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Abstract: The technology of coal breaking and punching by a high-pressure water jet can increase
the permeability of coal seam and prevent gas explosion accidents. As one of the key components of
this technology, the structural parameters of the nozzle have an important effect on the performance
of the water jet. At present, the relationship between multiple optimization indexes and structural
parameters of the nozzle is mostly studied separately. In fact, the influence of the nozzle structural
parameters on different optimization indexes is different. When there are multiple optimization
indexes, they should be considered collaboratively to achieve the best water jet performance of
the nozzle. Therefore, a multi−objective collaborative optimization method is proposed which
takes the maximum velocity in X-axis and effective extension distance in Y-axis as the performance
evaluation indexes of the water jet. The numerical simulation of the nozzle jet is carried out by
computational fluid dynamics(CFD) method, and an orthogonal test database is established. The
weight of multi-objective is analyzed, and the key structural parameters of the nozzle are optimized
by the combination of BP (back propagation) neural network and genetic algorithms. The results
show that the primary and secondary sequence of each structural parameter on is γ > θ > l/d ,
which could reflect the comprehensive influence on the maximum velocity in the X-axis and effective
extension distance in the Y-axis. The optimal structural parameters of the nozzle are, θ = 42.512◦,
l/d = 2.5608, γ = 12.431◦. The field erosion experiment shows that compared with the original nozzle,
the water jet performance of the optimized nozzle has been improved, the punching depth has been
increased by 72.71%, and the punching diameter has been increased by 106.72%. This study provides
a certain reference for the design and optimization of coal breaking and punching nozzle.

Keywords: nozzle; water jet; orthogonal test; multi-objective collaborative optimization; BP neural
network; genetic algorithm

1. Introduction

In recent years, with the development of fluid control technology, especially with the
synergy of modern advanced decision-making and control methods such as fuzzy logic,
machine learning, or artificial intelligence, the application of the water jet technology should
be more and more extensive, especially in the fields of coal, petroleum, metallurgy, etc. [1–3].
Since a water jet has the advantage of high efficiency, being dust-free and maintain a low
heat in the process of crushing coal and rock medium, and meeting harsh environmental
conditions, it has been widely used in “pressure relief antireflective” technology in recent
years, such as hydraulic punching, hydraulic slotting, and hydraulic cutting and so on [4,5].
The research shows that the stress distribution of surrounding coal can be changed during
coal breaking and punching by the water jet, which can promote the expansion and
development of coal rock fissures, release the elastic energy in coal and rock, increase the
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permeability of coal seam, and then raise gas drainage amount and reduce coal mining
accidents [6–9]. As one of the important components of the water jet equipment, the
nozzle converts the static pressure of the water into water power, and its structure directly
affects the flow and dynamic characteristics of the water jet [10–13]. Therefore, it is of
great significance to study the relationship between the key structure of the nozzle and the
performance of the water jet and optimize the key parameters of the nozzle to improve the
performance of the water jet.

Wen et al. [14] designed a bionic straight cone nozzle with circular groove-type bionic
units inside. Through the design and implementation of the orthogonal experiment, the
influence of structural parameters of the bionic straight cone nozzle on impact force in-
dex is explored, and the bionic nozzle structure is optimized to obtain the best structural
parameters. Then, through CFD simulation and experimental analysis, it is found that
the performance of bionic straight cone nozzle is better than that of ordinary straight
cone nozzle for three reasons: the liquid buffer effect, the auxiliary thrust effect, and the
liquid rolling bearing effect. On the basis of fully considering the energy loss and nozzle
parameters, Yang et al. [15] established the water jet reaction force model, obtained the
relationship between nozzle shape and energy loss, and optimized the nozzle. The reaction
force and energy conversion rate of the optimized nozzle have been significantly improved,
which has guiding significance for the improvement of the water jet propulsion system.
Zhang et al. [16] designed the divergent surface of a supersonic minimum length nozzle
(MLN) specially for l for laser-assisted oxygen cutting (LASOX) based on the method of
characteristic quantities (MOC). Through numerical simulation and experimental verifi-
cation, the nozzle significantly improved the cutting quality. Chen et al. [17] explored
the influence of the key structural parameters of the nozzle on the water jet performance,
and optimized the nozzle structure to improve the jet performance by considering the
interaction between the structural parameters. Juraeva et al. [18] and others took the water
resistance of textile nozzle as the optimization objective function, established the optimiza-
tion database of taper, slotting and jet ring length by using Minitab software, and obtained
the optimal nozzle parameter combination, which effectively improved the water resis-
tance. Onuret al. [19] established the linear regression model between the key parameters
of the printing nozzle and the print quality based on the experimental data, studied the
influence of the key parameters on the print quality, and optimized the nozzle channel. The
optimized nozzle has been experimentally verified to be effective in improving the accuracy
of printed parts. Wang et al. [20] studied the influence of the nozzle structure parameters
on the descaling effect of coal mine pipeline, and obtained the best nozzle structure param-
eters under different pressure and flow conditions by using the method of orthogonal test,
which has certain guiding significance for water jet descaling. In terms of multi-parameter
models, Tang et al. [21–24] proposed an improved convolution neural network (CNN)
method to train the multi-parameter model of piston pump, and then used a Bayesian
Optimization (BO) method to select the optimal combination, the experiment shows that
the improved CNN-BO method has high accuracy in fault diagnosis. Ding et al. [25] took
the total pressure coefficient and efficiency of low-pressure axial flow fan as the optimiza-
tion objectives, and used NSGA-II algorithm to optimize its structural parameters, which
provided a reference for the multi-objective optimization problem. Cain et al. [26] built a
prediction model of foreign exchange rate based on artificialneural networks (ANN) and
genetic algorithms (GA), its prediction accuracy can reach 72.5% and has high general-
ization, which fully shows the advantages of ANN-GA algorithm in building the model.
Abbas et al. [27] established a mathematical model for the generation of entropy in magneto
hydrodynamic radiative reactive, optimized multiple parameters by using the combination
of artificial neural network(ANN) and particle swarm optimization algorithm(PSO), and
finally obtained the minimum entropy, showing the powerful optimization capability of
ANN-PSO algorithm for multi-parameter complex models.

