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Abstract: Every decision maker’s internal scale is different based on a myriad of possible factors
unique to that decision maker. Conflicting criteria within and between alternatives in multicriteria
decision making can create negative effects within the weighting schemes and amplify preference
biases and scale disparities between decision makers in a group decision context. Additionally, the
weighting of group decision-making frameworks can intensify the already skewed criteria values.
When making judgments against requirements, it may be preferable to reduce scale trend distortions
between decision makers as much as possible. Previous research supports that certain information
presentation modes can significantly reduce preference bias and strengthen criteria independence
against requirements through cross alternative anchoring. This paper expands that research and
proposes a new optimization model for strengthening criteria independence and consensus in group
decision making. Initial results indicate the proposed optimization model can significantly reduce
scale distortions and smooth comparative alternative value trends between decision makers toward
strengthened group consensus. Furthermore, results support the potential and opportunity for
semiautonomous group consensus processes.

Keywords: multicriteria decision making; group decision making; scale distortion; criteria indepen-
dence; consensus; optimization; ratio scaling

1. Introduction

Group decision making (GDM) in a multicriteria scenario is extremely sensitive to
internal and external influences. Many factors affect how each individual assigns criteria
scores, including personal experience with and preference for alternatives, varying ex-
pertise in criteria, baseline requirements, and as demonstrated in previous experiments,
information presentation modes. Mode or judgement format is also considered to be one
of the four essential issues in GDM [1]. These factors, if not carefully considered, can
have significant effects on judgement and result in biased responses and violations of a
critical assumption of multicriteria decision making (MCDM): criteria independence. Mode
affects the dimensions in which decision makers anchor and adjust judgement in pairwise
comparisons. It also affects the type and amount of response bias. Furthermore, mode
has been shown to influence the response scale and the decision process in comparing
alternatives. Frederick and Mochon [2] refer to this personal change in response scale as
scale distortion.

Another essential component of GDM is weighting. There are many proposed decision
flow charts for MCDM considering GDM. We propose the flow chart shown in Figure 1
as a general process that includes multiple layers of criteria and DM weighting. During
the decision process, multiple different phases of weighting occur. However, a key phase
not generally accounted for in the formal process is internal to the decision maker and
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occurs during the rating of alternatives in step 5. We refer to this account of weighting as
heuristic weighting.
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Figure 1. Multicriteria GDM process.

Any resulting bias from step 5 can create an inappropriate imbalance in criteria scores
within alternatives and/or across alternatives. It is these types of functional dependen-
cies [3] that are difficult to characterize. Dependence between alternatives and within
criteria and corresponding requirements is natural. Independence across criteria and cor-
responding requirements is ideal. Methods to identify and correct for dependencies in
decision contexts are generally unaccounted for in traditional MCDM. Figure 2 depicts this
type of scenario. As shown, there are three alternatives judged against requirements for
each criterion A, B, and C. Alternatives 1, 2, and 3 are interdependent within criteria and
within criteria requirements. Criteria A, B, and C are independent of each other.
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trust judgement and weighted scores if criteria are not judged independently of each 
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independence. However, it is a misconception that detailed decision, alternative, and cri-
teria requirements alone are a sufficient mechanism to reduce bias and strengthen criteria 
independence. This research supports the idea that strategic facilitation through mode af-
fects not only heuristics but also method of alternative comparison. Results support that 
when using a mixed mode of information presentation and evaluation, as described in 
Table 1, subjects not only make alternative comparisons using ratio scaling, but compati-
ble decision makers (having identical hierarchies of alternatives) use significantly similar 
ratios regardless of scale range.  
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criteria presented and judged separately (sequentially) 

If mode is to complement the criteria weighting method, the facilitation and formu-
lations established in Step 5 of the process is critical. DMs can be influenced by a multitude 
of factors when determining criteria values. When comparing criteria against specific re-
quirements, it is ideal that criteria considerations are independent of each other and match 
requirement criteria. For example, the value of the price of an alternative should be deter-
mined only by the limitations established by the price requirements, and not how other 
criteria such as performance do or do not justify the price. If the latter occurs, it is ex-
tremely difficult to determine weight accuracy of criteria as they satisfy requirements 
within decision makers. Certainly, a lack of criteria independence will cloud and skew the 
weighting of individual criteria and cascade effects through the GDM weighting. This 

Figure 2. Ideal decision context against requirements.

