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Abstract: This study presents a new robust formulation for the topology optimization of compliant
mechanisms, addressing the design challenges while considering manufacturability, static strength,
and fatigue failure. A three-field density projection is implemented to control the minimum size of
both real-phase and null-phase material structures to meet the manufacturing process requirements.
The static strength is evaluated via the sum of the amplitude and the mean absolute value of the
signed von Mises stress. The fatigue failure is solved via the modified Goodman criterion. The
real output displacement is optimized by adding artificial springs to the prescribed value. This
approach is implemented based on an improved solid isotropic material with penalization (SIMP)
interpolation method to describe and solve the optimization model and derive the shape sensitivity of
the optimization problem. Finally, two numerical examples are applied to illustrate the effectiveness
of the presented method.
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1. Introduction

With the revolutionary changes in many fields, such as manufacturing, materials, informa-
tion, biology, medicine, and national defense, caused by the wave of micro/nanotechnologies,
compliant mechanisms have been widely used in the fields of micro/nano operations [1,2],
nano-positioning stages [3,4], fast tool servos (FTSs) [5–7], and micro-electro-mechanical sys-
tems (MEMSs) [8,9]. Therefore, it is important to advance the development of the fundamental
theory of compliant mechanisms and explore efficient design methods.

It is acknowledged in the literature that several approaches have been developed for de-
signing compliant mechanisms, such as pseudo-rigid replacements [10] and constraint-based
designs [5,11–16], as shown in Figure 1. However, these approaches have limitations as they
do not allow for changes at the topological level, which can restrict performance improve-
ments. To address the limitations of traditional design approaches to compliant mechanisms,
a topology optimization approach is introduced to enhance the high-standard performance of
compliant mechanisms [17–21]. Unlike other methods, a topology optimization approach is a
systematic conceptual design approach that combines topological synthesis and scale synthe-
sis, in which the geometric qualities and topological information of the structure are unknown,
and the optimal material layout method is discovered [22–24]. Topology optimization can be
classified into two types based on the representation of the structural morphology, namely,
discrete [25] and continuous [17,26–32] optimization, as shown in Figure 1. Compared with
discrete topology optimization, the advantage of continuous topology optimization lies in its
ability to employ continuous mathematical optimization methods, which are typically more
efficient and accurate [19]. Moreover, continuous topology optimization can consider more
detailed structural features, such as curvature and edges.
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Figure 1. Synthesis of compliant mechanisms.

As the design theory of the continuous topology optimization of compliant mecha-
nisms continues to improve, it becomes essential to consider the strength and fatigue life of
these mechanisms during the design process. However, the current literature surveys reveal
that the joint effect of static strength and fatigue failure is seldom taken into account in the
design of compliant mechanisms. In the optimization process of compliant mechanisms,
neglecting stress and fatigue failure can lead to suboptimal results for the stiffness and
other overall responses, such as frequency. Thus, it is imperative to consider both static
strength and fatigue failure when designing compliant mechanisms to ensure that their
design meets the expected service life and performance requirements.

Since the pioneering work of Duysinx and Bendsøe [33], numerous techniques have
been proposed to address static failure problems in continuum topology optimization.
(see, e.g., [34–39]). Among them, compliant mechanism design problems have received
increased attention in recent years [35–37] due to their potential for producing innova-
tive solutions to engineering challenges. However, there are still several key challenges
related to static strength, such as highly nonlinear behavior [33,40] and a large number
of local stress constraints [41], as well as singularity phenomena [40,41]. To overcome
these challenges, various techniques have been developed in continuum topology opti-
mization. For example, static strength constraint relaxation techniques can be used to
address the singularity phenomena and highly nonlinear behavior [33,40]. Additionally,
aggregation approaches can be used to handle a large number of local stress constraints [41].
Zhu et al. [17] developed a multi-degree-of-freedom compliant mechanism that attained
fully decoupled motion and exclusively addressed input–output coupling issues, disre-
garding strength considerations. Nevertheless, strength plays a pivotal role in ensuring
the proper functioning of the mechanism. Liu et al. [23] developed new flexure hinges
using topology optimization considering the static failure constraint. However, in practical
applications, compliant mechanisms are subject to various reciprocating motions, which
can induce alternating stresses and lead to fatigue damage and eventual failure of the mech-
anism [42,43]. However, their usability becomes relatively intricate when confronted with
intricate problems encompassing multiple strength constraints. Therefore, it is essential
to consider the fatigue performance of compliant mechanisms in the design optimization
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process so that the compliant mechanism can be satisfied with the required fatigue strength
and life, thus ensuring its safe and reliable operation over the whole life cycle.

Addressing fatigue failure constraints is a complex and ongoing research topic and has
received significant attention in the literature [43–45]. In recent years, several techniques
have been proposed to tackle topology optimization problems subject to fatigue failure
constraints [42,43,45–47]. Oest et al. [46] developed a static analysis method for the optimal
design of continuum structures subject to fatigue failure constraints, which are formulated
using the Palmgren–Miner’s linear damage hypothesis, S-N curves, and Sines fatigue
criterion. Nabaki et al. [43] employed a bi-directional evolutionary structural optimization
(BESO) approach, incorporating a modified Goodman fatigue failure criterion into the
analysis. However, it should be noted that the design reported in their study did not fully
consider all intervals of the Goodman safe region; therefore, the design may not be entirely
optimal.

Motivated by the above-mentioned challenges, this study proposes and examines a
methodology for analyzing the static strength and fatigue failure constraints. Specifically,
the modified Goodman failure criterion is applied directly in the sensitivity analysis to
address these constraints. The high-cycle fatigue (HCF) approach is utilized for fatigue
analysis under proportional loadings with constant amplitude. The static strength and
fatigue failure constraints are converted into different stress constraint methods. The signed
von Mises and modified Goodman criteria are then used to solve the problems of static
strength and fatigue failure multi-performance constraints, respectively. Next, the study
also investigates failure under the safe region condition of the modified Goodman criterion
to ensure the reliability of compliant mechanisms. Then, the relaxation techniques for
dealing with the singularity phenomenon and highly nonlinear behavior [33,40], and the P-
norm approach is applied to different stress constraints for handling a large number of local
stress constraints [41]. Additionally, a differentiable approximation formula is introduced as
an alternative to the failure formula regarding the non-differentiability of stress components
and design variables. This addresses the non-differentiable kinks related to the modified
Goodman criteria. Finally, the modified Goodman criterion and signed von Mises stress
are utilized to evaluate fatigue and static failure, respectively. Meanwhile, since different
pieces of machining equipment have varying levels of accuracy, it is necessary to control
the feature size of topology optimization results to avoid unmanufacturable structures
such as thin rods and holes. Thus, a three-field density topology optimization formulation
with eroded, intermediate, and dilated projections is applied to address manufacturing
uncertainty in the layout optimization (see, e.g., [48–55]).