From the above research and analysis, it can be seen that at present, the research on
nozzle optimization at home and abroad mainly focuses on single evaluation index and
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single optimization method, while there is less research on the interaction between multiple
parameters and multi-objective optimization in the overall structure. However, the multi-
parameter and multi-objective analysis of coal breaking and punching nozzle plays a key
role in improving water jet performance and solving the problems in practical application.
Therefore, based on the operability of the nozzle processing and field experience, the key
parameters of coal breaking and punching nozzle are optimized by the method combining
numerical simulation and intelligent collaborative optimization in this paper. This study
reveals the influence rule of key structural parameters on the maximum velocity in X-axis
and effective extension distance in Y-axis, determines the optimal structural parameters of
the nozzle. It is verified experimentally that the nozzle with the optimal combination of
structural parameters effectively improves the coal breaking and punching ability of the
water jet, which provides a technical reference for the multi-parameter and multi-objective
optimization of the nozzle.

2. Numerical Simulation and Analysis
2.1. Structure and Key Parameters of the Nozzle

Due to the small inner diameter of the nozzle, in order to facilitate processing, the split
design is adopted. The nozzle is divided into contraction section and outlet section. The
two parts are connected by metal sealing ring and nozzle sleeve. The specific structure is
shown in Figure 1. The inlet pressure is 15–20 MPa, and it is injected with a higher speed
through the acceleration of the contraction section and the steady flow of the exit section.
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Figure 1. Structure of the nozzle.

The research shows that [28–34], the key factors affecting the performance of the water
jet are contraction angle, length-to-diameter ratio (the ratio of outlet cylinder length L
to cylinder diameter d) and outlet expansion angle, and the change of their parameters
directly affects the water jet performance. Therefore, these three parameters are also the
focus of research and optimization in this paper, and the schematic diagram of the structural
parameters is shown in Figure 2. l is the length of the outlet cylinder section, its length is
determined by the length-to-diameter ratio. l′ is the length of the outlet divergence angle, in
this paper l′ = 1 mm. L is the length of the contraction section and the calculation equation
is as follows:

L =
D
2

cot
θ

2
− d

2
cot

θ

2
(1)
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2.2. Numerical Simulation and Boundary Condition

In the high-pressure water jet impact process under non-submerged conditions, there
will be violent turbulent diffusion and momentum exchange between the water and the air
in the surrounding environment, which belongs to the multi-phase flow problem. Therefore,
computational fluid dynamics (CFD) method is used to simulate the process of the water
jet. In order to avoid the influence of the flow field boundary on the calculation results, the
external flow field area should be large enough, according to this paper, the external flow
field is set to a 60 mm × 60 mm × 200 mm rectangular body.

When the high-pressure water is accelerated by the nozzle, it will be injected into
the air with a very high velocity, and the water jet will continuously suck in the air at the
boundary, at the same time, the water droplets are “torn” by aerodynamic forces, which
produces a velocity difference between the two. Therefore, the numerical simulation is
carried out using the Mixture model of the multiphase flow model, with the main phase set
to air and the second phase set to water. The transient and implicit pressure solver are used
for calculation, the turbulence model is two-equation model of RNG K-ε. The conical end
face of the nozzle is set to ‘Pressure-inlet’, the pressure is set to 20 MPa, the inner surface
of the nozzle is set to ‘Wall’, the external flow field area is set to Pressure-outlet, and the
pressure is set to one atmosphere. The SIMPLE pressure-velocity coupling algorithm is
used to solve the control equations [35,36].

