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Highlights:

• The anammox process is a promising technique to treat nitrogen-rich marine RAS WW.
• The anammox strain Ca. Scalindua was successfully acclimated to high salinity marine RAS

wastewater.
• Despite a slight decrease in population over the time, Ca. Scalindua remained the major species

within the granules and was able to maintain a high nitrogen removal rate while exposed to
RAS WW in the absence of TE supplementation.

Abstract: Recirculating aquaculture systems (RAS) are promising candidates for the sustainable
development of the aquaculture industry. A current limitation of RAS is the production and potential
accumulation of nitrogenous wastes, ammonium (NH4

+), nitrite (NO2
−) and nitrate (NO3

−), which
could affect fish health and welfare. In a previous experiment, we have demonstrated that the marine
anammox bacteria Candidatus Scalindua was a promising candidate to treat the wastewater (WW)
of marine, cold-water RAS. However, the activity of the bacteria was negatively impacted after
a direct exposure to RAS WW. In the current study, we have further investigated the potential of
Ca. Scalindua to treat marine RAS WW in a three-phase experiment. In the first phase (control,
83 days), Ca. Scalindua was fed a synthetic feed, enriched in NH4

+, NO2
− and trace element (TE)

mix. Removal rates of 98.9% and 99.6% for NH4
+ and NO2

−, respectively, were achieved. In the
second phase (116 days), we gradually increased the exposure of Ca. Scalindua to nitrogen-enriched
RAS WW over a period of about 80 days. In the last phase (79 days), we investigated the needs of
TE supplementation for the Ca. Scalindua after they were fully acclimated to 100% RAS WW. Our
results show that the gradual exposure of Ca. Scalindua resulted in a successful acclimation to 100%
RAS WW, with maintained high removal rates of both NH4

+ and NO2
− throughout the experiment.

Despite a slight decrease in relative abundance (from 21.4% to 16.7%), Ca. Scalindua remained the
dominant species in the granules throughout the whole experiment. We conclude that Ca. Scalindua
can be successfully used to treat marine RAS WW, without the addition of TE, once given enough
time to acclimate to its new substrate. Future studies need to determine the specific needs for optimal
RAS WW treatment by Ca. Scalindua at pilot scale.

Keywords: “Candidatus Scalindua”; anaerobic ammonium oxidation (anammox); recirculating
aquaculture system (RAS); wastewater treatment; trace elements
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1. Introduction

The world population has reached 8 billion at the end of 2022, and is predicted to
reach 9.7 billion by 2050 [1]. There is an urgent need to increase healthy, nutritious and
sustainable food production to feed this growing world population [2]. Fish products
are rich in high quality protein and are generally considered to be healthy (i.e., rich in
long-chain omega-3 fatty acids, vitamins and trace elements) [3]. With the stagnation
of capture fisheries, there is a global consensus about the importance of the aquaculture
sector as an essential source of food [2,3]. The intensification of this sector is, however,
accompanied by the raising of environmental concerns, especially regarding the leakage of
nutrients to the environment [4]. It is, therefore, important to develop novel techniques
for treatment of wastewater (WW) from fish farms, including chemical, mechanical and
biological filtrations, in order to further develop this sector in a sustainable way [5–8].

Land-based closed and semi-closed fish farming systems, such as recirculating aqua-
culture systems (RAS) have been proposed as potential candidates to improve the sustain-
ability of the aquaculture sector. These systems allow for a high degree of water reuse and
provide a more stable farming environment and reduced environmental impact compared
to traditional open-cage systems [9–12].

In RAS, nitrifying bacteria convert the ammonium (NH4
+) produced by the fish into

nitrate (NO3
−) via nitrite (NO2

−) in the presence of oxygen (O2) (Figure 1A). As a result,
NO3

− can slowly accumulate over time and reach concentrations which could affect fish
health and welfare [10,13,14]. High NO3

− can be managed through biological conversion
of NO3

− to nitrogen gas (N2) in anaerobic denitrifying biofilters, or by regular water
exchanges [15,16]. However, denitrification compartments are not always present in RAS,
as this process can lead to the formation and accumulation of intermediate, extremely
toxic substances (i.e., NO2

−, NO and N2O) [17,18]. As a result, part of the water has to be
exchanged regularly in systems without a denitrification compartment, which constitute
the vast majority of RAS today.
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The anammox (anaerobic ammonia oxidation) process is a cost-effective and
environmentally-friendly way to remove nitrogen compounds from WW [19]. It is a
chemoautotrophic biological process, where 1 mol of NH4

+ is transformed into 1.02 mol
of N2 gas using NO2

− (1.32 mol) as the electron acceptor and, therefore, needing a partial
nitrification (nitritation, Figure 1B) [20–22]. The additional advantages of this process are
its low requirements for both O2 and organic carbon sources, as well as a low production
of global warming gases [23–26]. Therefore, the anammox process has attracted more and
more attention throughout the world. The anammox-related nitrogen removal process
presented here provides a new perspective for future RAS WW treatment.

