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Abstract: This study investigated the impact of formation water on the mass transfer between CO2

and crude oil in low-permeability reservoirs through CO2 miscible flooding. Formation water leads to
water blocks, which affect the effectiveness of CO2 miscible flooding. Therefore, we studied the impact
and mechanisms of formation water on the CO2-oil miscibility. The microscale interaction between
formation water-CO2-core samples was investigated using CT scanning technology to analyze its
influence on core permeability parameters. In addition, CO2 miscible flooding experiments were
conducted using the core displacement method to determine the effects of formation water salinity
and average water saturation on minimum miscibility pressure (MMP) and oil displacement efficiency.
The CT scanning results indicate that high-salinity formation water leads to a decrease in the porosity
and permeability of the core as well as pore and throat sizes under miscible pressure conditions.
The experimental results of CO2 miscible flooding demonstrate that CO2-oil MMP decreases as the
salinity of the formation water increases. Moreover, as the average water saturation in the core
increases, the water block effect strengthens, resulting in an increase in MMP. The recovery factors of
cores with average water saturations of 30%, 45%, and 60% are 89.8%, 88.6%, and 87.5%, respectively,
indicating that the water block effect lowers the oil displacement efficiency and miscibility.

Keywords: CO2 miscible flooding; formation water salinity; water saturation; rock pore structure;
minimum miscibility pressure

1. Introduction

Low-permeability and ultra-low-permeability reservoirs account for a large proportion
of China’s proven reserves, which are highly valuable for exploitation due to their large
reserves. Oil production from unconventional (low and ultra-low permeability) reservoirs
ensures stable oil production in China [1,2]. CO2 flooding is a proven enhanced oil recovery
(EOR) technique in conventional reservoirs. The mechanisms of CO2 flooding include
viscosity reduction, swelling, miscibility, and re-energized reservoirs. Due to the nature of
CO2, it can be effectively utilized in tight oil and low-permeability reservoirs to improve oil
recovery [3]. In addition, CO2 injection is an important part of CO2 utilization and storage
to achieve the “dual carbon” goal [1,3]. CO2 flooding can be classified as miscible flooding
and immiscible flooding based on the minimum miscibility pressure (MMP) [4,5]. When the
injection pressure is above the MMP, the CO2 flooding is miscible flooding. CO2 and crude
oil undergo multiple contacts in miscible flooding, exchanging mass via evaporation and
condensation and finally becoming miscible in one phase. Typically, CO2 miscible flooding
is applied in oilfields after water flooding in China’s domestic reservoirs. Additionally, 67%
of CO2 flooding applications were conducted after water flooding, according to statistics
on CO2 flooding projects in the United States [6]. Therefore, CO2 flooding technology is
an effective method to further enhance the oil recovery of water-flooded reservoirs. Water
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blocks are formed in reservoirs by either formation water or injected water through water
flooding, blocking the mass transfer between CO2 and reservoir oil [7,8]. Although water
does not directly participate in the miscibility process and mass transfer of oil and gas, it
indirectly affects the extraction and diffusion between the oil and gas phases.

Currently, research on CO2 flooding focuses on migration characteristics, influencing
factors of CO2 flooding, and minimum miscibility pressure, but there is a lack of research tar-
geting the impact of formation water. After CO2 is injected into a reservoir, it reacts with the
formation water to form carbonic acid, which causes changes in pore structure. He et al. [9]
studied water–rock interaction in the CO2 flooding process. They found that this interac-
tion could reduce the permeability of natural fractures near the injection well, leading to
improved CO2 flooding efficiency in the fractured reservoirs. Shiraki et al. [10] investigated
the main reactions occurring in rock during the CO2 flooding process. Soong et al. [11]
analyzed the rock composition during CO2 storage in saline aquifers and found a decrease
in permeability. Wdowin et al. [12] observed mineral precipitation and dissolution in rock
samples before and after CO2 sequestration using scanning electron microscopy. These
studies confirmed that formation water has a negative impact on reservoir structure.