If dependencies cross criteria boundaries and criteria are weighted through steps
6 and 8, bias effects are compounded and cascaded through the process. It is difficult
to trust judgement and weighted scores if criteria are not judged independently of each
other. Requirements, whether informal or formal, biased or unbiased, are often used as
supporting benchmarks to guide the decision maker in the direction of stronger criteria
independence. However, it is a misconception that detailed decision, alternative, and
criteria requirements alone are a sufficient mechanism to reduce bias and strengthen criteria
independence. This research supports the idea that strategic facilitation through mode
affects not only heuristics but also method of alternative comparison. Results support that
when using a mixed mode of information presentation and evaluation, as described in
Table 1, subjects not only make alternative comparisons using ratio scaling, but compatible
decision makers (having identical hierarchies of alternatives) use significantly similar ratios
regardless of scale range.

Table 1. Mode descriptions.

Mode Description

Joint Alternatives and criteria are presented and judged side by side

Separate Alternatives and criteria are presented and judged separately (sequentially)

Mixed Alternatives presented and judged side by side within criterion. Different
criteria presented and judged separately (sequentially)

If mode is to complement the criteria weighting method, the facilitation and formula-
tions established in Step 5 of the process is critical. DMs can be influenced by a multitude
of factors when determining criteria values. When comparing criteria against specific
requirements, it is ideal that criteria considerations are independent of each other and
match requirement criteria. For example, the value of the price of an alternative should
be determined only by the limitations established by the price requirements, and not how
other criteria such as performance do or do not justify the price. If the latter occurs, it is
extremely difficult to determine weight accuracy of criteria as they satisfy requirements
within decision makers. Certainly, a lack of criteria independence will cloud and skew
the weighting of individual criteria and cascade effects through the GDM weighting. This
makes the marrying of strategic decision facilitation and weighting methods imperative to
reduce the negative effects of conflicting criteria.
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2. Scale Distortion

Anchoring is a scaling effect in that the anchor changes how the response scale is
used [2]. These experiments provided evidence that anchoring effects are significant when
making sequential judgements comparing different items, especially amongst those with
high conceptual similarity, on the same scale. In contrast, there is also evidence that
anchoring effects are minimized when making sequential judgments about different items
using different scales [2].

In most situations, use of the same scale is unavoidable. When a decision maker has
to compare alternatives with high conceptual similarity side by side, such as choosing
the better consumer product in a single-objective or multiobjective scenario, identical
scales are natural between alternatives and corresponding criteria. Additionally, in most
circumstances, and in the case of the research presented in this article, alternatives are
competing and so are considered to have high conceptual similarity. Regardless of a
predefined scale, every decision maker defines the range within that scale differently. A
7 out of 10 to one decision maker may be a 5 out of 10 to another based on personal
values and experiences. Furthermore, how a decision maker assigns value in pairwise
comparisons determines the range utilized within the full range of the scale. Therefore,
value cannot be determined in relation to the full scale. Value should be determined by the
comparison ratios of alternative scores regardless of the potential value set in the range.
This is especially true when aggregating and weighting scores from multiple decision
makers in a GDM context. It has been shown that a DM calculates a ratio when making
pairwise comparisons of alternatives [4,5]. Furthermore, current MCDM methods such as
the analytic hierarchy process (AHP) make relative comparisons of alternatives based on
ratio scaling [6].