In 2013, Borin and colleagues [27] detected the presence of the marine strain of anam-
mox, “Candidatus Scalindua” (hereafter Ca. Scalindua) in deep marine hypersaline gradient
systems in the Eastern Mediterranean Sea. The anammox granules were found at 204‰
salinity (204 g L−1). Furthermore, a high nitrogen removal rate (10.7 kg N m−3 day−1) was
obtained in an anaerobic sludge blanket reactor [28]. Moreover, these marine anammox
strains could maintain stable nitrogen removal at a salinity of 50 ‰ [29]. These results sug-
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gest that the anammox process has good potential to treat saline (>30‰) WW from marine
aquaculture systems [30–32]. Despite these promising results, few studies have focused on
the use of anammox bacteria for treatment of marine WW in aquaculture to date.

In our previous study, we have demonstrated that Ca. Scalindua remained the dom-
inant species found in the granules of our anaerobic anammox rector throughout the
different experimental phases, including after exposure to RAS WW [33]. In this experi-
ment, the anammox was either fed a standard synthetic anammox feed enriched with NH4

+

and NO2
− and supplemented with a mix of trace elements (TE) or they were abruptly

exposed to 100% RAS WW enriched with NH4
+ and NO2

− for short periods, in the absence
or presence of TE. This TE mix, composed of 9 TE (Table 1)) was developed when the first
freshwater anammox species was isolated and is currently used as a standard in anammox
cultures worldwide [34]. The nitrogen removal capacity of the anammox was negatively
affected by the abrupt changes to 100% RAS WW without TE, while a subsequent addition
of TE led to a slight recovery [33]. We concluded that the reduction in activity could be
caused by the abrupt change of medium (from synthetic feed to RAS WW), either because
of high levels of unknown compounds (i.e., NO3

−) present in the RAS WW, and/or the
lack/or inappropriate concentration of certain key TE in this new medium.

Table 1. Composition of the TE mix (as reported by van de Graaf and colleagues [34]).

TE B Co Cu Fe Mn Mo Ni Se Zn

Concentration (µg L−1) 2.4 28.3 63.6 1840 274.8 96.4 46.9 47.9 97.8

In the current study, we aim to investigate in greater detail, the growth mechanisms
and medium requirements of the marine anammox bacteria Ca. Scalindua for use in marine
RAS. The specific objectives were to investigate: (1) if a slow adaptation to RAS WW could
lead to a better functioning of the Ca. Scalindua, and (2) if the TE supplementation is
necessary for the normal functioning of this marine strain of anammox bacteria. As all the
9 TE elements used in the standard feed [34] are already present in seawater [33], there
might not be a need for a supplementation.

2. Materials and Methods
2.1. RAS WW Collection and Characteristics

RAS WW (Table 2) was collected from the aquarium facilities of the University of
Gothenburg (Gothenburg, Sweden), hosting a pilot-scale research and development facility
for development of land-based marine RAS at low temperatures (ca. 10 ◦C). The fish
species in the marine RAS were rainbow trout (Oncorhynchus mykiss) and Atlantic wolffish
(Anarhichas lupus). The water samples were collected 3–8 h after the feeding of the animals
to capture a peak in NH4

+ [35–37] and immediately used to prepare the feed for the
anammox reactors.

Table 2. Physicochemical characteristics of the RAS WW. Values show the average and standard
deviation during the period.

