivities ratios DModel
i,eff /D

Ideal
i,eff for an initial equimolar reactants mixture at the

beginning (ξ = 0; values enclosed in parentheses) and equilibrium (ξeq = 0.931) at 78 ◦C, using UNIFAC
model for the activity coefficients

Component CH3COOH CH3CH2OH CH3COOCH2CH3 H2O
Initial mole fractions

Equilibrium mole fractions
(0.500)
0.190

(0.500)
0.190

(0.000)
0.310

(0.000)
0.310

Ratio Reference Model

DNew
i,eff /D

Ideal
i,eff

New
Eqs. (11), (14)

(1.379)
1.124

(0.737)
0.904

(1.0000
0.809

(1.000)
1.384

DW
i,eff/D

Ideal
i,eff

Wilke
Eq. (5)

(0.898)
0.927

(0.691)
0.879

(1.000)
1.651

-

DBK
i,eff/D

Ideal
i,eff

Burghardt and
Krupiczka Eq. (8)

(1.099)
0.946

(0.929)
0.905

(1.000)
1.243

-

DKato
i,eff /D

Ideal
i,eff

Kato et al.

Eq. (9)
(1.270)
1.072

(0.945)
0.870

(1.000)
0.498

-

0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

D
i,e

ff
N

ew
/D

i,e
ff

Id
ea

l CH
3
COOH

C
2
H

5
OH

CH
3
COOC

2
H

5

H
2
O

(a)

0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.1

1.2

1.3

1.4

D
i,e

ff
W

/D
i,e

ff
Id

ea
l

CH
3
COOH

C
2
H

5
OH

CH
3
COOC

2
H

5

1.0

(b)

16



0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
D

i,e
ff

B
K

/D
i,e

ff
Id

ea
l

CH
3
COOH

C
2
H

5
OH

CH
3
COOC

2
H

5

(c)

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

D
i,e

ff
K

at
o
/D

i,e
ff

Id
ea

l

CH
3
COOH

C
2
H

5
OH

CH
3
COOC

2
H

5

(d)

Figure SI-5.1: Effective diffusivities ratios from ξ = 0 up to equilibrium (ξeq = 0.931) for an ini-
tial equimolar reactants mixture at 78 ◦C: (a) DNew

i,eff /D
Ideal
i,eff , (b) DW

i,eff/D
Ideal
i,eff , (c) DBK

i,eff/D
Ideal
i,eff , and (d)

DKato
i,eff /D

Ideal
i,eff

The model by Kato et al. [15] (Figure SI-5.1d) for ethyl acetate (CH3COOC2H5) diverges quite sig-
nificantly from the results achieved with Burghardt and Krupiczka, and Wilke equations, as its curve is
monotonically decreasing, while these two are strictly increasing. In this sense, its trend is similar to the
new model, though with a higher slope in absolute value, which results in a large difference of effective
diffusivities ratios at equilibrium, as can be seen in Table SI-5.1. Furthermore, the curve for ethanol in
Figure SI-5.1d is very different from that of the new model, almost plateauing after an initial descent,
which is distinct from Figure SI-5.1a, where the curve for this component increases almost linearly with
the extent of reaction. Hence, despite the fact the Kato et al. equation [15] is the unique reference model
that accounts for the non-ideal behavior of the mixture, the method by which the effective diffusivities
are calculated (by simply equating them to the main diagonal elements of matrix [D]), clearly gives rise
to substantial discrepancies in comparison with the new model.

In Table SI-5.1, little agreement is observed amongst the values of all models. For instance, at ξ = 0,
the acetic acid effective diffusivities ratio is greatly underestimated by the Wilke [16] and Burghardt
and Krupiczka models [13], whereas ethanol tends to be overestimated by Burghardt and Krupiczka
[13], and Kato et al. [15]. At equilibrium, ξeq = 0.931, the models of Wilke [16] and Burghardt and
Krupiczka [13] exhibit a large degree of similarity between the effective diffusivities ratios of CH3COOH
and CH3CH2OH (ca. 5% difference), whereas the new model achieves values ca. 24% different.
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5.2 Gas phase reaction: high pressure methanol synthesis

Tables SI-5.2 and SI-5.3 contain the DModel
i,eff /D

Ideal
i,eff ratios using PR and PC-SAFT EoS, respectively. Fig-

ures SI-5.2 through SI-5.4 show the evolution of these ratios as function of ξI for both EoS, respectively.
The discussion pertaining the results in Figure SI-5.2 can be read in the main text of the article.