Results from previous sections support that when presented alternatives in mixed
mode, compatible subjects assigned value using significantly similar ratio comparisons
regardless of scale range. Additionally, there was a disproportionate difference in the
numbers of subjects in the subgroup that rated alternatives in the ideal rank order as they
compared to requirements to subgroups that were deemed to have extreme amount of
bias (i.e., last alternative was ranked first and/or first alternative was ranked last). That
is, subjects with lower amounts of bias in their responses far outnumbered subjects with
extreme bias in mixed mode. Therefore, there is evidence that scales are distorted from
judgement of the first alternative and adjusted using similar ratios amongst compatible
decision makers in mixed mode. In addition, evidence of extreme bias is significantly less
prevalent in mixed mode.

Even in situations when mode reduces preference bias and consensus is reached in
hierarchy of alternatives, unbalanced scale distortions between decision makers can remain.
This is due to both criteria dependence and limitations of the scoring scales. This in turn
causes misrepresentation of true criteria values as they satisfy criteria requirements. This is
not to say that scores among decision makers should be as close as possible; however, it can
be argued that the differences between alternative scores within decision makers should
reflect similar ratios to other decision makers.

Consider a group decision scenario with a set N(A) of alternatives, a set N(DM)
of decision makers (DMs), and a set N(C) of criteria. Now consider the following case:
N(A) = 3 alternatives (i = 1, . . . , 3), N(DM) decision makers (m = 1, . . . , N(DM)), and
N(C) criteria (j = 1, . . . , N(C)). Since ratios are being considered, define ρm

x (x = 1, 2) as the
ratio of scores am

i /am
1 (i = 2, . . . , N(A); m = 1, . . . , N(DM)) between alternatives Am

i and
Am

1 for i = 2, . . . , N(A). Ratios are always baselined from the score of the same alternative,
in this case the score am

1 of Am
1 . For three alternatives, there are x = 2 ratios for each criterion

and decision maker. Thus, there are N(A)− 1 unique ratios. Figures 3 and 4 depict scale
trend distortions between four (N(DM) = 4) DMs across hypothetical judgements of three
(N(A) = 3) alternatives for a single criterion.
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Although the trends in the alternative Ai scores seem relatively similar in Figure 3,
closer inspection of the ratios ρm

x for DMm in Figure 4 reveal there is an imbalance between
DMs. Ratios ρm

1 (A2/A1) are relatively close between DMs; however, ratios ρm
2 (A3/A1)

are much further apart, and ρ4
2 < 1.0, which indicates a disagreement in hierarchy and a

potential issue with criteria independence. Figures 5 and 6 depict a scenario where scale
trends display balanced distortions. There is a clear agreement between DMs in hierarchy
supported by all ρm

1 < 1.0 and all ρm
2 > 1.0 in Figure 6.
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3. Optimization Method

There are two classic modes of decision making when considering a context with
multiple alternatives, criteria, constraints, and objectives. If the decision-making group
agrees on a set of quantifiable task variables, constraints, and objectives, then an optimum
resource distribution may be obtained algorithmically. The alternative mode is to seek a
satisfactory consensus distribution from group discussion [7].

Previous experiments using optimization in group decision-making processes were
mainly focused on measuring the consistency between subjects (consensus) to be able to
perform an optimization of a decision context given constraints or the ability of a group to
concede on an appropriate and proper optimization model for their decision context [7–9].
Other research is focused on weighted models of interpersonal conflict in a group decision
such as with the Friedkin–Johnsen model [10]. This research is uniquely different in that
the optimization model intends to minimize the difference between independent value
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judgements of different DMs by building the constraints from the independent input of
each decision maker. The constraints are built from the ratio scales that each decision maker
uses in the pairwise comparisons of alternatives. The use of ratio scaling in GDM to create
consistency across DMs, stronger criteria independence, and positive cross alternative
anchoring forces a restructuring of the MCDM process. This restructuring is designed to
identify and adjust inconsistencies and bias disparities between DMs before relative ratings
are plugged into the traditional MCDM matrix shown in Table 2.