Based on the aforementioned analysis, this approach is implemented by utilizing an
enhanced solid isotropic material with a penalization (SIMP) interpolation model, which
accurately characterizes the material distribution to avoid numerical non-convergence
issues [17–56]. The design problem is solved via the global convergence moving asymptote
method (GCMMA) algorithm, which is based on sensitivity analysis [57]. Two numerical
examples are presented to demonstrate the efficacy of the proposed method. Additionally,
three distinct combinations of alternating and mean stresses, namely, von Mises, sines
theory, and signed von Mises, are evaluated to test layout optimization. Thus, this paper is
organized as follows: In Section 2, we present the proposed maximum output displacement,
as well as the static strength, fatigue failure, and manufacturability. The optimization
problem statement is outlined in Section 3, while the design problem is solved via the
GCMMA algorithm based on sensitivity analysis in Section 4. The numerical examples are
presented in Section 5 to demonstrate the effectiveness of the proposed method. Finally,
the conclusions of this study are provided in Section 6.

2. Problem Formulation

This study presents a novel methodology for the topology optimization of compliant
mechanisms, which incorporates multiperformance coupled manufacturability analysis.
The optimization objective is reformulated to maximize the output displacement while
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considering static strength, fatigue failure, and manufacturability. The proposed approach
employs a density filter with threshold projection to address manufacturability concerns,
which are integrated into both the objective function and constraint function. In this
study, the material distribution is described via a modified SIMP interpolation model that
establishes a relationship between the artificial material density and Young’s modulus of
the element as [7]:

E(ρi) = Emin + ρi
p(E0 − Emin), ρi ∈ [0, 1] (1)

where the i-th element density, ρi ∈ [0, 1], is the design variable. E(ρi) represents Young’s
modulus of i-th element; E0 and Emin > 0 denote elastic modulus of solid and void parts,
respectively; and p > 1 is the penalty to provide a better description of the materials in the
void (0) or solid (1) state [17,56].

2.1. Methods of the Manufacturability

In the manufacturability method, a modified robust topology optimization formulation
based on three-field density technique will be applied [49,58]; it uses one design variable,

ρi; one filtered density,
∼
ρ i; as well as three relative densities

∼
ρ
(e)

i ,
∼
ρ
(i)

i , and
∼
ρ
(d)

i . Among
them, the three relative densities approach are real physical densities.

With threshold projection, the relative densities,
∼
ρ
(e)

i ,
∼
ρ
(i)

i , and
∼
ρ
(d)

i , are correlated
with design variables, ρi, via filtered densities,

∼
ρ i [58]. Thus, three relative densities of an

element, i, can be described as:

∼
ρ i =

tanh(βη) + tanh
(

β
(∼

ρ i − η
))

tanh(βη) + tanh (β(1− η ))
(2)

where β denotes a projection parameter, which is used to control a steepness of an approxi-
mated Heaviside function. η and

∼
ρ i represent a projection level of a smoothed Heaviside

approximation threshold and the filtered relative density of element i, respectively.
∼
ρ i can

be obtained via linear projection, which can be written as:

∼
ρ i =

∑i=Ni
ωijvjρj

∑j=Ni
ωijvj

(3)

where vj denotes volume of element j. Ni =
{

j : dist(i, j) ≤ r f

}
denotes the set of neigh-

bours lying within the radius R of the filter of i-th element, where r f represents the size of
the neighbourhood or filter. dist(i, j) and ωij are the distance and a function of the distance
between neighboring elements, respectively. ωij is described as:

ωij = r f − dist(i, j), j ∈ Ni (4)

The relative density,
∼
ρ i, is incorporated into layout optimization, and the regularized

SIMP interpolation model can be written as:

E
(
∼
ρ i

)
= Emin +

∼
ρ i

p
(E0 − Emin),

∼
ρ i ∈ [0, 1] (5)

In addition, the derivative of a filtered density,
∼
ρ i, with respect to the design variables,

ρj, will be determined as:

∂
∼
ρ i

∂ρj
=

ωijvj

∑j=Ni
ωijvj

(6)
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Since the 0/1 projection,
∼
ρ i, is a function of the filtered density,

∼
ρ i

(∼
ρ i

)
, the sensitivities

of the objective and constraint function can be obtained via a chain rule:

∂ψ

∂ρj
= ∑

i=Ni

∂ψ

∂
∼
ρ i

∂
∼
ρ i

∂
∼
ρ i

∂
∼
ρ i

∂ρj
(7)

2.2. Methods of the Objective Function

The optimization problem of maximizing output port displacement is a well-known
benchmark in layout optimization, and it represents an extension of the standard min–max
method [58]. When utilizing the GCMMA algorithm to solve the min–max problem, it is
imperative to ensure that the objective value in the resulting robust topology optimization
does not become negative. To address this issue, a constant term of 100 is introduced into
the topology optimization formulation. This approach does not alter the optimized design
outcomes, failure rates, or corresponding amplification factors. Therefore, the optimization
problem for the objective function can be described as follows:

min︸︷︷︸
ρ

: fobj = max
{

uout = LT
outUout + 100

}
(8)

where LT
out represents a unit length vector with zeros at all degrees of freedom except at the

output point, where it takes the value of one. The displacement vector is denoted by Uout.

Furthermore, uout corresponds to the three relative densities,
∼
ρ
(e)

i ,
∼
ρ
(i)

i , and
∼
ρ
(d)

i , which
represent three different designs. Note that LT

out and Uout correspond to different densities,
and they are represented by different values.