Table SI-5.2: Effective diffusivities ratios DModel
i,eff /D

Ideal
i,eff at the beginning (ξI = 0; ξII

eq = 0.1014; values
enclosed in parentheses) and equilibrium (ξI

eq = 7.5068; ξII
eq = 0.2994), calculated using Peng-Robinson

EoS for the fugacity coefficients at 573.15 K and 10 MPa

Component CO CH3OH H2 H2O CH4 CO2

Initial mole fractions
Equilibrium mole fractions

(0.1224)
0.0580

(0.0012)
0.0897

(0.7084)
0.6545

(0.0026)
0.0054

(0.1490)
0.1753

(0.0164)
0.0170

Ratio Reference Model

DNew
i,eff /D

Ideal
i,eff

New
Eqs. (11), (14)

(1.0011)
0.9961

(0.9994)
0.9612

(0.9436)
0.8708

(0.8818)
0.9467

(0.5557)
0.5114

(1.2420)
1.0444

DW
i,eff/D

Ideal
i,eff

Wilke
Eq. (5)

(1.5792)
1.2087

(1.0003)
1.0210

(1.3823)
1.2789

(0.6567)
0.8182

(0.1049)
0.0495

-

DK
i,eff/D

Ideal
i,eff

Kubota et al.

Eqs. (7)
(1.3296)
1.1428

(0.9976)
0.8450

(3.3785)
2.7918

(0.7039)
0.9059

(0.0000)
0.0000

-

DBK
i,eff/D

Ideal
i,eff

Burghardt and
Krupiczka Eq. (8)

(1.2416)
1.1177

(0.9979)
0.8645

(1.2745)
1.2579

(0.6543)
0.8124

(0.0812)
0.0393

-

DKato
i,eff /D

Ideal
i,eff

Kato
Eq. (9)

(1.2875)
1.1343

(0.9972)
0.8131

(1.3175)
1.2418

(0.6546)
0.8125

(0.0827)
0.0400

-
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Table SI-5.3: Effective diffusivities ratios DModel
i,eff /D

Ideal
i,eff at the beginning (ξI = 0; ξII

eq = 0.0935; values
enclosed in parentheses) and equilibrium (ξI

eq = 7.3797 and ξII
eq = 0.2894) calculated using PC-SAFT

EoS for the fugacity coefficients at 573.15 K and 10 MPa

Component CO CH3OH H2 H2O CH4 CO2

Initial mole fractions
Equilibrium mole fractions

(0.1223)
0.0592

(0.0012)
0.0880

(0.7085)
0.6557

(0.0025)
0.0053

(0.1490)
0.1748

(0.0165)
0.0170

Ratio Reference Model

DNew
i,eff /D

Ideal
i,eff

New
Eqs. (11), (14)

(1.0100)
1.0007

(0.9994)
0.9569

(0.9424)
0.8695

(0.8336)
0.9152

(0.7685)
0.8996

(1.2244)
1.0319

DW
i,eff/D

Ideal
i,eff

Wilke
Eq. (5)

(1.5479)
1.1855

(0.9675)
0.9827

(1.3535)
1.2464

(0.6644)
0.7727

(0.1659)
0.1102

-

DK
i,eff/D

Ideal
i,eff

Kubota et al.

Eqs. (7)
(1.3034)
1.1165

(0.9649)
0.8188

(3.3085)
2.6910

(0.7086)
0.7899

(0.0000)
0.0000

-

DBK
i,eff/D

Ideal
i,eff

Burghardt and
Krupiczka Eq. (8)

(1.2171)
1.0938

(0.9652)
0.8346

(1.2481)
1.2246

(0.6614)
0.7673

(0.1284)
0.0876

-

DKato
i,eff /D

Ideal
i,eff

Kato
Eq. (9)

(1.2715)
1.1136

(0.9644)
0.7820

(1.2649)
1.1901

(0.6618)
0.7676

(0.1320)
0.0899
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Figure SI-5.2: Effective diffusivities ratios DNew
i,eff /D

Ideal
i,eff as function of extent of reaction I, up to equilib-

rium, at 573.15 K and 10 MPa, using (a) PR EoS (ξI
eq = 7.5068; ξII

eq = 0.2994), and (b) PC-SAFT EoS
(ξI

eq = 7.3797; ξII
eq = 0.2894)
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Figure SI-5.3: Effective diffusivities ratios DModel
i,eff /D

Ideal
i,eff with fugacity coefficients computed with PR

EoS at 573.15 K and 10 MPa: (a) Wilke, (b) Burghardt and Krupiczka, (c) Kato et al., and (d) Kubota et
al.
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Figure SI-5.4: Effective diffusivities ratios DModel
i,eff /D

Ideal
i,eff with fugacity coefficients computed with PC-

SAFT EoS at 573.15 K and 10 MPa: (a) Wilke, (b) Burghardt and Krupiczka, (c) Kato et al., and (d)
Kubota et al.