2.3. Model Meshing and Independence Verification

In order to ensure the accuracy of numerical simulation and improve the simulation
efficiency of computer, the computational model is divided by the hybrid grid technology.
Inside and outlet of the nozzle, the structure size is small, local pressure is large, and
turbulence is intense. Hence, an unstructured grid is used to divide the nozzle, as shown
in Figure 3. The external flow field of the nozzle is large and regular in shape, the rebythe
structured regular hexahedron grid is used to divide it, which can reduce the number of
grids and improve the calculation efficiency. In addition, in order to accurately simulate
the entrainment effect of the water jet on the surrounding air, the external flow field area is
divided by the density gradient meshing method, and the grid in the area with complex
flow is encrypted, as shown in Figure 4.
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The number of computational grids affects the accuracy and efficiency of numerical
calculation. Too few grids will affect the accuracy of results. However, if the number
of grids continues to increase after reaching a certain number, it will not only improve
the computational accuracy, but also reduce the computational efficiency. Therefore, it is
necessary to verify the independence of the grid number in the computational domain
to determine the optimal grid number. Firstly, a group of grids are determined as the
benchmark, in which the grid number of the nozzle is 1,257,283 and the grid number of
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flow field is 4,987,351. Secondly, the independence of the grid is verified based on the
above boundary conditions. Taking the maximum velocity in X-axis at 100 mm away from
the nozzle outlet as the standard, the deviation of this value between each grid number
and the reference grid is calculated, the results are shown in Table 1, where the deviation
0 represents the benchmark grid. It can be seen from the results that all deviations are within
0.3%. The nozzle and flow field are re-divided and calculated according to the minimum
number of grids in Table 1. Compared with the reference grid results, the deviation is
0.29%, which meets the grid-independent requirement, the selected number of reference
grids can be calculated later.
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Table 1. Verification of grid independence.

Area Number of Grid Maximum Velocity
of X-axis (m/s) Deviation (%)

Nozzle
643,765 199.241 0.212

1,257,283 199.865 0
2,345,759 199.395 0.115

Externalflowfield
4,165,783 199.383 0.241
4,987,351 199.865 0
5,634,524 200.068 0.102

The research shows that when continuous water jet impinges vertically on the surface
of an object, it actually converts the kinetic energy of the water jet into dynamic pressure,
which is the direct force leading to the breaking of the object, as shown in Equation (2):

Ps =
1
2

ρν2 (2)

where, ρ is the density of the fluid, kg/m3, ν is the propagation velocity, m/s.
From Equation (2), it can be concluded that the greater the velocity of the fluid, the

greater the impact force. In this paper, the maximum velocity in X-axis of the water jet at
100 mm from the end face of the nozzle is taken as index 1 to study three key structural
parameters in Section 2.

In addition, through many field experiments, it is found that in the process of coal
breaking and punching by water jet, besides the punching depth, the effective punching
area is also an important index to measure the water jet performance. The larger the
punching area is, the better the effect of gas release is. Given that the numerical model
is axisymmetric, data with velocity decay within 15% at 100 mm from the nozzle outlet
are selected to calculate the effective extension distance in Y-axis [37], and which is as
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index 2. According to the initial structural parameters of the nozzle in Table 2, the model
is established.

Table 2. Structure parameter of the nozzle.

Structure Parameter Numerical Value

Contraction angle θ (◦) 30
Length-to-diameter ratio l/d 2

Divergence angle γ (◦) 0

According to the above setting conditions, the velocity vector diagrams of the water
jet at different times are calculated numerically by CFD, as shown in Figure 5.
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It can be seen from Figure 5 that the velocity of the water jet increases sharply after
the contraction angle, but the contraction angle is too large will intensify the collision
between the water jet and the wall, resulting in local turbulence effect, which will increase
the velocity loss of the water jet. The existence of the cylindrical section will stabilize the
flow and reduce the local turbulence effect of the water jet. However, when the cylindrical
section is long, the flow resistance will increase and reduce the outlet velocity. When there
is divergence angle in the nozzle, a convergent-divergent nozzle will be formed, which
will produce a certain cavitation effect and significantly improve the outlet velocity. In
addition, the existence of divergence angle will also reduce the wall adhesion effect and
further improve the outlet velocity of the water jet.