2.3. Methods of the Static Strength and Fatigue Failure

To ensure effective prevention of structural and mechanical failures and to address
issues related to strength and reliability, fatigue analysis utilizes the stress–life approach
under constant and proportional loading conditions. As shown in Figure 2a, the HCF
approach with proportional loadings and constant amplitude is employed to test for fatigue
failure within the linear elastic range of the structure. A sinusoidal load can be applied
to the structure to generate a stress state history, as depicted in Figure 2b. The vibration
amplitude, σa, and mean stress, σm, can be determined from the maximum stress, σmax, and
minimum stress, σmin, which can be calculated as:

σa =
σmax − σmin

2
; σm =

σmax + σmin
2

(9)

Mean stress values and vibration amplitudes can be determined using equivalent static
finite element analysis. To implement equivalent static analysis, the following equation can
be used:

KU = Fmax (10)

where K and U denote a global stiffness matrix and displacement vector, respectively. Fmax
represents an array for maximum force, Fmax, which is employed to calculate the amplitude
stress scaling factor, ca, and the mean stress scaling factor, cm, respectively:

ca =
1− ( Fmin

Fmax
)

2
; cm =

1 + ( Fmin
Fmax

)

2
(11)

where Fmin represents the minimum force.
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In order to calculate the von Mises stress, the element centroid is selected as the
stress evaluation point for each element, and the solid material stress vector at the stress
evaluation point i can be expressed in Voigt notation as σi =

[
σi,x, σi,y, τi,xy

]T . Finally,
the element displacement vector is calculated using finite element analysis to obtain the
corresponding alternating and mean stresses at the stress evaluation point [41,43].

σai︸︷︷︸
3×1

= ca σi︸︷︷︸
3×1

= D︸︷︷︸
3×3

B︸︷︷︸
3×8

ui︸︷︷︸
8×1

; σmi︸︷︷︸
3×1

= cm σi︸︷︷︸
3×1

= cm D︸︷︷︸
3×3

B︸︷︷︸
3×8

ui︸︷︷︸
8×1

(12)

where B denotes the strain-displacement matrix of the element centroid. ui represents the
nodal displacement vector for the i-th element. D denotes the constitutive matrix of a fully
solid material, which can be defined in a plane stress problem as:

D =
E0

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (13)

The von Mises stress evaluation can be employed to calculate an elemental alternating
and mean stress [43]:

σai ,vm =
(
σT

ai
·V·σai

)1/2
=
√

σ2
ai,x

+ σ2
ai,y
− σai,x ·σai,y + 3·τ2

ai,xy

σmi ,vm =
(
σT

mi
·V·σmi

)1/2
=


√

σ2
mi,x

+ σ2
mi,y
− σmi,x ·σmi,y + 3·τ2

mi,xy
,σmi,x ≥ 0

−
√

σ2
mi,x

+ σ2
mi,y
− σmi,x ·σmi,y + 3·τ2

mi,xy
,σmi,x < 0

(14)

To avoid the nonlinear behavior and singularity phenomenon of an optimization
problem, the q-p relaxation approach is employed to deal with the element stress [40,41]:

σ̂ai ,vm = ϕ

(
∼
ρ i

)
σai ,vm

σ̂mi ,vm = ϕ

(
∼
ρ i

)
σmi ,vm

, ϕ

(
∼
ρ i

)
=
∼
ρ

q

i (15)

where q is the stress relaxation coefficient [41].
The fatigue failure criterion can be evaluated using a modified Goodman diagram,

as shown in Figure 3a. The alternating stress, σa, is constrained by the fatigue stress, σN f ,
for infinite life cycles. σm, σy, and σut indicate the mean stress, the yielding stress, and the
ultimate stress, respectively.
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The fatigue failure constraints of the compliant mechanism are transformed into two
stress restrictions for analyzing fatigue failure [42]:

fi,1 =
σ̂ai ,vm

σN f

+
max[σ̂mi ,vm, 0]

σut
≤ 1, σ̂mi ,vm ≥ 0, fi,2 =

σ̂ai ,vm

σN f

≤ 1, σ̂mi ,vm < 0 (16)

where σN f denotes an association with a fatigue limit of the elements for allowable life
cycles, which can be defined based on Basquin’s equation as:

σN f = σ′f

(
2N f

)b f
(17)

where σ′f represents the fatigue strength coefficient, b f represents the fatigue strength
exponent (readers can refer to reference [43]).

As shown in Figure 3b,c, to prevent static failure, the maximum absolute value of the
sum of the alternating stress and the mean stress should be less than the yield strength at
the third constraint, Li,3, and fourth constraint, Li,4. Thus, Li,3 and Li,4 can be expressed as:

fi,3 =
σ̂ai ,vm−σ̂mi ,vm

σy
≤ 1; fi,4 =

σ̂ai ,vm+σ̂mi ,vm
σy

≤ 1 (18)

Determining whether the stress state is in compression or tension using mean stress
measures, like von Mises equivalent stress, is challenging because it requires this measure-
ment to always be positive. However, the static failure criteria of Li,3 and Li,4 are not always
positive. Thus, this study employs a maximum operator with zero value and element-level
static failure to address the above issues:

fi,3 = max
[

σ̂ai ,vm − σ̂mi ,vm

σy
, 0
]

; fi,4 = max
[

σ̂ai ,vm + σ̂mi ,vm

σy
, 0
]

(19)

where Li,3 and Li,4 will be positive and can be employed in a P-norm approach. This
research introduces maximum operators [42], which non-differentiable operators approach
employ in static failure criteria. Thus, a and b may be expressed as:

Ψmax(a, b) =
a + b

2
+

√
(a− b)2 + ε

2
≈
{

a, a ≥ b
b, a < b

(20)

where ε is a small positive value [42].
In order to avoid the massive computation for the stress constraint for each element,

we employed the P-norm approach to measure global stress [38,41,42]:

f̂pni,j
=
(
∑N

i=1 f P
i,j

)1/P
; j = 1, 2, · · · , 4 (21)
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where P is the P-norm aggregation parameter.
In order to more closely relate the P-norm stress to the practical stress, this study

introduces a normalized adaptive constraint scaling method to modify the p-norm stress:

fi,j,max ≈ fpni,j
= ck f̂pni,j

(22)

where ck is the standardized adaptive constraint scaling coefficient computed at each
optimization iteration, k ≥ 1. The iteration steps, k ≥ 1, ck, can be expressed as:

ck = αc
f (k−1)
i,j,max

f̂ (k−1)
pni,j

+ (1− αc)ck−1, κ ≥ 1 (23)

where αk ∈ (0, 1] is a control parameter [41].