Table 2. Traditional MCDM Matrix with alternative ratings from an individual DM.

Alternatives

Criteria A1 A2 A3 . . . Ai

C1 a11 a21 a31 . . . ai1
C2 a12 a22 a32 . . . ai2
C3 a13 a23 a33 . . . ai3
. . . . . . . .
. . . . . . . .
. . . . . . . .

Cj a1j a2j a3j . . . aij

The optimization formulation presented here is focused on identifying where we can
minimize the ratio scale disparity. This minimization must respect the boundaries of the
ratio scales imposed by the DMs within the group. To accomplish this, we analyze the ratio
scales across alternatives and within criteria for the group of DMs. The matrix of relative
scores is shown in Table 3.

Table 3. Optimization matrix for individual criterion.

Alternatives

Decision Maker A1 A2 A3 . . . Ai

DM1 a1j
1 a2j

1 a3j
1 . . . aij

1

DM2 a1j
2 a2j

2 a2j
2 . . . aij

2

DM3 a1j
3 a2j

3 a3j
3 . . . aij

3

. . . . . . . .

. . . . . . . .

. . . . . . . .
DMm a1j

m a2j
m a3j

m . . . aij
m

It is important to define the critical assumptions in the decision-making process in
order to rationalize the optimization formulation used in this experiment:

1. Alternatives have been vetted and reduced to only the viable, best competing solutions
(in this case we use N(A) = 3 alternatives).

2. Alternative criteria are rated independently against criteria requirements.
3. At least 50% of DMs in the group are compatible (defined below). If not, there are

very likely greater issues that need to be addressed in the process that are affecting
relative ratings.

Because previous research supports the process of consistent ratio scaling, optimiza-
tion can be used to reduce the ρm

x ratio disparity between DMs in GDM situations with
compatible DMs and situations that lack compatibility. To quantify this disparity, define:

ρmax
x = max

m∈M
ρm

x (1)

and
ρmin

x = min
m∈M

ρm
x (2)
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For example, the difference ρmax
1 − ρmin

1 is the scale distortion disparity for ρ1. In order
to reduce the total disparity and optimize the solution, we minimize the weighted sum of
the ratio disparities as shown in Equation (3).

Minimize ∑N(A)−1
x=1

(
ρmax

x − ρmin
x

)
Xx (3)

The variables in the optimization are the disparity weights Xx.
Consistent hierarchies amongst DMs imply consensus. In these situations, bias and

dependency can still exist. Additionally, insufficient incremental scale detail can lead to
inaccurate ratio comparisons. In this situation, because consensus is achieved, tighter
imposed optimization constraints are appropriate, as shown in constraint Equation (4).
By taking the difference between ρmin

1 and ρmax
1 , narrow constraints are achieved. On the

other hand, when DMs do not agree on hierarchies, more extreme bias exists and therefore
constraints must be widened, as shown in constraint Equation (5). In this situation, to
achieve the widest constraint possible, the difference of each ratio is taken from 0 (i.e.,
0 – ρmax

2 for the lower end and ρmax
1 – 0 for the upper end). Thus, the formulation has two

sets of constraints, one that is used in each of these situations as described below.
Optimization for consistent hierarchies (all DMs have the same hierarchy) is subject to

the following constraints:

C1 : a1
1j
(
ρmin

1 − ρmax
2

)
≤ a1

2jX1 − a1
3jX2 ≤ a1

1j
(
ρmax

1 − ρmin
2

)
C2 : a2

1j
(
ρmin

1 − ρmax
2

)
≤ a2

2jX1 − a2
3jX2 ≤ a2

1j
(
ρmax

1 − ρmin
2

)
...