When the high−speed water jet is sprayed into the air, due to the large velocity
difference, there is a surface of discontinuity between the two fluids and the surface of
discontinuity is unstable. Once disturbed, it will fluctuate and form a vortex, which



Processes 2022, 10, 1036 7 of 20

will strongly suck the surrounding air, forming a high−speed water-air mixture. With
the development of turbulence, more and more air is sucked and moving together with
the water jet, and the jet boundary is also gradually expanded to both sides to expand
the effective strike area of the water jet. However, at the same time, the violent energy
exchange will also reduce the maximum velocity in X-axis. The maximum velocity in X-axis
is 199.86 m/s, and the effective extension distance in Y-axis is 2.424 mm with the initial
design structural parameters of the nozzle. In order to further improve these two target
values, the key structural parameters of the nozzle need to be optimized.

3. Multi-Objective Collaborative Optimization Design and Analysis

When considering the influence of multiple key structural parameters on multiple
indexes at the same time, it is difficult to reveal the complex coupling relationship between
multiple parameters and multiple indexes of the nozzle only by the numerical simulation
method. Therefore, based on the numerical simulation, the orthogonal test method is used
to explore the influence law of key structural parameters on the maximum velocity in X-axis
and the effective extension distance in Y-axis, find out the primary and secondary order of
the influence of each factor, and get the preliminary optimization parameters. Then, a back
propagation (BP) neural network algorithm and genetic algorithm (GA) are complemented
each other to establish a balanced and accurate collaborative optimization scheme, calculate
the optimal design parameters of the nozzle, and predict the target value [38].

3.1. Collaborative Optimization Scheme Design

BP neural network is a feed-forward neural network trained according to the error
back propagation algorithm by simulating the network of human brain neurons. BP
neural network is composed of input layer, hidden layer and output layer, and each layer
contains a certain number of neurons, which are usually determined according to the input
parameters, output parameters and empirical equations. GA is an optimization algorithm
based on the survival of the fittest principle, which realizes highly parallel and adaptive
global search in parameter space through selection, crossover and mutation. However, GA
is easy to fall into the local optimal solution in the calculation process. To overcome this
drawback, BP neural network and GA are combined, and the powerful nonlinear mapping
ability of BP neural network is used to calculate the individual fitness of the population in
GA. Then, GA is used for population optimization to find the individual with the optimal
fitness (i.e., the optimal design parameters) [39–43]. The collaborative optimization design
scheme is shown in Figure 6.
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3.1.1. Multi−Objective Orthogonal Test Matrix

According to the results of previous research and field experimental requirements, the
value range of the three key parameters selected is shown in Table 3, and three levels of
each key parameter are selected. The maximum velocity in X-axis and effective extension
distance in Y-axis of the water jet at 100 mm away from the nozzle outlet are selected as
inspection indexes. Given that the model is axisymmetric, the effective extension distance in
Y-axis is replaced by a half-value. CFD is used for simulation calculation to establish the full
factor orthogonal test table, as shown in Table 4, which provides more samples for neural
network training. According to the range of the value in Table 3, the contraction angle θ is
taken as 30◦, 50◦, and 70◦, respectively, the length-to-diameter ratio l/d is taken as 2, 2.5,
and 3, respectively, and the divergence angle γ is taken as 0◦, 10◦, and 15◦, respectively,
to construct the nozzle model. CFD is used for simulation calculation to establish the full
factor orthogonal test table, as shown in Table 4 (which provides more samples for neural
network training).

Table 3. Initial value and value range of key parameters.

Parameter Initial Value Range of the Value

A (θ) 30◦ 30–70◦

B (l/d) 2 2–3
C (γ) 0◦ 0–15◦

Table 4. Orthogonal test database.

Factors A B C Maximum Velocityin
X-axis (m/s)

Effective Extension
Distance in Y-axis (mm)Test Number 1(◦) 2 3(◦)

1 30 2 0 199.865 1.212
2 30 2 10 199.868 1.323
3 30 2 15 198.397 1.463
4 30 2.5 0 200.393 1.303
5 30 2.5 10 199.424 1.503
6 30 2.5 15 198.118 1.563
7 30 3 0 199.879 1.221
8 30 3 10 200.024 1.402
9 30 3 15 198.35 1.532
10 50 2 0 200.484 1.242
11 50 2 10 199.181 1.341
12 50 2 15 197.16 1.502
13 50 2.5 0 199.382 1.283
14 50 2.5 10 198.277 1.522
15 50 2.5 15 198.476 1.582
16 50 3 0 199.426 1.281
17 50 3 10 198.39 1.401
18 50 3 15 195.748 1.441
19 70 2 0 198.331 1.183
20 70 2 10 195.775 1.361
21 70 2 15 188.234 1.421
22 70 2.5 0 198.936 1.191
23 70 2.5 10 195.603 1.381
24 70 2.5 15 193.189 1.602
25 70 3 0 199.225 1.101
26 70 3 10 195.284 1.321
27 70 3 15 191.606 1.522