3. The Optimization Problem Statement

This study proposes a novel topology optimization framework utilizing modified
Goodman’s fatigue and static failure criteria, along with a three-field density approach to
account for manufacturing uncertainty. Consequently, an enhanced and robust topology
optimization strategy for compliant mechanism modeling, grounded in both fatigue and
static considerations, can be expressed as follows:

min︸︷︷︸
ρ

: fobj

(
∼
ρ
(e)

i ,
∼
ρ
(i)

i ,
∼
ρ
(d)

i

)
= max

{
u(
∼
ρ
(e)

i ,
∼
ρ
(i)

i ,
∼
ρ
(d)

i )
out = LT

out

(
∼
ρ
(e)

i ,
∼
ρ
(i)

i ,
∼
ρ
(d)

i

)
Uout

(
∼
ρ
(e)

i ,
∼
ρ
(i)

i ,
∼
ρ
(d)

i

)
+ 100

}

s.t. : V
V∗ =

∑i=Ni
∼
ρ
(e)

i υi+∑i=Ni
∼
ρ
(i)

i υi+∑i=Ni
∼
ρ
(d)

i υi
3V∗ ≤ δ

f (
∼
ρ
(e)

i ,
∼
ρ
(i)

i ,
∼
ρ
(d)

i )
i,1 =

σ̂ai,vm
σNf

+
max

[
σ̂mi,vm ,0

]
σut

≤ 1, σ̂mi,vm ≥ 0

f (
∼
ρ
(e)

i ,
∼
ρ
(i)

i ,
∼
ρ
(d)

i )
i,2 =

σ̂ai,vm
σNf
≤ 1, σ̂mi,vm < 0

f (
∼
ρ
(e)

i ,
∼
ρ
(i)

i ,
∼
ρ
(d)

i )
i,3 =

σ̂ai,vm−σ̂mi,vm
σy

≤ 1

f (
∼
ρ
(e)

i ,
∼
ρ
(i)

i ,
∼
ρ
(d)

i )
i,4 =

σ̂ai,vm+σ̂mi,vm
σy

≤ 1

K
(
∼
ρ
(e)

i

)
U
(
∼
ρ
(e)

i

)
= F; K

(
∼
ρ
(i)

i

)
U
(
∼
ρ
(i)

i

)
= F; K

(
∼
ρ
(d)

i

)
U
(
∼
ρ
(d)

i

)
= F

0 ≤ ρmin ≤ ρi ≤ 1; i = 1, 2, · · · , N

(24)

where the practical and allowable volumes are denoted by V and V∗, respectively. N

represents the total number of elements. The density fields,
∼
ρ
(e)

i ,
∼
ρ
(i)

i , and
∼
ρ
(d)

i , are obtained
using different threshold values, ηe, ηi, and ηd, as prescribed by Equation (2). Specifically,

the intermediate density, eroded density, and dilated density fields are denoted by
∼
ρ
(e)

i ,
∼
ρ
(i)

i ,

and
∼
ρ
(d)

i , respectively, with threshold values of ηe = 1− η, ηi = 0.5, and ηd = η, respectively,
where η < 0.5 < 1− η.

With an improved robust topology optimization for compliant mechanism formulation,
the relationship between the a manufacturing error b and the threshold parameter ηe for a
given filter radius R can be obtained as [58,59]:

ηe =


1
4

(
b
R

)2
+ 1

2
b
R , b

R ∈ [0, 1]

− 1
4

(
b
R

)2
+ b

R , b
R ∈ [1, 2]

1, b
R ∈ [2, ∞)

(25)
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Moreover, the normalized length scale on the intermediate design as η function of the
threshold a for the robust formulation is shown in Figure 4.
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4. Sensitivity Analysis

The optimization problem with multiple constraintsis considered. To efficiently solve
the optimization problem using gradient-based topology optimization algorithms, the
first-order derivatives of the design objectives and all constraints with respect to the design

variables,
∼
ρ
(e)

i ,
∼
ρ
(i)

i , and
∼
ρ
(d)

i .

4.1. Sensitivity of the Optimization Objective

To obtain the sensitivity of the objective function, we can rewrite the function by
adding a zero function based on the adjoint method, which can be expressed as:

uout = LT
outUout − λT(KUout − Fin) (26)

Among them, λ is the arbitrary adjoint vector; thus, the output displacement, uout,
may be described using the element variable:

∂uout

∂
∼
ρ i

= LT
out

∂Uout

∂
∼
ρ i

− ∂λT

∂
∼
ρ i

KUout +
∂λT

∂
∼
ρ i

Fin − λT ∂K

∂
∼
ρ i

Uout − λTK ∂Uout

∂
∼
ρ i

=
(
LT

out − λTK
) ∂Uout

∂
∼
ρ i

− λT ∂K

∂
∼
ρ i

Uout−
∂λT

∂
∼
ρ i

(KUout − Fin) =
(
LT

out − λTK
) ∂Uout

∂
∼
ρ i

− λT ∂K

∂
∼
ρ i

Uout
(27)

Since LT
out is an arbitrary vector, we can set LT

out − λTK; thus, we can obtain the
sensitivity of the output displacement, uout, which can be written as:

∂uout

∂
∼
ρ i

= −λT ∂K

∂
∼
ρ i

Uout (28)

4.2. Sensitivity of the Static Strength and Fatigue Failure

According to Equation (7), the sensitivity of the fatigue and static failure with modified
P-norm fatigue criteria in Equation (22) can be derived:

∂ fpn,i,j

∂
∼
ρ i

= ∑N
i=1

∂ fpn,i,j

∂ fi,j

∂ fi,j

∂
∼
ρ i

, j = 1, 2 . . . 4 (29)



Processes 2023, 11, 2914 10 of 22

The derivatives of
∂ fpn,i
∂Li,j

may be written as:

∂ fpn,i,j

∂ fi,j
=

ck,j

[
∑N

i=1 f P
i,j

] 1
P−1

p
( f i,j)