Additionally, water affects various parameters in the CO2 flooding process based on
the literature. Li et al. [13] claimed that CO2 could reduce the interfacial tension between
oil and water, resulting in enhanced oil recovery. However, the alternating gas–water
effects hindered the formation of the miscible zone and CO2-oil miscibility. They also found
that injecting appropriate gas plugs could reduce the impact of water on miscibility and
significantly improve oil recovery through capillary experiments and numerical simula-
tions [14]. Lv et al. [15] used a microscopic visualization model to study the effect of high
water saturation on CO2 flooding. They concluded that high water saturation blocked the
contact between CO2 and oil, delaying miscibility and prolonging the CO2 EOR starting
time. Tang et al. [16] studied the influence of CO2 dissolution in formation water during
oil displacement using thermodynamic models. The solubility of CO2 in water was one
order of magnitude larger than that of conventional hydrocarbons, resulting in a delay in
gas breakthrough time and a 6% difference in oil recovery. Hu et al. [17] investigated the
mass transfer mechanisms of water flooding and CO2 flooding, indicating that CO2 and
crude oil could become miscible under different water saturations. However, high water
saturation hindered mass transfer between the oil and gas phases. Liang et al. [18] studied
the influence of bound water on gravity drainage under different mixed-phase conditions,
finding that bound water reduced the recovery factor under immiscible conditions but
increased the recovery of gravity drainage. For the study of the water block effect formed
between CO2 and crude oil, Qin [19] used a micro-visual model to investigate the oil dis-
placement mechanism of CO2-penetrating water. They found that CO2 could penetrate the
water block, change the wettability between oil and pores, and displace residual oil through
column and cylindrical flows in high water saturation regions. Cui et al. [20] indicated
that a thicker water film prolonged the time for oil and CO2 to become miscible through
microscopic visualization experiments. Torabi et al. [21] simulated water-alternating-gas
injections and found that the solubility of CO2 in water decreased with reduced CO2 con-
centrations, leading to a delay in the oil recovery increment. Kazemi et al. [22] studied
the effects of viscosity, gravity, and capillary forces under different miscible and bound
water conditions, concluding that the presence of water led to pore throat blocking in near-
miscible flooding. Pi et al. [23] studied the interaction between CO2, rock, and formation
water, and the experimental results showed that an increase in formation water salinity
reduced the CO2-oil MMP.

The literature confirms that CO2 and crude oil become miscible via diffusion. Du et al. [24]
studied the effect of nanoconfinement on the CO2 diffusion coefficient in shale oil reser-
voirs. They calculated the effective diffusion coefficient in porous media by combining the
properties of the reservoir. Hoteit et al. [25,26] used numerical simulation to investigate gas
injection and recovery factors in fractured and non-fractured reservoirs. They concluded
that diffusion had a minimal impact on gas injection efficiency. Li et al. [27] studied oil
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swelling in porous media due to CO2 diffusion and matched experimental pressure curves
with mathematical models to determine the effective diffusion coefficient. Mehdi et al. [28]
proposed that the solubility of CO2 in movable oil and connate oil would affect EOR based
on numerical studies using artificial intelligence technology.

Currently, the influence of formation water on reservoirs mainly focuses on the carbon
sequestration area, and there is a lack of in-depth study on the variation of pore–throat
parameters when CO2 becomes miscible. Generally, water blocks have an impact on CO2
flooding, but the degree of their influence has not been quantified. The water block effect
on CO2 flooding in the miscible state must urgently be studied. In this study, CT scanning
technology was used to study the influence of CO2-water-rock interactions on the physical
properties of the core under the pressure of a miscible state. Miscible flooding experiments
of CO2 were conducted on core samples under different average water saturation conditions
to reveal the effects of water blocks on CO2 flooding. In addition, the minimum miscible
pressure between CO2 and crude oil was obtained via experimental measurements. The
findings provide insights into the implementation of CO2 flooding in the field.

2. Experimental Materials and Methods
2.1. Experimental Materials

Experimental instruments: 1172 micro-CT micro-focus computer scanner (produced by
Belgian Sky Scan company, Skyscan, Belgium) with a resolution of 1.0 µm and a maximum
X-ray voltage of 100 kV; Teledyne ISCO 260D high-pressure, high-precision syringe pump
(produced by American Edyne Isco company, Lincoln, NH, USA) with a flow rate of
0.001–107 mL/min and a pressure of 10–7500 psi; STY-2 gas permeability tester (produced
by Haian Petroleum Research Instrument Co., Ltd., Haian, China), with a permeability test
range of 0.01 × 10−3 µm2 to 6 µm2.

Experimental oil: Simulated oil with a viscosity of 1.21 mPa·s, volume coefficient
of 1.313, gas–oil ratio of 78.35 m3/m3, density of 0.7365 g/cm3, saturation pressure of
11.72 MPa, and experimentally measured minimum miscible pressure of 20.17 MPa.

Experimental water: Distilled water and simulated formation water, with the chemical
agent ratio for simulated formation water shown in Table 1.

Table 1. Composition of simulated formation water.