3.1.2. Analysis of Multi−Objective Orthogonal Test Matrix

There are many methods to deal with multi-objective optimization problems. At
present, the simplest and most effective one is to coordinate and compromise each index,



Processes 2022, 10, 1036 9 of 20

make each index at the optimal level as much as possible, and finally select the optimal
compromise solution for multiple objectives that meet the constraints at the same time. In
order to ensure the multi−objective optimization effect, according to the data obtained
from the orthogonal test, the matrix of the water jet target layer, factor layer and horizontal
layer under multi−objective is established, and the weight of each factor is accurately
determined by weight analysis method. The matrix analysis model is shown in Table 5.

Table 5. Matrix analysis model of multi-objective orthogonal test.

Hierarchical Structure Model

Target layer The two indexes
Factor layer A, B, C

Horizontal layer A1–A3, B1–B3, C1–C3

Kij is the arithmetic mean of the results obtained at the j-th level of factor i. Both
target expectations are as high as possible, so that the target layer matrix is M =

{
Mv, My

}
,

where, Mv is the target matrix of the maximum velocity in X-axis and My is the target
matrix of the effective extension distance in Y-axis, the target layer matrix is as follows:

M =



k110 0
k120 0
k130 0
0 k21 0
0 k22 0
0 k23 0
0 0 k31
0 0 k32
0 0 k33


(3)

Let Ti = 1/
3
∑

j=1
kij, where

3
∑

j=1
kij denotes the sum of the arithmetic means of the results

obtained at each level of factor i, the factor layer matrix is defined as T =
{

Tv, Ty
}

, where
Tv, Ty are the factor layer matrices of the maximum velocity in X-axis and the effective
extension distance in Y-axis, respectively, and the factor layer matrix is as follows.

T =

 T1 0 0
0 T2 0
0 0 T3

 (4)

Let Si = Ri/
3
∑

i=1
Ri, where 7 denotes the range of the factor i-th in the orthogonal test,

the horizontal layer matrix is defined S =
{

Sv, Sy
}

, where, Sv, Sy are the horizontal layer
matrices of the maximum velocity in X-axis and the effective extension distance in Y-axis,
respectively, and the horizontal layer matrix is as follows.

S = (S1 S2 S3)
T (5)

The key analysis of multi-objective orthogonal test matrix is to determine the weight
of each objective. The weight is directly related to the accuracy and reliability of the results
of each factor in the global optimization. Therefore, the total weight matrix of the target
value is defined as follows:

w = MTS = (wA1, wA2, wA3, · · · , wC1, wC2, wC3)
T (6)
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where, 1 denotes the weight value of the influence of the j-th level of factor A on this target,
which can not only reflect the influence degree of this level on the target, but also can be
used as the range value of factor A.

wv is the weight matrix of the maximum velocity in X-axis, wy is the weight matrix
of the effective extension distance in Y-axis, and w is the total weight matrix of multiple
targets. The equations are as follows:

wv = MvTvSv wy = MyTySy
w =

(
wv + wy

)
/2

(7)

The data in Table 4 are calculated according to Equations (3)–(7), and the total weight
matrix for each level of the different factors is obtained, as shown in Table 6.

Table 6. Value of total weight matrix for multi−objective evaluation.

Weight
Matrix

Numerical
Value

Weight
Matrix

Numerical
Value

Weight
Matrix

Numerical
Value

WA1 0.093052 WB1 0.062866 WC1 0.165514
WA2 0.093238 WB2 0.065545 WC2 0.17845
WA3 0.090959 WB3 0.063391 WC3 0.186986

By analyzing the weight matrix in Table 6, it can be concluded that the maximum total
weight of the three levels of each factor is A2 = 0.093238, B2 = 0.065545, and C3 = 0.186986,
respectively. Therefore, the optimal combination of factors under multi-objective key
structural parameters of the nozzle is A2B2C3. The specific parameters are the contraction
angle θ = 50◦, the length-to-diameter ratio l/d = 2.5 and the divergence angle γ = 15◦.
This combination is the 15th group in Table 4, at which the maximum velocity in X-axis is
v = 198.476 m/s and the effective extension distance in Y-axis is y = 3.164 mm. The analysis
of the data in Table 4 shows that there is no other combination of the nozzle parameters
whose two target values are greater than this combination. Therefore, from the perspective
of multi−objective optimization, the combination A2B2C3 is the optimal combination in
the full factor orthogonal test table, which also proves the accuracy of the weight matrix
analysis. The matrix analysis results of multi−objective orthogonal test are shown in
Table 7.

Table 7. Results of multi-objective orthogonal test matrix analysis.