P−1, j = 1, 2 . . . 4 (30)

Among them, the derivative of the term
∂ fi,j

∂
∼
ρ i

can be written as:

∂ fi,1

∂
∼
ρ i

=
∂ fi,1

∂σ̂ai ,vm

∂σ̂ai ,vm

∂
∼
ρ i

+
∂ fi,1

∂σ̂mi ,vm

∂σ̂mi ,vm

∂
∼
ρ i

∂ fi,2

∂
∼
ρ i

=
∂ fi,2

∂σ̂ai,vm

∂σ̂ai ,vm

∂
∼
ρ i

∂ fi,3

∂
∼
ρ i

=
∂ fi,3

∂σ̂ai ,vm

∂σ̂ai,vm

∂
∼
ρ i

− ∂ fi,3
∂σ̂mi ,vm

∂σ̂mi ,vm

∂
∼
ρ i

∂ fi,4

∂
∼
ρ i

=
∂ fi,4

∂σ̂ai ,vm

∂σ̂ai ,vm

∂
∼
ρ i

+
∂ fi,4

∂σ̂mi ,vm

∂σ̂mi ,vm

∂
∼
ρ i

(31)

Meanwhile, the derivative of the term
∂ fi,j

∂σ̂ai ,vm
and

∂ fi,j
∂σ̂mi ,vm

, j 6= 2, can be expressed as:

∂ fi,1
∂σ̂ai ,vm

= 1
σNf

; ∂ fi,1
∂σ̂mi ,vm

= 1
σut

∂ fi,2
∂σ̂ai ,vm

= 1
σNf

∂ fi,3
∂σ̂ai ,vm

= 1
2σy

+ 1
4σy

 σ̂ai ,vm−σ̂mi ,vm
σy√(

σ̂ai ,vm−σ̂mi ,vm
σy

)2
+ε

; ∂ fi,3
∂σ̂mi ,vm

= − 1
2σy
− 1

4σy

 σ̂ai ,vm−σ̂mi ,vm
σy√(

σ̂ai ,vm−σ̂mi ,vm
σy

)2
+ε


∂ fi,4

∂σ̂ai ,vm
= 1

2σy
+ 1

4σy

 σ̂ai,vm+σ̂mi ,vm
σy√(

σ̂ai ,vm+σ̂mi ,vm
σy

)2
+ε

; ∂ fi,4
∂σ̂mi ,vm

= 1
2σy

+ 1
4σy

 σ̂ai ,vm+σ̂mi ,vm
σy√(

σ̂ai ,vm+σ̂mi ,vm
σy

)2
+ε



(32)

and

∂σ̂ai ,vm

∂
∼
ρ i

=
∂σ̂ai ,vm

∂σai ,vm

(
σai ,vm

∂σai

)T ∂σai

∂
∼
ρ i

+
σ̂ai ,vm

∂ϕ

∂ϕ

∂
∼
ρ i

;
∂σ̂mi ,vm

∂
∼
ρ i

=
∂σ̂mi ,vm

∂σmi ,vm

(
σmi ,vm

∂σmi

)T ∂σmi

∂
∼
ρ i

+
σ̂mi ,vm

∂ϕ

∂ϕ

∂
∼
ρ i

(33)

The derivatives of von Mises alternating and mean stresses in Equation (34) for the
two-dimensional plane stress situation can be described as:

∂σai ,vm
∂σai

=


∂σai ,vm
∂σai,x

∂σai ,vm
∂σai,y
∂σai ,vm
∂τai,xy

 =


1

2σai ,vm

(
2σai,x − σai,y

)
1

2σai ,vm

(
2σai,y − σai,x

)
3

σai ,vm

(
τai,xy

)
;

∂σmi ,vm
∂σmi

=


∂σmi ,vm
∂σmi,x

∂σmi ,vm
∂σmi,y
∂σmi ,vm
∂τmi,xy

 =


1

2σmi ,vm

(
2σmi,x − σmi,y

)
1

2σmi ,vm

(
2σmi,y − σmi,x

)
3

σmi ,vm

(
τmi,xy

)
 (34)

The derivation of stress vector, σ̂i, with respect to the design variables,
∼
ρ i, can be

written as:
∂σai

∂
∼
ρ i

= ca·D·B·Li· ∂Ui

∂
∼
ρ i

;
∂σmi

∂
∼
ρ i

= cm·D·B·Li· ∂Ui

∂
∼
ρ i

,
∂ui

∂
∼
ρ i

= Li·
∂Ui

∂
∼
ρ i

(35)

where Li represents the global virtual unit load vector, denoted by [0, 0, · · · , 1, · · · , 0]T , the
i-th component value is 1 at the corresponding input point, Oi, and all other component
values are 0. The concomitant variable can expressed as ui = LiU.
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Meanwhile, the adjoint method is employed to solve ∂ui

∂
∼
ρ i

, which can be calculated

using ∂K

∂
∼
ρ i

U + K ∂U

∂
∼
ρ i

= 0; thus, the following can be expressed:

∂ fpn,i,1

∂
∼
ρ i

=
∂ fpn,i,1

∂ fi,1


∂ fi,1

∂σ̂ai ,vm

[
−∼ρ i

q(σai ,vm
∂σai

)T
ca·D·B·Li·K−1 ∂K

∂
∼
ρ i

Ui + σai ,vmq
∼
ρ i

q−1]
+

∂ fi,1
∂σ̂mi ,vm

[
−∼ρ i

q(σmi ,vm
∂σmi

)T
cm·D·B·Li·K−1 ∂K

∂
∼
ρ i

Ui + σmi ,vmq
∼
ρ i

q−1]


∂ fpn,i,2

∂
∼
ρ i

=
∂ fpn,i,2

∂ fi,2

{
∂ fi,2

∂σ̂ai ,vm

[
−∼ρ i

q(σai ,vm
∂σai

)T
ca·D·B·Li·K−1 ∂K

∂
∼
ρ i

Ui + σai ,vmq
∼
ρ i

q−1]}

∂ fpn,i,3

∂
∼
ρ i

=
∂ fpn,i,3

∂ fi,3


∂ fi,3

∂σ̂ai ,vm

[
−∼ρ i

q(σai ,vm
∂σai

)T
ca·D·B·Li·K−1 ∂K

∂
∼
ρ i

Ui + σai ,vmq
∼
ρ i

q−1]
− ∂ fi,3

∂σ̂mi ,vm

[
−∼ρ i

q(σmi ,vm
∂σmi

)T
cm·D·B·Li·K−1 ∂K

∂
∼
ρ i

Ui + σmi ,vmq
∼
ρ i

q−1]