...
Cm : am

1j
(
ρmin

1 − ρmax
2

)
≤ am

2jX1 − am
3jX2 ≤ am

1j
(
ρmax

1 − ρmin
2

) (4)

Optimization of incompatible DMs (there are at least two different hierarchies among
the DMs in this criteria) is subject to the following constraints:

C1 : −a1
1jρ

max
2 ≤ a1

2jX1 − a1
3jX2 ≤ a1

1jρ
max
1

C2 : −a2
1jρ

max
2 ≤ a2

2jX1 − a2
3jX2 ≤ a2

1jρ
max
1

...
...

Cm : −am
1jρ

max
2 ≤ am

2jX1 − am
3jX2 ≤ am

1jρ
max
1

(5)

After the optimization is solved, the X variables are used to adjust the ratios. In order
to make those adjustments, we need the following definitions:

First, define a set of compatible decision makers in a criterion as those DMs that share
the same hierarchy of alternative scores in that criterion. H is the set of unique hierarchies
represented among the ratings of all DMs for that criterion. For all of the DMs, let h ∈ H
be one of these hierarchies, DM(h) be the set of DMs that indicated hierarchy h, and
N(DM(h)) be the number of compatible DMs that chose hierarchy h.

Now define
NDM∗ = max

h∈H
N(DM(h)) (6)

h∗ = argmax
h∈H

N(DM(h)) (7)

Notice the following:

• h∗ is the most common hierarchy indicated by DMs for this criterion;
• NDM∗ is the number of DMs that indicated h∗ in their ratings;
• DM(h∗) is the set of DMs that indicated h∗.

Next, define ρx(h) as the average of ratio x across a set of compatible DMs, DM(h),
that chose hierarchy h:

ρx(h) = ∑
m∈DM(h)

ρm
x /N(DM(h)) (8)
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In order to proceed with the optimization of ratios, the following procedure is followed
to leverage the information from compatible decision makers:

Case 1: If NDM∗ > N(DM)/2, then use only ratios from DMs in DM(h∗) to compute
ρx:

ρx = ρx(h
∗) = ∑

m∈DM(h∗)
ρm

x /NDM∗ (9)

Case 2a: If NDM∗ = N(DM)/2 and there are more than two hierarchies among the
DMs (i.e., there is a unique hierarchy chosen by half the DMs), then use only ratios from
DMs in DM(h∗) to compute ρx (same computation as Case 1):

ρx = ρx(h
∗) = ∑

m∈DM(h∗)
ρm

x /NDM∗ (10)

Case 2b: If N∗ = N(DM)/2 and there are only two hierarchies, each chosen by an
equal number (N(DM)/2) of DMs, then use all ratios in DM to compute ρx:

ρx = ∑
m∈DM

ρm
x /N(DM) (11)

For example, for Case 2b, if two DMs out of four agree on a hierarchy and the other two
also agree, then there are only two different hierarchies, and thus the dominant hierarchy is
unclear. In this case, the ratings of all four DMs are used in ρx.

Case 3: If N∗ < N(DM)/2 do not proceed. A majority of the DMs are not compatible.
Next, define dm

x , the original distance between ρx and ρm
x for DM m, as follows:

dm
x = ρx − ρm

x for x = 1 . . . N(A)− 1, m = 1 . . . N(DM) (12)

Next, the adjusted distance dm, adj
x uses the corresponding optimization solution Xx as

shown in Equation (13).

dm, adj
x = dm

x Xx for x = 1 . . . N(A)− 1, m = 1 . . . N(DM) (13)

The adjusted ratios (ρm,adj
x ) and ultimately adjusted alternative ratings (am,adj

ij ) are then

calculated using the adjusted distance (dm, adj
x ) from ρx,h(m) as shown in Equations (14) and

(15).
ρ

m,adj
x = ρx − dm, adj

x for x = 1 . . . N(A)− 1, m = 1 . . . N(DM) (14)

am,adj
ij = am

ij ρ
m,adj
i−1 for i = 2 . . . A, m = 1 . . . N(DM) (15)

The resulting MCDM matrix for a single DM after optimizing the ratio scales for all
criteria is shown in Table 4.

Table 4. Optimized MCDM matrix for DM1.