Parameter Salinity
(‰)

NH4
+

(mg-N L−1)
NO2−

(mg-N L−1)
NO3−

(mg-N L−1) pH TSS 1

(mg L−1)
COD 2

(mg-C L−1)
Total P 3

(mg-P L−1)

Value 29 ± 1 6.22 ± 2.34 2.24 ± 0.69 1.81 ± 0.88 7.3 ± 0.3 58.8 ± 5.6 39.5 ± 5.3 2.6 ± 0.7

1 TSS, Total dissolved solids; 2 COD, Chemical oxygen demand; 3 Total P, Total phosphorous.

2.2. Reactors Operation

Ca. Scalindua granules were harvested from an up-flow column anammox stock
culture that has been operating with a continuous supply of inorganic nutrient media con-
taining NH4

+ (28 mg-N L−1) and NO2
− (34 mg-N L−1) [34] at the University of Hiroshima

(Higashihiroshima, Japan) for more than 10 years [38–40]. A biomass (ca. 5 g wet weight)
was brought to the University in Gothenburg in August 2019 and was used as inoculum into
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a glass column reactor (Ø 50 mm; volume, 325 cm3, KF-50, AS ONE, Tokyo, Japan, Figure 2)
with a nonwoven fabric sheet (Japan Vilene, Tokyo, Japan) as biofilm carrier material. The
reactor was fed with synthetic marine WW (Aquaforest, Brzesko, Poland) supplemented
with nitrogen (NH4

+ and NO2
−) and TE, as described earlier [33,34] (Table 1). The reactor

temperature was maintained at 28 ◦C throughout the experimental period, and the initial
hydraulic retention time (HRT) was 4.6 h (Table 3). The reactor reached a steady state
(removal rates of NH4

+ and NO2
− over 95% and it was kept under the same conditions

until the start of the experiment (ca. 700 days after the initial inoculation). The reactor used
in this study was operated for 280 days in 3 experimental phases.
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Figure 2. Schematic drawing of the up-flow column reactor.

Table 3. Operational conditions of the column rector.

Phase Period (d) AS/RAS 1 TE 2 HRT (h) Nitrogen Loading Rate
(g-TN L−1 day−1) 3

1 0–83 AS + 4.6 0.38 ± 0.03
2 84–200 RAS + 4.4 0.32 ± 0.06
3 201–280 RAS − 4.8 0.35 ± 0.04

1 AS, Artificial seawater; RAS, recirculating aquaculture system WW; 2 TE: Trace element mix (+, presence;
−, absence), reported by van de Graaf and colleagues [34]; 3 Values show the average and standard deviation
during the period.

During Phase 1 (days 0–83), the reactor was fed with the same synthetic marine WW
supplemented with nitrogen (NH4

+ and NO2
−) and TE as was arranged earlier [33,34].

During Phase 2 (days 84–200), the reactor was exposed to gradually increasing concentra-
tions of RAS WW. The substitution of the synthetic feed to 100% RAS WW was gradual;
10–30% of RAS WW was substituted every 10–20 days. The RAS WW characteristics
were adjusted to approximately match the standard medium for Ca. Scalindua regarding
salinity (29‰), NH4

+ (28 mg-N L−1), NO2
− (30 mg-N L−1) and inorganic carbon (KHCO3,

1000 mg L−1) [38,39]. During Phases 1 and 2, the feed was supplemented with a mix of TE.
In the final phase, Phase 3 (days 201–280), the reactor was fed with 100% RAS WW, still
supplemented with nitrogen, but in the absence of TE. During Phases 2 and 3, the reactor
was slowly adapted to RAS WW with fluctuating concentrations of NH4

+, NO2
− and

NO3
− (6.22 ± 2.34 mg-N L−1, 2.24 ± 0.69 mg-N L−1 and 1.81 ± 0.88 mg-N L−1 on average,
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respectively, Table 2). The NH4
+ and NO2

− supplementation was adapted accordingly to
ensure concentrations of these compounds, similar to Phase 1 (Figure 3). However, there
was some slight fluctuation in terms of concentration regarding these nitrogen compounds,
mimicking what can occur in a full-scale RAS. Although the inlet concentrations varied,
the system maintained a high removal efficiency of the compounds (Figure 4).
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Each WW feed was flushed with N2 gas for at least 30 min before adding the different
chemicals to achieve a concentration of dissolved O2 below 0.5 mg L−1, and the pH was
adjusted to ca. 7.0 with a solution of 1 mol L−1 H2SO4 [34]. The influents were continuously
introduced into the reactor using a peristaltic pump (Masterflex L/S Economy Drive, Cole-
Parmer Instruments, Vernon Hills, IL, USA).