Compositions Na2SO4 NaCl Na2CO3 NaHCO3 CaCl2 MgCl2·6H2O Salinity (g/L)

Concentration (g/L) 0.0139 0.3835 0.0539 2.262 0.01385 0.04182 2.769
0.028 0.77 0.108 4.52 0.028 0.084 5.538

Experimental gas: Industrial-grade CO2 gas (purity 99%). Experimental temperature:
69.05 ◦C.

Experimental core: 12 Berea cylindrical cores (core parameters shown in Table 2).

Table 2. Physical properties of cores.

Core Number Length (cm) Cross-Sectional Area
(cm2)

Permeability
(×10−3 µm2) Porosity (%)

A1 30.15 4.91 5.1 12.5
A2 30.12 4.91 5.3 12.8
A3 30.13 4.91 4.9 12.3
B1 30.54 4.91 5.3 12.7
B2 30.57 4.91 5.2 15.4

2.2. Experimental Methods
2.2.1. CO2 Soaking Experiment

In order to study the interactions between CO2-water-rock during CO2 miscible
flooding, CO2 soaking experiments were performed using Berea cores. The interactions
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caused changes in pore-permeability parameters and ultimately affected CO2-oil miscibility.
After saturating the cores with formation water with varying degrees of mineralization,
the CO2 was injected under miscible pressure to study the variation patterns of pore-
permeability parameters of the rocks. The 30 cm Berea cores were cut following the cutting
plan shown in Figure 1. The soaking plans for CO2 are presented in Table 3.
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Figure 1. Schematic diagram of Berea core cutting.

Table 3. Soaking well plan for CO2.

Core Number
Program

Experimental Preparation Plan 1 Plan 2 Plan 3 . . . Plan 8

A1 Saturated with distilled water, then injected with
CO2 and soaked for varying times.

Soaking 6 h Soaking 12 h Soaking 18 h . . . Soaking 48 hA2 Saturated with 2.769 g/L formation water, then
injected with CO2 and soaked for varying times.

A3 Saturated with 5.538 g/L formation, then injected
with CO2 and soaked for varying times.

The experimental procedure of the CO2 soaking experiment is as follows:

(1) Weigh the Berea core, measure the original air permeability, saturate it with distilled
water after vacuuming, and measure the original core porosity.

(2) Dry the core in a constant-temperature oven for 48 h, cut the cores according to the
plan (Figure 1), and label the cores as No. 1 to No. 9.

(3) Scan the cross-section of core No. 1 (acting as the control group) using CT to record
the distribution of the pore–throat radius in the core. Saturate cores No. 2 to No. 9
with simulated formation water after vacuuming, and soak the cores corresponding
to experimental plans 1 to 8. The experimental setup (as shown in Figure 2) is used to
inject CO2, reach the experimental pressure of 21 MPa, and achieve various soaking
times indicated in the experimental plans.

(4) After soaking, slowly depressurize, remove the cores, and dry them in an oven for
48 h. Measure the air permeability and then saturate with distilled water to measure
the porosity.

(5) Take the Berea core from experimental plan 8, cut it into slices, and scan the cross-
section using CT to record the distribution of the core pore–throat radius.

2.2.2. CO2 Flooding Experiments under Different Water Saturation Conditions

Water always exists in reservoirs and affects the miscibility of CO2 and crude oil via
the water block effect. In this experiment, we evaluated the impact of the water block
effect on miscible CO2 and crude oil using different average water saturation cores. The
average water saturation represents the strength of the water block effect. The CO2 flooding
experimental schemes are presented in Table 4, and the experimental setup is the same as
that shown in Figure 2.
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Figure 2. Experimental setup.

Table 4. CO2 flooding experimental schemes under different water saturation conditions.

Scheme Number Plan Details

1 Saturate with distilled water to achieve 30% average water saturation

CO2 flooding experimental pressure:
5 MPa, 10 MPa, 15 MPa, 20 MPa,

25 MPa, 30 MPa, and 35 MPa

2 Saturate with formation water with a salinity of 2.769 g/L to achieve 30% average water saturation

3 Saturate with formation water with a salinity of 5.538 g/L to achieve 30% average water saturation

4 Saturate with distilled water to achieve 45% average water saturation

5 Saturate with formation water with a salinity of 2.769 g/L to achieve 45% average water saturation

6 Saturate with formation water with a salinity of 5.538 g/L to achieve 45% average water saturation

7 Saturate with distilled water to achieve 60% average water saturation

8 Saturate with formation water with a salinity of 2.769 g/L to achieve 60% average water saturation

9 Saturate with formation water with a salinity of 5.538 g/L to achieve 60% average water saturation

The experimental procedure of the CO2 flooding experiment is presented below:

(1) Weigh the Berea rock core under dry conditions, vacuum the core, and saturate it with
simulated oil to calculate the porosity of the rock core.