DM1 Alternatives

Criteria A1 A2 A3 . . . Ai

C1 a11 aadj
21 aadj

31
. . . aadj

i1
C2 a12 aadj

22 aadj
32

. . . aadj
i2

C3 a13 aadj
23 aadj

33
. . . aadj

i3
. . . . . . . .
. . . . . . . .
. . . . . . . .

Cj a1j aadj
2j aadj

3j
. . . aadj

ij
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4. Analysis and Discussion

As previously stated in the assumptions, test cases analyzed scenarios when at least
half of the decision makers agreed on hierarchy. Twenty-one test cases were analyzed.
These 21 contain each possible hierarchy combination that conflicts with hierarchy 3-1-2
(i.e., A3 rated highest and A2 rated lowest). The optimization toolkit of Excel Solver is used
to solve for X1 and X2. Results are shown in Table 5.

Table 5. Original and optimized test case results for a criterion.

Case
Original

Hierarchy
Subgroup

A1 A2 A3 A1
Adjusted

A2
Adjusted

A3
Adjusted

Adjusted
Hierarchy
Subgroup

1

3-1-2 7 4 9 7 4.22 9.00 3-1-2
3-1-2 7 6 9 7 5.77 9.00 3-1-2
3-1-2 6 4 8 6 4.06 7.96 3-1-2
3-1-2 4 3 5 4 2.97 5.02 3-1-2

2

3-1-2 4 3 5 4 2.74 5.20 3-1-2
3-1-2 2 1 3 2 1.26 2.80 3-1-2
3-1-2 4 3 5 4 2.74 5.20 3-1-2
1-3-2 7 4 5 7 4.51 7.57 3-1-2

3

3-1-2 7 5 9 7 4.91 8.89 3-1-2
3-1-2 8 5 10 8 5.40 10.06 3-1-2
3-1-2 4 3 5 4 2.85 5.03 3-1-2
1-2-3 9 8 7 9 6.78 9.75 3-1-2

4

3-1-2 6 3 9 6 3.64 9.77 3-1-2
3-1-2 4 3 8 4 2.79 7.49 3-1-2
3-1-2 4 3 7 4 2.79 7.00 3-1-2
2-3-1 5 8 7 5 5.01 7.89 3-2-1

5

3-1-2 4 2 5 4 2.19 5.31 3-1-2
3-1-2 5 3 8 5 3.03 7.71 3-1-2
3-1-2 4 3 6 4 2.78 5.92 3-1-2
2-1-3 4 7 3 4 5.13 4.09 2-3-1

6

3-1-2 5 3 8 5 2.93 8.25 3-1-2
3-1-2 5 2 7 5 2.80 7.99 3-1-2
3-1-2 4 3 8 4 2.42 7.01 3-1-2
3-2-1 3 4 7 3 2.04 5.51 3-1-2

7

3-1-2 4 3 5 4 2.43 4.34 3-1-2
3-1-2 5 3 7 5 2.88 5.67 3-1-2
1-3-2 3 1 2 3 1.57 2.68 1-3-2
1-3-2 10 6 7 10 5.77 9.05 1-3-2

8

3-1-2 3 1 5 3 1.40 4.48 3-1-2
3-1-2 4 3 5 4 2.87 4.73 3-1-2
1-2-3 5 4 2 5 3.74 2.72 1-2-3
1-2-3 5 4 3 5 3.74 3.47 1-2-3

9

3-1-2 5 3 7 5 5.48 7.56 3-1-2
3-1-2 6 3 9 6 6.37 9.34 3-1-2
2-3-1 4 8 6 4 6.32 6.23 2-3-1
2-3-1 3 7 6 3 5.09 5.32 3-2-1

10

3-1-2 5 3 8 5 4.13 7.08 3-1-2
3-1-2 4 3 6 4 3.66 5.42 3-1-2
2-1-3 4 7 3 4 6.01 3.59 2-1-3
2-1-3 6 9 4 6 8.13 5.08 2-1-3
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Table 5. Cont.