Category Result

Sensitivity of each factor A B C
0.2772 0.1918 0.5310

Primary and secondary order of factors C > A > B

Optimal combination A2B2C3

3.2. Multi-Objective Collaborative Optimization

Although the orthogonal test is representative and efficient, it is difficult to ensure
that the result is the optimal value in the whole interval since the value of each factor is
fixed-point discrete value, and only three levels are taken for each factor in this paper.
Therefore, the multi-parameter and multi-objective collaborative optimization method
combining BP neural network and GA is adopted, and the data in the orthogonal test are
used as the training library to obtain the relationship model between multi-parameters
and multi-objective. The seamless and accurate optimization is realized in the parameter
interval, and the optimal value in the whole interval is obtained.
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3.2.1. Network Training

In order to ensure the stability and accuracy of BP neural network training, the data
are expanded on the basis of the original 27 groups of orthogonal test data. According
to influence primary and secondary order of factors in Table 7, the contraction angle and
divergence angle are selected. The contraction angle of 30◦ and 50◦ are replaced by 40◦ and
60◦ in the range of values of each parameter in Table 3 for numerical simulation calculation,
and 18 new groups of data are obtained. Then, the divergence angle of 0◦ is replaced by
the original 5◦ for numerical simulation calculation. A total of 9 new groups of data are
obtained again, and these 54 groups of data are used as the sample training database of BP
neural network.

The BP neural network consists of three layers: an input layer, hidden layer, and
output layer. The neurons of input and output layer correspond to the key structural
parameters of the nozzle and the optimization objectives, respectively. The hidden layer is
the link connecting the input layer and the output layer, and its main function is to learn the
nonlinear laws contained in the data through continuous training [44–46]. The hidden layer
can be either multi-layer or single-layer structure. The universal approximation theorem
shows that as long as the number of neurons in the hidden layer is selected appropriately,
the BP neural network with one hidden layer can approach any multivariable function.
Therefore, the hidden layer of the neural network established in this paper is set as one
layer, and the design equation for the number of neurons in the hidden layer is as follows:

√
m + n + 1 ≤ k ≤

√
m + n + 10 (8)

In the above equation, the number of neurons in the input layer m = 3, the number of
neurons in the output layer n = 2, K is the number of neurons in the hidden layer, and its
value range is 3–12.

According to the study, the tansig−purelin transfer function is used between the
three-layers of the network, the selection of network training function is shown in Table 8,
the training rate is set to 0.01, the training times is 500, and the expected error is 1 × 10−5.

Table 8. Selection of training function.

Serial Number of
the Function Training Function Training Times Serial Number of

the Function Training Function Training Times

1 Traingda 115 times to reach
the target 5 Traincgf 22 times to reach

the target

2 Trainbfg 29 times to reach
the target 6 Trainscg 26 times to reach

the target

3 Trainoss 20 times to reach
the target 7 Trainrp 76 times to reach

the target

4 Traincgb 17 times to reach
the target 8 Trainlm 19 times to reach

the target

The change of mean square error with the number of neurons in the hidden layer
and training function is shown in Figure 7. It can be seen that when the training functions
are different, in order to minimize the mean square deviation, the hidden layer needs to
select different numbers of neurons. Overall, the mean square error of training functions
No. 2 and No. 4 is small, and the mean square error of training functions No. 1 and No. 5
is large.

When the optimal number of neurons in the hidden layer is determined for all eight
training functions, the database is trained, respectively. The test set correlation coefficient
of each training function is shown in Figure 8. It can be seen that the test set correlation
coefficient obtained by training function No. 8 is the highest. Based on the results in
Figures 7 and 8 and Table 8, it is finally determined that the training function is trainlm
and the optimal number of neurons in the hidden layer is 5.
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3.2.2. Training Network Analysis and Verification

The BP neural network obtained is trained by the orthogonal test database, the sample
data matching results are shown in Figure 9. It can be seen that the fit between the predicted
and actual output of the trained network model is as high as 98.88%, which has a very good
fitting effect.

To further verify the reliability of the obtained network, data No. 1, No. 5, No. 10, No.
15, and No. 20 from the orthogonal test library are randomly selected for testing, and the
comparison between the actual values of the test samples and the predicted values of the
network is shown in Figure 10 and Table 9. It can be seen from Table 9 that the relative error
is controlled within 5%, which meets the accuracy requirements in engineering practice
and indicates that the model achieves a high degree of network recognition.
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Table 9. Error between actual value and predicted value of BP neural network.