2.3. Analytical Methods

The total nitrogen (TN) loading and removal rates were calculated based on the
concentrations of the nitrogenous compounds (NX; NH4

+, NO2
−, and NO3

−) as well as
the HRT (Figures 3 and 4, Table 3), according to the following:

Removal efficiency (%) = [[Influent NX-N (mg-N L−1)] − [Effluent NX-N (mg-N L−1)]]/
[Effluent NX-N (mg-NL−1)] × 100

Removal rate (g-TN L−1 day−1) = [[Influent NX-N (mg-N L−1)] − [Effluent NX-N (mg-N L−1)]] ×
[Influent volumetric flow rate (L day−1)]/[Volume of the tank (L)]

HRT (h) = Volume of the reactor (L)/Influent volumetric flow rate (L h−1)

Salinity, O2 and temperature was determined using a conductivity meter portable
Multimeter pHenomenal MU 6100 H (VWR international, Radnor, PA, USA). Analyses
of total suspended solids (TSS) were carried out in accordance with the Standard Meth-
ods [41]. COD and Total P were measured with a DR-2800 UV-visible spectrophotometer
(Hach-Lange, Dusseldorf, Germany) using the LCK1814 and the powder pillow PhosVer 3
(ascorbic acid method, 8048) methods, respectively (Hach-Lange, Dusseldorf, Germany).

The NH4
+ and NO2

− concentrations were determined using the powder pillow meth-
ods (salicylate method, 8155, and diazotization method, 8507, respectively, Hach-Lange,
Dusseldorf, Germany) and the DR-2800. The concentrations of NO3

− were determined
using ion-exchange chromatography (HPLC 20A; Shimadzu, Kyoto, Japan) with a Shodex
Asahipak NH2P-50 4D anion column (Showa Denko, Tokyo, Japan) and UV–Vis detector
(SPD-20AV, Shimadzu) after filtration of samples through 0.2-µm pore-size PTFE mem-
branes (Advantec, Tokyo, Japan) [42].

2.4. Microbial Community Analysis

To determine the potential changes in the microbial community composition during
the different phases, biomass samples for the amplicon sequencing were collected from
the reactor at the end of each experimental phase (days 83, 200 and 280). DNA was ex-
tracted using a FastDNA SPIN kit for soil (MP Biomedicals, Santa Ana, SC, USA). PCR
amplification of the bacterial 16S rRNA gene was performed with a primer set for amplifi-
cation of the V3-V4 region as follows: 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R
(5′-GGACTACHVGGGTATCTAATCC-3′). The details of PCR amplification were as de-
scribed previously [43]. PCR products were purified using the Agencourt AMPure XP
system (Beckman Coulter, Brea, CA, USA) according to manufacturer instructions. Puri-
fied DNA was sequenced using a MiSeq platform with a MiSeq reagent kit (v.3; Illumina,
San Diego, CA, USA).

Obtained sequences were trimmed and assembled as described previously [44]. Se-
quence data were analyzed using QIIME 2 Core 2020.2 distribution [45]. Operational
taxonomic units (OTUs) were assigned with the SILVA 132 database [46]. OTUs that ac-
counted for >0.5% of the total reads were used for bar-plots representation. The sequence
data in the present study was deposited in the DNA Data Bank of Japan (DDBJ) database
under the DDBJ/EMBL/GenBank accession number DRA015143.
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2.5. Fluorescence In Situ Hybridization (FISH)

Biomass samples were collected from the up-flow column reactor at the end of each
experimental phase (days 83, 200, and 280). Sample fixation and the following FISH
procedure were described previously [47]. The probes used in this study were as follows:
a mixture of EUB338, II, III, and IV probes labelled with Alexa Fluor 647 specific for
all bacteria [48,49] and Sca1129b probes labelled with Alexa Fluor 555 specific for Ca.
Scalindua [39]. Hybridized samples were observed with an Axiomager M1 epifluorescence
microscope with a 100 W HBO lamp. Images were obtained using an AxioCam MRm
version 3 FireWiremonocrome camera and AxioVision software, version 4.5 (Carl Zeiss,
Oberkochen, Germany).

3. Results
3.1. Reactor Performance

During Phase 1 (synthetic WW and TE), the TN removal rate showed high efficiency
while maintaining constant TN loading rates (Figure 4). Once the reactor continued to
maintain a stable state (from day 0 to 83), the average TN loading and removal rates were
0.32± 0.05 and 0.30± 0.03 g-TN L−1 day−1, respectively (HRT 4.6 h). At the end of Phase 1
(day 83), the removal efficiency had reached 94% for NH4

+ and 99% for NO2
−, showing

a successful establishment of the anammox process in the reactor [38].
During Phase 2 (days 84–200), the use of RAS WW instead of artificial seawater was

implemented with a gradual substitution within about a 3-month period (10–30% every
10–20 days, Figure 4). The average TN loading rate during this phase was kept constant
at 0.32 ± 0.06 g-TN L−1 day−1. During this phase, the removal efficiencies of NH4

+ and
NO2

− were 94,3% and 98,8%, respectively (HRT 4.4 h) and the TN removal rate was
0.31 g-TN L−1 day−1. These results clearly indicated that the method of acclimation lead to
the removal of nitrogenous compounds by the anammox microorganisms at a high level
of efficiency.