∂ fpn,i,4

∂
∼
ρ i

=
∂ fpn,i,4

∂ fi,4


∂ fi,4

∂σ̂ai ,vm

[
−∼ρ i

q(σai ,vm
∂σai

)T
ca·D·B·Li·K−1 ∂K

∂
∼
ρ i

Ui + σai ,vmq
∼
ρ i

q−1]
+

∂ fi,4
∂σ̂mi ,vm

[
−∼ρ i

q(σmi ,vm
∂σmi

)T
cm·D·B·Li·K−1 ∂K

∂
∼
ρ i

Ui + σmi ,vmq
∼
ρ i

q−1]


(36)

Equation (37) can be rewritten in the following form:

∂ fpn,i,1

∂
∼
ρ i

=
∂ fpn,i,1

∂ fi,1


(

Za,1 +
∂ fi,1

∂σ̂ai ,vm
σai ,vmq

∼
ρ i

q−1)
+

(
Zm,1 +

∂ fi,1
∂σ̂mi ,vm

σmi ,vmq
∼
ρ i

q−1)


∂ fpn,i,2

∂
∼
ρ i

=
∂ fpn,i,2

∂ fi,2

(
Za,2 +

∂ fi,2
∂σ̂ai ,vm

σai ,vmq
∼
ρ i

q−1)

∂ fpn,i,3

∂
∼
ρ i

=
∂ fpn,i,3

∂ fi,3


(

Za,3 +
∂ fi,3

∂σ̂ai ,vm
σ

ai ,vm
q
∼
ρ i

q−1)
−
(

Zm,3 +
∂ fi,3

∂σ̂mi ,vm
σ

mi ,vm
q
∼
ρ i

q−1)


∂ fpn,i,4

∂
∼
ρ i

=
∂ fpn,i,4

∂ fi,4


(

Za,4 +
∂ fi,4

∂σ̂ai ,vm
σ

ai ,vm
q
∼
ρ i

q−1)
+

(
Zm,4 +

∂ fi,4
∂σ̂mi ,vm

σ
mi ,vm

q
∼
ρ i

q−1)


(37)

In order to avoid the calculation of K−1, we defined the adjoint variables, T a and T m,
as follows:

T T
a,j =

∼
ρ i

q ∂ fi,j
∂σ̂ai ,vm

(
σai ,vm
∂σai

)T
ca·D·B·Li·K−1, j = 1, 2, 3, 4

T T
m,j 6=2 =

∼
ρ i

q ∂ fi,j
∂σ̂mi ,vm

(
σmi ,vm
∂σmi

)T
cm·D·B·Li·K−1, j = 1, 3, 4

(38)

where KT a,j and KT m,j 6=2 can be calculated as:

KT a,j =
∼
ρ i

q ∂ fi,j
∂σ̂ai ,vm

ca·(D·B·Li·)T σai ,vm
∂σai

KT m,j 6=2 =
∼
ρ i

q ∂ fi,j
∂σ̂mi ,vm

cm·(D·B·Li·)T σmi ,vm
∂σmi

(39)

Therefore, Za,j and Zm,j 6=2 can be further simplified as:
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Za,j = −T T
a,j

∂K

∂
∼
ρ i

Ui; Zm,j 6=2 = −T T
m,j 6=2

∂K

∂
∼
ρ i

Ui (40)

4.3. Sensitivity of the Volume

The derivative of volume constraint with respect to element design variables can be
obtained:

∂V
∼
ρ i

=

∂

(
∑i∈N

∼
ρ i

(e)
vi + ∑i∈N

∼
ρ i

(i)
vi + ∑i∈N

∼
ρ i

(d)
vi

)
3∂
∼
ρ i

= vi (41)

where the volume constraint is set by the mean of three designs.

5. Numerical Implementation

Based on the above analysis, an improved robust topology optimization formulation
will be employed using eroded, intermediate, and dilated projections to optimize three
different designs. The three designs will be developed using the threshold projection
filter, which is briefly explained in Section 2.1. When the initial value of η is 0.5, densities
below the threshold are projected to 0, while those above are projected to 1, utilizing the
full potential of the threshold projection filter. By varying the threshold parameter η, the
occurrence of manufacturing errors can be simulated. Increasing the value of η results in
an eroded design, as more densities are projected to 0, while a decrease represents a dilated
design.

The proposed topology optimization methodology for the compliant mechanism is
illustrated in Figure 5 using MATLAB R2020a software. The optimization process starts by
defining the initial design domain, boundary conditions, material parameters, algorithm
parameters, and pre-FEA operations. Next, the objective and constraint functions are estab-
lished, and a density filter is employed to avoid the occurrence of checkerboard patterns and
mesh dependency issues. A robust topology optimization formulation, incorporating ero-
sion, intermediate, and dilation projections, is then implemented to ensure that minimum
size [49]. In addition, the objective and constraint functions are proposed in this research.
The GCMMA method is employed to update design variables until convergence [57]. The
optimization process terminates when either of the following two criteria is met: (1) the
variation in design variables is less than 0.001 or (2) the current number of cycles reaches the
predefined maximum number of steps, typically 350. The numerical parameters utilized in
the topology optimization of the compliant mechanism are summarized in Table 1.
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Table 1. Parameters for topology optimization of compliant mechanisms.