For models that do not directly involve fugacity coefficients in the determination of effective diffusivities
(such as the models of Wilke [16], Burghardt and Krupiczka [13], Kubota et al. [14]), one would expect,
at first glance, equal results between PR EoS and PC-SAFT EoS. However, all models embody diffusion
fluxes ratios, which depend on the derivatives dξII

eq/dξ
I , where ξII

eq is obtained by solving an equation that
is a function of the fugacity coefficients. Moreover, the Maxwell-Stefan (MS) diffusivities depend on the
estimated high pressure binary diffusivities at infinite dilution, which requires pure component densities
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at high pressure, whose values change according to the employed equation of state. This explains slight
differences between the curves of the aforementioned models in Figures SI-5.3 and SI-5.4, and between
the values in Tables SI-5.2 and SI-5.3.

In Table SI-5.2 at ξI = 0, the component whose effective diffusivity exhibits the smallest deviation to the
ideal expression is methanol, as the ratios calculated by all models are very close to unity. This has been
the unique agreement found amongst all models. On the other hand, large deviations are observed for CH4

in Tables SI-5.2 and SI-5.3, for which the majority of the effective diffusivities ratios is almost null, which,
when compared with the values yielded by the new model, show that they are greatly underestimated.
Additionally, the model of Kubota et al. [14] shows large deviations for H2, with ratios above 3 that are
not found by any of the other models. In contrast, the equations of Burghardt and Krupiczka [13] and
Kato et al. [15] tend to yield close results for most components, given that their equations are somewhat
similar by neglecting the off-diagonal elements of matrices [B] and [D], respectively.
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Nomenclature

a UNIFAC energy of interaction parameter, K
B Coefficients defined by equations (SI-2.2a) and (SI-2.2b), s/cm2

CT Total concentration, mol/cm3

D Diffusion coefficient, cm2/s
Ð Maxwell-Stefan diffusion coefficient, cm2/s
EoS Equation of state
J Molar diffusion flux, mol/(cm2 s)
ki j Binary interaction parameter
kB Boltzmann constant, J/K
M Molecular weight, g/mol
N Molar flux, mol/(cm2 s)
n Number of components in a mixture
P Pressure, MPa
PC-SAFT Perturbed-Chain Statistical Associating Fluid Theory
PR Peng-Robinson
Q UNIFAC group surface area
q UNIFAC relative molecule surface area
R Ideal gas constant, cm3 MPa/(K mol), or UNIFAC group volume
r UNIFAC relative molecule volume
T Temperature, K
X UNIFAC group mole fraction
x Mole fraction in the liquid phase
y Mole fraction in the gas phase
Z Compressibility factor

23



Greek Letters
Γi j UNIFAC group activity coefficient or element of [Γ] matrix
γ Activity coefficient
δ Kronecker function
Θ UNIFAC group surface fraction
θ UNIFAC molecular surface fraction
µ Viscosity, cP
ξ Viscosity parameter as defined by equation (SI-4.8)
ρ Molar density, mol/cm3

υ Fuller-Giddings-Schettler equation molecular diffusion volume
Φ UNIFAC molecular volume fraction
ϕ Solvent association factor of Wilke-Chang equation
ϕ̂ Fugacity coefficient
Ψ UNIFAC molecular energy parameter
ω Acentric factor

Subscripts

bp Boiling point
c Critical point
eff Effective
ij Refers to the pair of components ij
i, j, n Arbitrary component identification
p Pure component
R Reduced
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Superscripts

∗ Low pressure
◦ Infinite dilution
BK Burghardt and Krupiczka effective diffusivity model
COMB UNIFAC combinatorial part of the activity coefficient
Ideal Ideal (Bird et al.) effective diffusivity model
ig Ideal gas
inv Element of inverse matrix
K Kubota et al. effective diffusivity model
Kato Kato et al. effective diffusivity model
New New effective diffusivity model
RES UNIFAC residual part of the activity coefficient
W Wilke effective diffusivity model
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