Case
Original

Hierarchy
Subgroup

A1 A2 A3 A1
Adjusted

A2
Adjusted

A3
Adjusted

Adjusted
Hierarchy
Subgroup

11

3-1-2 5 3 8 5 4.28 9.81 3-1-2
3-1-2 5 2 7 5 4.14 9.55 3-1-2
3-2-1 4 5 8 4 3.77 8.25 3-1-2
3-2-1 3 4 10 3 2.86 7.20 3-1-2

12

3-1-2 5 3 6 5 3.17 6.82 3-1-2
3-1-2 4 3 8 4 2.86 7.35 3-1-2
1-2-3 7 6 3 7 5.42 6.35 1-3-2
1-3-2 9 5 7 9 5.49 10.03 3-1-2

13

3-1-2 3 1 5 3 1.20 4.97 3-1-2
3-1-2 5 3 8 5 2.66 8.05 3-1-2
2-3-1 4 7 6 4 4.42 6.15 3-2-1
2-1-3 6 8 4 6 5.38 5.67 1-3-2

14

3-1-2 5 2 6 5 1.89 6.20 3-1-2
3-1-2 3 1 4 3 1.07 3.88 3-1-2
1-3-2 8 4 7 8 3.30 8.87 3-1-2
2-3-1 3 9 7 3 3.80 5.09 3-2-1

15

3-1-2 6 5 9 6 4.37 8.57 3-1-2
3-1-2 5 2 6 5 2.53 6.36 3-1-2
1-3-2 8 4 5 8 4.45 7.75 1-3-2
2-1-3 5 6 3 5 4.58 4.78 1-3-2

16

3-1-2 7 4 10 7 4.74 9.91 3-1-2
3-1-2 5 4 7 5 3.47 7.06 3-1-2
1-3-2 9 3 5 9 5.92 11.59 3-1-2
3-2-1 3 4 7 3 2.21 4.65 3-1-2

17

3-1-2 4 3 6 4 2.87 5.76 3-1-2
3-1-2 3 2 4 3 2.09 4.18 3-1-2
1-2-3 7 5 3 7 4.97 8.05 3-1-2
2-3-1 2 6 5 2 2.54 3.42 3-2-1

18

3-1-2 4 3 6 4 3.20 5.72 3-1-2
3-1-2 5 5 6 5 4.74 6.34 3-1-2
1-2-3 7 5 4 7 5.46 6.50 1-3-2
2-1-3 5 8 3 5 6.52 4.72 2-1-3

19

3-1-2 3 2 5 3 2.20 4.65 3-1-2
3-1-2 6 5 8 6 4.61 8.69 3-1-2
1-2-3 9 6 4 9 6.59 10.60 3-1-2
3-2-1 3 5 7 3 2.84 5.26 3-1-2

20

3-1-2 4 4 5 4 3.80 5.26 3-1-2
3-1-2 7 6 10 7 6.35 9.55 3-1-2
2-3-1 3 8 5 3 4.40 4.29 2-3-1
3-2-1 3 6 7 3 3.78 4.85 3-2-1

21

3-1-2 5 3 6 5 3.18 7.18 3-1-2
3-1-2 4 3 6 4 2.86 9.05 3-1-2
2-1-3 6 8 4 6 6.12 6.59 3-2-1
3-2-1 4 6 7 4 4.43 7.15 3-2-1