Evaluation
Index Category Test 1 Test 2 Test 3 Test 4 Test 5

Target 1
Actual value (m/s) 199.865 199.424 200.484 198.476 195.775

Predicted value (m/s) 197.541 201.56 200.484 198.476 197.003
Relative error (m/s) 1.16 1.07 0 0 0.63

Target 2
Actual value (m/s) 1.212 1.503 1.242 1.582 1.361

Predicted value (m/s) 1.231 1.503 1.256 1.57 1.389
Relative error (%) 1.57 0 1.13 0.76 2.05

3.2.3. Optimal Parameter Determination

The core of GA is fitness function calculation, selection, crossover, and mutation
operation. The value range of each key optimization parameter in Table 3 is used as the
optimization interval for the parameters of the GA. The BP neural network trained in the
previous section is used to calculate the individual fitness of the population in the GA. The
selection strategy based on the fitness ratio (i.e., the roulette wheel method) is used in the
selection operation. The real number crossover method is used in the crossover operation,
and the random method is used in the variation operation to select the variant genes. After
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program debugging, the maximum evolutionary algebra is 50, the crossover probability is
0.4 and the mutation probability is 0.2 in this paper.

The GA is used to search and optimize the key parameters of the nozzle in a global
range, and the optimization process is shown in Figure 11. With the generation by gen-
eration evolution of the genetic algorithm, the optimization goal approaches the optimal
solution. After 30 generations, the target value search process is basically completed, and
the results of the multi-parameter and multi-objective optimization are shown in Table 10.
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Table 10. Comparison of results before and after collaborative optimization.

Category

Optimization Parameter

Category

Optimization Parameter

Contraction
Angle θ

(◦)

Length-to-
Diameter
Ratio l/d

Divergence
Angle γ (◦)

Contraction
Angle θ

(◦)

Length-to-
Diameter
Ratio l/d

Divergence
Angle γ (◦)

Initial value 30 2 0 Optimal value of
orthogonal test 50 2.5 15

Collaborative
optimization value 42.512 2.5608 12.431 Collaborative

optimization value 42.512 2.5608 12.431

Change rate 41.71% 28.04% ∞ Change rate 14.98% 2.43% −17.13%

Category
Optimization Target

Category
Optimization Target

Target 1 (m/s) Target 2 (mm) Target 1 (m/s) Target 2 (mm)

Initial value 199.865 1.212 Optimal value of
orthogonal test 198.476 1.582

Collaborative
optimization value 203.77 1.632 Collaborative

optimization value 203.77 1.632

Optimization rate 1.95% 34.65% Optimization rate 2.67% 3.16%

It can be seen from the data in Table 10 that after the multi-parameter and multi-
objective collaborative optimization, the three key parameters of the nozzle have changed
significantly compared with the initial values and the optimal combination of parameters
in the orthogonal test scheme, the maximum velocity in X-axis and effective extension
distance in Y-axis have been greatly improved, and the two objectives have been better
optimized in the desired direction. The combination of parameters optimized by the
intelligent algorithm is not the optimal parameters in the orthogonal test scheme, which
again proves that the combination of BP neural network and GA can be used to achieve
seamless interval optimization search.
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4. Coal Breaking and Punching Experiment
4.1. Experiment Scheme

Nozzle No. 2 is made according to the optimal value of orthogonal test, and noz-
zle No. 3 is made according to the structural optimal parameters obtained from multi-
parameter and multi-objective collaborative optimization, which is verified by briquette
erosion experiment together with the original nozzle No. 1, and they are verified together
with the initial nozzle No. 1 for the coal breaking and punching experiment. The schematic
diagram of the experimental equipment is shown in Figure 12. A relief valve is used to
regulate the pressure of the system to ensure that the inlet pressure of the water jet is
stabilized at 20 MPa. The high-pressure turbine flowmeter with electronic display is used
to detect the water flow of each experiment. The field experimental equipment is shown in
Figure 13.
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4.2. Preparation of Briquette

The briquette specimens selected for this experiment are self-made in the mineral
Safety Laboratory of North China University of Science and Technology. Coal-dust is used
as the main raw material, together with a certain proportion of cement, gypsum and sodium
humate to make the specimens with compressive strength of 15 MPa and side length of
150 mm. In order to ensure the complete hardness increase of the briquette specimens, they
are maintained in the exact same environment for 28 days. When the maintenance period
is over, five specimens are randomly selected for compressive strength testing. The test
results are shown in Table 11.
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Table 11. Test results of compressive strength of coal type.

Specimen Number 1 2 3 4 5

Compressive
strength/MPa 14.9 15.1 15.0 15.0 14.8

Absolute errorof
compressive strength 0.67% 0.67% 0 0 1.33%

It can be seen from the data in Table 11 that the compressive strength of the five
randomly selected test specimens is not exactly the same, which may be caused by the
proportion error of each raw material during the fabrication of the specimens, but the
absolute error of compressive strength of these five specimens is within 2%, which meets
the requirements of engineering experiments and can be used for erosion experiments.