During Phase 3, RAS WW was used without the addition of TE and the HRT was
slightly increased to 4.8 h (i.e., a slight decrease of TN loading rate). The NH4

+ and NO2
−

removal efficiencies showed high efficiency in removal even during this phase.

3.2. Microbial Community Analysis and FISH

A total of 25 603, 30 130 and 28 109 non-chimeric reads and 139, 172 and 206 operational
taxonomic units (OTUs) were obtained from days 83, 200 and 280, respectively. In this study,
OTUs that accounted for >0.5% of the total reads were used for the analysis, and OTUs
accounting for <0.5% of the reads were grouped as “Others” (Figure 5). Ca. Scalindua
was identified as the most abundant species in the reactor throughout the experiment.
Interestingly, the relative abundances of Ca. Scalindua did not drastically change over
time. Despite a slight decrease (from 21.4% at the end of Phase 1 and 16.7% at the end of
the experiment), it remained the most dominant species in the anammox granule, even
during the phases with 100% RAS WW. The stability of the population of Ca. Scalindua,
throughout all the different experimental phases, was also supported by FISH observations
(Figure 6).
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Figure 6. FISH micrographs of biomass collected from the column reactor at days 83 (A), 200 (B) and
280 (C). FISH was performed with Alexa Fluor 647-labelled EUB338mix probe (cyan) for all bacteria,
and an Alexa Fluor 555-labelled Sca1129b probes (red) for Ca. Scalindua. Ca. Scalindua appears
magenta and other bacteria appear blue. Scale bars represent 10 µm.

4. Discussion
4.1. Reactor Performance

The marine anammox species Ca. Scalindua has been isolated from coastal sediments
from Hiroshima bay in 2007 [38]. Since then, inocula from the original samples have been
successfully cultivated in Japan and Sweden, using the standard protocol developed by
van de Graaf and colleagues [34]. During the first 83 days of our experiment, we continued
to feed the anammox reactor with standard feed in order to maintain a steady state of high
removal efficiencies with the utilization of synthetic WW as feed for the microorganisms.
The efficiencies in terms of removal rate were extremely high and stable, with 98.3%
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and 99.5% on average for NH4
+ and NO2

−, respectively. These removal rates remained
stable when the synthetic feed was gradually replaced by RAS WW during the second
phase (days 84–200), with average removal rates of 95.9% and 99.2% for NH4

+ and NO2
−,

respectively. These removal rates were comparable to the removal rates obtained with
the original sediment from Hiroshima bay (95% and 99%, respectively) [38]. These results
confirm both the successful establishment and upkeep of the anammox process and the
successful acclimation to RAS WW. The gradual increase of RAS WW, slowly replacing the
standard feed, in the anammox feed method helped the microorganism to acclimate to this
new substrate, as seen with the high and stable removal rates observed during this phase.
Unlike what we observed in our previous experiment, the nitrogen removal efficiency was
not compromised when allowed to slowly acclimate to RAS WW [33].

In this experiment, we further hypothesized that the reduction in removal rate ob-
served could be due to the absence of certain key TE missing from the RAS WW [33].
Therefore, the last phase of our experiment was designed to verify this hypothesis, if
once adapted to 100% marine RAS WW, supplemented with TE, the biomass would be
able to maintain the removal capacity over time using pure marine RAS WW without TE
supplementation. During this last phase, we continued to observe relatively high and
stable removal rates for both NH4

+ and NO2
− (92.1% and 98.7%, respectively). Therefore,

we can conclude that the required TE must have been present in appropriate quantities in
the marine RAS WW to allow for the normal functioning of the anammox granules.