The optimization formulation performed well when cases of bias were not extreme
and consensus across all DMs was achieved, such as Case #11 shown in Figures 7–10. Bias
was considered to be extreme when at least one DM valued an alternative lowest and the
other DM(s) valued the same alternative highest. In this case, DM1 and DM2 agree, and
DM3 and DM4 agree on rank order of alternatives. It can be seen that the disparity in opinion
is between alternative 1 and alternative 2. Recall that values of alternative criteria should be
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judged against criteria requirements, so there is clearly significant bias present in the evaluation
between alternative 1 and alternative 2. After performing the optimization, it is shown that
the bias was present in the evaluations of DM3 and DM4, and all adjusted alternative values
reflect rank-order consistency (consensus) among all four DMs. It is important to note that
even in situations when there is complete consensus prior to optimization, scale distortions
can still exist. Therefore, weighted criteria values can skew overall alternative evaluations,
necessitating adjusted scaling such as with Case #1.
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In cases when bias was extreme, consensus was generally not identified after opti-
mization. However, ratio disparities were minimized and alternative ratings and ratio scale
trends were smoothed, such as in Case #18 shown in Figures 11–14. It is shown that value
disparities were significantly reduced between DMs in alternative 2 and alternative 3. So,
even though consensus was not achieved in situations with extreme bias, the optimization
reduced scale distortions to more accurately relate scales between DMs and provide a fairer
evaluation of weighted criteria. Such situations are commensurate with decisions when
group discussion may not resolve consensus.
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Table 6 shows the total reduction in scale distortion disparity for each case. As shown,
even in cases with extreme bias, average reduction was 54% with the tails being as high
as 75%. Notice that in all cases, reductions are greater than zero for each ρx. Additionally,
average overall reductions of cases not containing instances of extreme bias was higher at
66%. This is possibly due to the shape of the constraints in instances when consensus is
stronger allowing for more confidence in bias reduction. Reductions were calculated using
Equations (16) and (17).

ρx Reduction =
(ρmax

x − ρmin
x )− (ρ

max,adj
x − ρ

min,adj
x )

(ρmax
x − ρmin

x )
for x = 1 . . . N(A) (16)

Overall Reduction =
ρ1 Reduction + ρ2 Reduction

2
(17)
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Table 6. Optimization case distortion disparity reduction.

Case ρ1 Reduction ρ2 Reduction Overall Reduction

1 23% 14% 19%
2 77% 59% 68%

3 * 70% 63% 67%
4 * 64% 51% 58%
5 * 41% 39% 40%
6 87% 74% 81%
7 79% 67% 73%

8 * 40% 25% 33%
9 * 65% 56% 61%
10 * 31% 39% 35%
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Table 6. Cont.

Case ρ1 Reduction ρ2 Reduction Overall Reduction

11 81% 59% 70%
12 * 46% 41% 44%
13 * 50% 29% 40%
14 * 66% 60% 63%
15 * 49% 47% 48%
16 92% 85% 89%

17 * 76% 73% 75%
18 * 41% 46% 44%
19 * 79% 69% 74%
20 * 69% 72% 71%
21 * 56% 57% 57%

* Denotes cases of extreme bias or disparity.

5. Conclusions

Consensus is often the measure of a sound group decision. However, consensus
does not necessarily equate to balanced levels of bias across DMs, nor does it account
for insufficient scale detail. Furthermore, consensus does not imply fair or balanced
judgement of alternative criteria. Evidence exists to support the use of ratio scaling in
pairwise comparisons of alternatives. Optimization may provide a solution to inconsistent
hierarchies, unbalanced biases, and insufficient incremental scale detail. The optimization
formulation and resulting test cases provided in this research support using optimization
to reduce disparities between DMs to achieve stronger criteria independence and make
gains toward group consensus. Further research is required to characterize different GDM
contexts with varying numbers of alternatives and DMs and the viability of optimizing
such scenarios. Additionally, by expanding constraints to deemed “acceptable” boundaries
by the group or group facilitator, it may be possible to achieve consensus in even extremely
biased cases. Finally, optimization of ratio scaling on alternative value scales opens the
potential for future research and use of semiautonomous group decision-making constructs,
such as a semiautonomous Delphi method. However, decision processes and support tools
are only valid if they are trusted. Trust is a cornerstone in every group decision, and it
must be balanced and measured as optimization decision support tools such as this are
developed and institutionalized.
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