(2) Connect the experimental setup, conduct water flooding with an injection rate of
0.3 mL/min, and terminate water injection after reaching the target water saturation
according to the experimental plan.

(3) Conduct CO2 flooding experiments with a 0.3 mL/min rate and adjust the back pres-
sure valve pressure according to the experimental plan. Record the oil production and
calculate the recovery factor when no oil is produced under this pressure condition.

(4) Adjust the pressure of the back pressure valve to the next pressure point, increase
the injection pressure above the experimental pressure, and continue the CO2 flood-
ing experiment. Complete the CO2 flooding experiment after finishing testing all
7 experimental pressures.

3. Results and Discussion
3.1. Changes in Porosity and Permeability

The changes in the porosity and permeability of the Berea rock core after being
saturated with different simulated formation water levels and various CO2 soaking times
are shown in Figures 3 and 4. The porosity and permeability of the Berea rock core initially
increase and then decrease with soak time. For the core saturated with distilled water,
the ultimate porosity and permeability slightly increase compared to its original state.
However, the cores saturated with simulated formation water decrease in both porosity
and permeability. The higher the salinity, the more significant the decrease in porosity and
permeability. The cores saturated with water of salinity 2.769 g/L and 5.538 g/L lead to a



Processes 2023, 11, 2954 6 of 11

decrease in porosity by 2% and 2.7% and a decrease in permeability by 1.5 × 10−3 µm2 and
2.4 × 10−3 µm2, respectively.
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The main mineral components of the cores are quartz, potassium feldspar, plagioclase,
clay minerals, and carbonate minerals (calcite, dolomite, and aragonite). CO2 dissolves
in water to form carbonic acid through the reaction shown in the chemical Equation (1).
The corrosiveness of carbonic acid increases as pressure in multiphase conditions increases,
leading to dissolution reactions with calcite and dolomite [29,30]. Chemical Equations (2)
and (3) show the chemical changes resulting from these reactions. As the reactions continue,
the dissolution of the above components leads to an increase in the concentration of calcium
and magnesium ions. Followed by precipitation reactions, calcium and magnesium ions
gradually react with bicarbonate ions in the formation water to form insoluble carbonates,
as shown in chemical Equations (4) and (5).

CO2 + H2O = HCO−3 + H+ (1)

CaMg(CO3)2 + 2H+ = Ca2+ + Mg2+ + 2HCO−3 (2)

Ca(Fe0.7Mg0.3
)
(CO3)2 + 2H+ = Ca2++0.3Mg2++0.7Fe2++2HCO−3 (3)

Mg2+ + HCO−3 = MgCO3 ↓ + H+ (4)

Ca2+ + HCO−3 = CaCO3 ↓ + H+ (5)
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The analysis results suggest that the higher the mineralization, the lower the solubility
of CO2 in water. For the core saturated with distilled water, the acidity of carbonic acid
is enhanced, increasing the dissolution effect on the reservoir and generating numerous
secondary pores. However, the subsequent precipitation of insoluble carbonates gradually
migrates to smaller pore throats, blocking the channels with smaller radii. Pi et al. [23]
studied the reaction among CO2, formation water, and rock. The dissolution of CO2 in
the formation water resulted in a decrease in the pH of the formation water from 7.4 to
6.5. With the continued injection of CO2, the pH of the formation water increased and
then decreased. In general, cores saturated with distilled water have lower mineral ion
concentrations, dominated by dissolution, resulting in a slight increase in overall porosity
and permeability. In contrast, cores saturated with formation water have higher calcium
and magnesium ion concentrations, with precipitation dominating, leading to a significant
decrease in overall porosity and permeability. Due to the utilization of low-permeability
cores in the experiment, alterations in both porosity and permeability exhibit a significantly
more noticeable impact.