Parameter Symbol Value Parameter Symbol Value

Elastic modulus for solid
element E0 68.9 GPa Fatigue limit of the

elements σN f 96.2 MPa

Elastic modulus for void
element Emin 10−9 MPa Yielding stress σy 276 MPa

Poisson’s ratio µ 0.33 Ultimate stress σut 310 MPa

Penalty parameter p 3 Fatigue strength
coefficient σ′f 658.75 MPa

Material density ρ0 2770 kg/m3 Fatigue strength
exponents b f −0.1326

Volume fraction δ 0.3 Allowable life cycles N f 106

Stress relaxation
coefficient q 1 Filter radius R 0.03× a

Initial scaling coefficient c0 1 Small positive value ε 10−5

P-norm aggregation
parameter P 12 Maximum force Fmax 800 N

Control parameter αk 0.5 Minimum force Fmin −200 N

6. Numerical Examples

In this section, the proposed method is tested using the force inverter and gripper
problems, with a focus on maximizing the output displacement through optimization
formulation. The material properties tested in these experiments are outlined in Table 1.
For the force inverter problem, the input and output spring stiffness values are set to
kin = 4 N/µm and kout = 1 N/µm, respectively. Meanwhile, for the gripper problem,
the input and output spring stiffness values are set to kin = 5 N/µm and kout = 2 N/µm,
respectively.

In order to ensure an optimal design without any risk of failure, it is necessary for
the element’s alternating and mean stresses to be located within the safe region of the
modified Goodman diagram, as illustrated in Figure 2a. To test the layout optimization,
three different combinations of alternating and mean stresses are evaluated:

von Mises :

 σ̂ai,vm =
√

σ̂2
ai,x

+ σ̂2
ai,y
− σ̂2

ai,x
σ̂2

ai,y

σ̂mi,vm =
√

σ̂2
mi,x

+ σ̂2
mi,y
− σ̂2

mi,x
σ̂2

mi,y

Sines theory :

{
σ̂ai,vm =

√
σ̂2

ai,x
+ σ̂2

ai,y
− σ̂ai,x σ̂ai,y + 3τ̂2

ai,xy

σ̂mi,vm = σ̂mi,x + σ̂mi,y

Signed von Mises :


σ̂ai,vm =

√
σ̂2

ai,x
+ σ̂2

ai,y
− σ̂ai,x σ̂ai,y + 3τ̂2

ai,xy

σ̂mi,vm =


√

σ̂2
mi,x

+ σ̂2
mi,y
− σ̂mi,x σ̂mi,y + 3τ̂2

mi,xy
, σ̂mi,x ≥ 0

−
√

σ̂2
mi,x

+ σ̂2
mi,y
− σ̂mi,x σ̂mi,y + 3τ̂2

mi,xy
, σ̂mi,x < 0

(42)

6.1. Numerical Examples of the Inverter

The first example is the force inverter, which is depicted in Figure 6a. The design
domain, Ωd, has dimensions of a× a = 100× 100 mm2, and the filter radius is R = 3 mm.
The smoothness parameter, β, is determined through a trial-and-error process and is set to
25. The eroded, dilated, and intermediate (real) designs have threshold values of ηe = 0.7,
ηd = 0.3, and ηi = 0.5, respectively.
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Figure 6. The force inverter. (a) The design domain; (b) the contours of different designs: eroded
ηe = 0.7, intermediate ηi = 0.5, and dilated ηd = 0.3; optimized topologies for three levels of fatigue
constraints (c) eroded designs, (d) intermediate designs, and (e) dilated designs; the von Mises stress
distribution of (f) eroded, (g) intermediate, and (h) dilated designs.

Figure 6b displays the different thresholds for the contours of the different designs,
and Figure 6c–e show the contours of different designs optimized topologies for three levels
of fatigue and static failure constraints. The corresponding von Mises stress distributions
of the eroded, intermediate, and dilated designs are shown in Figure 6f–h, respectively. The
von Mises stress is estimated to be approximately 100 MPa. To prevent static failure, which
is also referred to as one-time loading failure, the maximum absolute value of the sum of the
alternating stress and the mean stress should be less than the yield strength at the second
constraint. To ensure that the force inverter satisfies this constraint, the modified Goodman
fatigue criteria, Li,1 and Li,2, and the static failure criteria, Li,3 and Li,4, are employed for the
three-field density projection with eroded, intermediate, and dilated projections, as shown
in Table 2.

Table 2. The resultant values of the force inverter.

Parameter Symbol Eroded Intermediate Dilated

Output displacement uout 99.8876 99.8850 99.8909
Amplification ratio Ar 0.69 0.733 0.727

Volume fraction V 0.252 0.302 0.346
Fatigue failure 1 Li,1 0.84 0.89 1.26
Fatigue failure 2 Li,2 0.678 0.75 0.865
Static failure 1 Li,3 0.378 0.418 0.482
Static failure 2 Li,4 0.378 0.418 0.482

Gray level indicator Mnd 2.5% 1.5% 1.8%
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To verify the results obtained from the MATLAB implementation, three different
combinations were employed to evaluate the fatigue and static damage resistance of the
optimal design. As illustrated in Figure 7a–c, the eroded, intermediate, and dilated designs
of the Goodman fatigue criteria were tested under different conditions. In this Figure 7a–c,
the color pink is utilized to represent the von Mises theory, blue is employed to signify
the Sines theory, and green is used to denote the Sines von Mises theory. The outcomes
demonstrate that the force inverter is capable of satisfying both the fatigue and static
failure constraints, and all test conditions fall within the modified Goodman safety zone.
Furthermore, it is evident that the fatigue life of the inverter is infinite when subjected to
the designated load conditions during the design phase. It should be noted that the output
displacement of the compliant mechanism may be reduced due to the limitations imposed
via the partial constraints on fatigue and static failure for maximum output displacement.
Meanwhile, the different designs for the different thresholds are displayed in Figure 8a–c.
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ηi = 0.5, and (c) dilated ηd = 0.3 designs of the threshold projection filters.

To check the maximum output displacement of the optimal design, the deformation
configurations of the obtained inverter are shown in Figure 9a–c, corresponding to the
eroded, intermediate, and dilated deformation configurations of the inverter, respectively.
We also presented the corresponding data for the inverter with three threshold projections,
as shown in Table 2. The maximum output displacements of three threshold projection are
99.8876, 99.8850, and 99.8909, and the corresponding amplification ratios are 0.69, 0.733,
and 0.727, respectively. It can be observed that the dilated value, Li,1, is greater than 1
and is close to 1, which may be caused via numerical instability and may not affect our
final design results. Meanwhile, the discreteness of the obtained design adds a gray level
indicator, Mnd, measurer for gray level measurements. When every element exhibits inter-

mediate density, or
∼
ρ i = 0.5, the indicator’s value is Mnd = 100%. The indicator’s value is

Mnd = 0% if all elements have densities of 0 or 1.
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Figure 9. Deformation configuration of force inverter, (a) the eroded ηe = 0.7, (b) intermediate
ηi = 0.5, and (c) dilated ηd = 0.3.