4.3. Experiment Analysis

Before the experiment, the briquette specimen is fixed on the support base by the
movable fixture, and the distance between the briquette specimen and the nozzle outlet
is adjusted to 10 cm. Each punching time is 300 s. Each punching time is 300 s, and
the distance between the specimen and the nozzle will be measured and adjusted again
after each punching is completed to ensure that the target distance of all of the punching
experiments is 10 cm. In order to improve the accuracy of the experiment, each nozzle will
carry out three punching experiments, the punching diameter and punching depth to take
the arithmetic average of the three experiments for comparison. The effect of punching is
shown in Figure 14, and the data are shown in Tables 12 and 13.
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Table 12. Depth of punching.

Nozzle
Model

Experiment Number Arithmetic
Mean

Standard
Deviation

Improve Rate
1 2 3

1 43.3 mm 44.5 mm 44.3 mm 44.03 mm 0.5249 72.71%
2 57.4 mm 57.0 mm 57.7 mm 57.36 mm 0.2867 31.88%
3 75.2 mm 76.4 mm 75.6 mm 75.73 mm 0.4989 optimal value

Table 13. Diameter of punching.

Nozzle
Model

Experiment Number Arithmetic
Mean

Standard
Deviation

Improve Rate
1 2 3

1 6.5 mm 6.4 mm 6.3 mm 6.40 mm 0.0816 106.72%
2 10.4 mm 10.7 mm 10.6 mm 10.56 mm 0.1249 25.28%
3 13.2 mm 13.4 mm 13.1 mm 13.23 mm 0.1248 optimal value

It can be seen from the data in Table 12 that although the measured punching depth
after each experiment of the three nozzles is not exactly the same, all of the data are within
two standard deviation intervals, which is compliant with engineering standards, and
the experimental data are stable and reliable. The same is true for the data in Table 13.
The measured diameter of each nozzle after punching fluctuates little and is within two
standard deviation intervals.

By comparing the data in Tables 12 and 13, it can be seen that the punching effect of
the nozzle 3 is the best, in terms of punching depth, which is 72.71% higher than nozzle
1, 31.88% higher than nozzle 2, and in terms of punching diameter, which is 106.72%
and 25.28% higher, respectively. This is consistent with the trend in the collaborative
optimization analysis in Section 3.2, indicating that the water jet performance of the nozzle
has been effectively improved through the intelligent collaborative optimization scheme.
Comparing the results of the nozzle 2 and nozzle 1, it can be seen that nozzle 2 is better
than nozzle 1 in punching depth and diameter, and the punching depth and diameter are
increased by 30.27% and 65.00%, respectively. Combined with the analysis in Section 3.2
of the multi-objective weight, it can be seen that the optimization target 1 (the maximum
velocity in the X-axis)and optimization target 2 (the effective extension distance in the Y-
axis)affect each other. When the two target values are considered together, the coal breaking
and punching effect will be better, which also proves the correctness of multi-objective
weight analysis and lays a reliable foundation for subsequent collaborative optimization.

5. Conclusions

In this study, a multi-parameter and multi-objective optimization method is proposed
to optimize the coal breaking and punching nozzle, and the best combination of parameters
for the nozzle is obtained. After experimental verification, the water jet performance of the
optimized nozzle is improved. The specific research results are as follows:

(1) The multi−objective weight analysis method is used to optimize the parameters of
the high−pressure water jet coal breaking and punching nozzle. It is concluded
that the primary and secondary order affecting the maximum velocity in X-axis and
effective extension distance in Y-axis of the water jet is as follows: divergence angle,
contraction angle and length-to-diameter ratio. For the multi-index model, the weight
analysis method can efficiently and accurately analyze the influence of parameters on
multiple indexes.

(2) The multi−objective collaborative optimization of the nozzle is carried out by using
the collaborative optimization scheme of the BP neural network and GA. It is con-
cluded that the optimal combination of its structure is as follows: the contraction
angle is θ = 42.512◦, the length-to-diameter ratio is l/d = 2.5608, and the divergence
angle is γ = 12.431◦. Compared with the nozzle before optimization, the punching
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depth is increased by 72.71% and the punching diameter is increased by 106.72%.
The combination of BP neural network and GA not only improves the global search
efficiency, but also avoids falling into the local optimal solution.

(3) The water jet punching experiment shows that the punching depth and punching
diameter affect each other. When multiple objectives are considered synergistically,
the performance of the water jet is significantly improved compared with considering
each optimization objective separately, which not only provides a new idea for the
optimization of the nozzle structure, but also can be used in other multi−objective
and multi-parameter models.
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