The CT scan results of the core after 48 h of soaking are shown in Figure 5. The porosity
of the core saturated with distilled water is slightly larger than that of the control group.
After saturation with formation water with different salinity levels, both the pores and pore
throats decrease in size—higher salinity results in larger changes. As a result of precipi-
tation, the dimensions of the primary large pores undergo a noticeable reduction, while
numerous secondary pores emerge, thereby instigating substantial alterations in porosity.
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3.2. Distribution of Pore Radius and Throat Radius

The distribution of the core’s pore radius and throat radius after 48 h of CO2 soaking
was calculated, and the experimental results are shown in Figures 6–9.
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After 48 h of soaking in saturated distilled water, the distribution of pore radii below
15.44 µm decreases, while the distribution of pore radii above 19.48 µm increases for
the Berea cores. In addition, for cores saturated with formation water with a salinity of
2.769 g/L and 5.538 g/L, the distribution of pore radii below 19.48 µm increases, while
the distribution of pore radii above 19.48 µm decreases. Therefore, higher salinity results
in a higher distribution of small-size pores. The pattern of throat radius distribution
is consistent with that of pore radius distribution, and the distribution of small throats
increases as salinity increases. These observations indicate that increasing salinity gradually
alters the dominant factor in the pore and throat radius from dissolution to precipitation,
causing the blockage of large pores and an increase in the distribution of small pores.

3.3. MMP Alterations under Different Water Saturations

Figure 10 shows the results of MMP experiments at different average water saturations.
The MMPs were determined using the slim tube experiment, which was obtained by
intersecting the trend lines of the immiscible region recovery rate and the miscible region
recovery rate. This experimental pressure represents the minimum pressure required to
achieve maximum recovery under different water block conditions. The results indicate that
the MMP between CO2 and oil decreases as the salinity of the formation water increases,
and a stronger water block effect (higher average water saturation) leads to a higher MMP.
When the average water saturation of the cores is 30%, the obtained MMP values of distilled
water, salinity of 2.769 g/L, and salinity of 5.538 g/L scenarios are 20.73 MPa, 20.27 MPa,
and 19.33 MPa, respectively. As the average water saturation increases to 45%, the MMP
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values are 21.25 MPa, 20.66 MPa, and 19.65 MPa, respectively. Further increasing the
average water saturation to 60%, the MMP values are 21.89 MPa, 21.01 MPa, and 19.97 MPa,
respectively.
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Based on the above results, it can be concluded that the salinity of formation water
affects the pore–throat structure of the core under miscible pressure, resulting in a decrease
in porosity and an increase in small pore channels. The contact surface between oil, gas,
and water phases is segmented and compressed, leading to intense mass transfer between
CO2 and crude oil and a slight decrease in MMP.

3.4. Changes in Oil Displacement Effect under Different Water Saturation

The oil recovery of CO2 miscible flooding experiments is shown in Table 5. The
stronger the water block effect, the lower the oil recovery. The average water saturation
increases from 30% to 60%. The core samples saturated with distilled water and formation
water with a salinity of 2.769 g/L and 5.538 g/L show a decrement in oil recovery of 2.3%,
3.3%, and 4.1%, respectively. These recovery factor decreases are caused by three reasons:
(1) The water phase is the wetting phase, which easily enters the small pore throat and traps
the residual oil at the dead-end. This phenomenon increases the difficulty of oil recovery,
leading to a lower recovery factor. (2) Water affects the mass transfer process between CO2
and crude oil as the water block effect strengthens, changing the contact mode from direct
contact to indirect contact that CO2 dissolves in water and then comes into contact with
crude oil. This change reduces the contact area and decreases the efficiency of miscible
flooding. (3) The water block increases MMP and reduces the miscibility, resulting in lower
oil recovery. The impact of the formation water salinity on oil recovery is analyzed as
follows: the increase in secondary pores enhances the complexity of dead-end residual oil,
making it challenging to recover crude oil from dead-end pores and eventually reducing
the overall oil recovery.

Table 5. Recovery factors of CO2 miscible flooding experiments.

Category
Recovery Factors (%)

Distilled Water Salinity of 2.769 g/L Salinity of 5.538 g/L

Average water
saturation 30% 89.8 89.1 87.4

Average water
saturation 45% 88.6 87.4 85.2

Average water
saturation 45% 87.5 85.8 83.3
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4. Conclusions

(1) In the case of miscible flooding, highly mineralized formation water can enhance
precipitation, resulting in a decrease in core porosity and permeability as well as a
reduction in pore and throat size.

(2) The higher the average water saturation of the core, the stronger the water block
effect and the higher the MMP. However, the formation water with high salinity can
decrease the MMP between CO2 and crude oil. Overall, the impact of the formation
water’s salinity is greater than the impact of the average water saturation of the core.

(3) The average water saturation impacts the oil displacement and the miscible behavior
of CO2 for three reasons: an increase in the proportion of residual oil in dead-end
pores, a decrease in the oil displacement efficiency of CO2 with crude oil, and a
decrease in the miscibility. Additionally, the decrease in porosity and permeability
of the reservoir makes it challenging to extract the crude oil, thereby affecting the oil
displacement.
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