Finally, the convergence history of the intermediate threshold projections of the com-
pliant inverter are depicted in Figure 10, which are the objective function and volume
constraint. Note: since the displacement directions of the output end and the input end are
opposite, the optimization result converges downward, and an additional 100 mm displace-
ment is added to the objective function, which is consistent with our design philosophy.
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6.2. Numerical Examples of the Gripper

The gripper presented in Figure 11a serves as the second example, with its design domain
dimensions specified as a× b = 160× 100 mm2. The analysis domain comprises a rectangular
design domain denoted by Ωd, and a rectangular void non-design domain labeled as Ωv. The
rectangular void non-design domain, Ωv, has an area of b/2× b/2 = 50× 50 mm2. An input
force of Fin,1 is applied at the input port, Oin,1, and the area, Γ, is fixed. The filter radius is set
to R = 4.8 mm, while the smoothness parameter is specified as β = 30. The dilated design
is set to ηd = 0.3, whereas the eroded design is established at ηe = 0.7, and the intermediate
design is assigned a value of ηi = 0.5.
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Figure 11. The compliant gripper. (a) The design domain; (b) the contours of different designs:
eroded ηe = 0.7, intermediate ηi = 0.5, and dilated ηd = 0.3; optimized topologies for three levels
of fatigue constraints: (c) eroded designs, (d) intermediate designs, and (e) dilated designs; the von
Mises stress distribution of (f) eroded, (g) intermediate, and (h) dilated designs.

The optimized topologies for different designs with respect to three levels of fatigue
and static failure constraints are displayed in Figure 11c–e in terms of their corresponding
contours. Moreover, Figure 11f–h depict the corresponding von Mises stress distribution
of the eroded, intermediate, and dilated designs, which were found to be approximately
100 MPa. Furthermore, the modified Goodman fatigue criteria, Li,1 and Li,2, as well as
the static failure criteria, Li,3 and Li,4, were employed in the three-field density projection,
utilizing the eroded, intermediate, and dilated projections, as depicted in Table 3. The three
threshold projection maximum output displacements are 99.9698, 99.9665, and 99.9657,
with corresponding amplification ratios of 0.204, 0.231, and 0.238, respectively. Both the
fatigue and static failure constraints of the three-threshold projection meet the strength
design requirements, ensuring an infinite lifespan of the mechanism under a given load.
Furthermore, the design incorporates a gray level indicator, Mnd, for measuring gray
levels discretely. The maximum gray level is 2.8%, indicating that the design achieves
high precision in its gray level measurements. Furthermore, the eroded, intermediate, and
dilated designs of the Goodman fatigue criteria were tested in three different combinations,
as shown in Figure 12a–c.

Table 3. The resultant values of the compliant gripper.

Parameter Symbol Eroded Intermediate Dilated

Output displacement uout 99.9698 99.9665 99.9657
Amplification ratio Ar 0.204 0.231 0.238

Volume fraction V 0.266 0.307 0.327
Fatigue failure 1 Li,1 0.697 0.786 0.817
Fatigue failure 2 Li,2 0.587 0.663 0.689
Static failure 1 Li,3 0.327 0.370 0.384
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Table 3. Cont.

Parameter Symbol Eroded Intermediate Dilated

Static failure 2 Li,4 0.327 0.370 0.384
Gray level indicator Mnd 2.8% 0.9% 1.0%

Note: It should be noted that the lower output displacement performance is justifiable due to the robust strength-
constrained approach, which faces an additional challenge in terms of strength feasibility. This challenge must be
ensured for three distinct fields of relative densities, which further adds to the complexity of the problem.
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Figure 12. The eroded, intermediate, and dilated designs of the Goodman fatigue criteria of compliant
gripper: (a) the eroded ηe = 0.7, (b) intermediate ηi = 0.5, and (c) dilated ηd = 0.3 designs of the
threshold projection filters.

The deformation configurations of the compliant gripper are illustrated in Figure 13a–c,
which correspond to the eroded, intermediate, and dilated configurations of the inverter,
respectively. Moreover, the feature size that controls the topology optimization results effec-
tively prevents the appearance of unmanufacturable thin levers, holes, and other structures.
Finally, Figure 14 depicts the convergence history of the intermediate threshold projections of
the compliant gripper, which includes the objective function and volume constraint.
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7. Conclusions

This study presents a novel approach for topology optimization of compliant mecha-
nisms that addresses issues related to static strength, fatigue failure, and manufacturability.
The proposed method involves converting the static strength and fatigue failure constraints
into different stress constraints, which are then addressed using stress relaxation techniques
and p-norm aggregation approaches in the context of continuum topology optimization.
Furthermore, the introduced maximum operator approach is utilized to address non-
differentiable kink issues. Considering that different pieces of machining equipment have
different machining accuracies, a three-field density projection approach is employed to
ensure manufacturability of the optimized design. The proposed method is implemented
using an improved SIMP interpolation model, and the design problem is solved using the
GCMMA algorithm based on sensitivity analysis. Finally, the effectiveness of the proposed
method is demonstrated through two numerical examples:

1. The von Mises stresses in the force inverter and compliant gripper were found to be
approximately 120 MPa and 100 MPa, respectively. These stresses were below the
material’s strength limit of 275 MPa.

2. Compared with the previous topology optimization without fatigue constraints, the
fatigue-constrained topology optimization can more effectively suppress the one-
node hinge connection problems and avoid the phenomenon of stress concentration.
Moreover, the maximum stress value of the compliant mechanism obtained using the
fatigue-constrained topology optimization was lower, and the stress distribution was
more uniform.

3. The three-field density projection approach was successfully employed to control the
minimum size in the layout optimization, thereby meeting the manufacturing process
requirements. In addition, a gray level indicator, Mnd, was utilized to measure the
gray level, and the maximum gray level of the real design was found to be less than
1.5%. The effectiveness of the proposed method was effectively demonstrated through
two numerical examples.
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