Today, the vast majority of anammox reactors are cultivated using a feed supple-
mented in 9 TE, which was originally designed for the first freshwater anammox bacteria
isolated [34]. TE are essential for the normal functioning, growth and proliferation of the
anammox bacteria [50–52]. It is essential to identify the specific TE requirements for each
anammox species, as insufficient concentrations can limit normal cell functioning, division
and proliferation within the granule, while too high concentrations can negatively impact
the anammox process and potentially be lethal for the bacteria [51–54]. It is reasonable to
hypothesize that different species of anammox bacteria may have different TE requirements.
Marine strains of anammox bacteria, such as Ca. Scalindua, may have requirements that
differ to those of the freshwater anammox most frequently studied [33,51,55]. To date,
knowledge of the specific requirements regarding each individual TE is still scarce [51]. We
have previously shown that all those 9 TE were present in the sea salt (Sealife, Marinetech,
Tokyo, Japan) used to make the artificial marine water for the RAS from which RAS WW
was used [33]. Finally, we have maintained the optimal culture condition for Ca. Scalindua
throughout the different experimental phases. We have maintained strict anaerobic con-
ditions through the degassing of the feed with N2 gas prior connection to the reactor. Ca.
Scalindua was further fed with RAS WW containing low NO3

- levels and supplemented
with NH4

+ and NO2
− [34]. As those optimal culture conditions might not be met in

commercial-scale RAS, future studies need to investigate the performance of Ca. Scalindua
under these real-life conditions.

4.2. Microbial Community

FISH and microbiological analysis have reflected a relatively stable population of Ca.
Scalindua during all the phases of the experiment. Despite a slight decrease over time,
Ca. Scalindua remained the main bacterial phylum present in the granule across the three
experimental phases.

Overall, the relative abundance of bacterial phyla in the biomass samples also re-
mained relatively stable throughout the different phases of the experiment. The small
changes observed in the bacterial communities could be attributed to the high protein
concentrations and/or the presence of other organic and inorganic residues (including
NO3

−) from waste, fish feces and uneaten feed in the RAS WW during Phases 2 and 3.
Indeed, we observed an increase in non-chimeric reads and number of OTUs after the
addition of RAS WW to the anammox feed. This additional load of bacteria from the
RAS WW could have led to an artefact resulting in a slight reduction of Ca. Scalindua in
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the granule. This is supported by the fact that most of the changes observed concerning
bacterial groups belonged to the Gammaproteobacteria class. These bacteria, mostly aerobic,
are found in freshwater and marine environments including RAS, where they are often
the predominant species [56–59]. Slight changes in the bacterial communities over time in
the RAS, from which we obtain the WW, could therefore be the reason for the transient,
differential colonization of anammox granules over the course of the experiment. Further
studies specifically designed to follow the evolution and quantification of the biomass
could help detail this.

At the taxonomic level, the main differences observed concern some changes in
relative abundance within the class of Gammaproteobacteria. Here, we witnessed the total
disappearance of Pseudoalteromonas after Phase 1 that were replaced by Rheinheimera in
Phase 2, which are then almost totally replaced by Wenzhouxiangella and Acidithiobacillaceae
during Phase 3 (Figure 5).

Pseudoalteromonas is a genus of gram-negative rods belonging to the family Pseudoal-
teromonadaceae [60]. Members of this family have very versatile metabolic capacities and are
thought to play important ecological roles in marine environments [60]. These organisms
accounted for a third of the species found in the denitrifying compartment of the denitrifica-
tion bioreactor of an experimental, warm-water marine RAS [61]. This disappearance could
be caused by the change of environment and less favorable conditions for these organisms
driven by the addition of RAS WW.

Rheinheimera is a genus of gram-negative bacteria from the family of Chromatiaceae.
These chemoheterotrophic organisms are widely found in freshwater and seawater en-
vironments, including fishponds, but prefer aerobic or microaerobic environments to
grow [62–66]. These organisms may have originated from the RAS WW, being aerobic and
probably bringing microorganisms from the system, during the slow introduction period
during Phase 2. However, after the next phase, these bacteria were exposed to more than
200 days of anaerobic conditions, which most probably have impacted their growth and
their relative abundance within the granules [62].

The Wenzhouxiangella genus belongs to the gram-negative Wenzhouxiangellacea family,
they are found in marine, hypersaline, and soda lake environments [67]. Although some
species are obligately aerobic and chemoheterotrophic [68], some species have shown
a successful adaptation and steady growth under anaerobic conditions in the presence of
NO3

−, which corresponds well to the environment in the anammox reactor [67].

5. Conclusions and Perspectives

This study demonstrates that Ca. Scalindua can be used as an alternative denitrifying
component in RAS. We have shown that a slow and gradual exposure of Ca. Scalindua
resulted in a successful acclimation to full marine RAS WW, with maintained high removal
rates (over 92%) of both NH4

+ and NO2
− throughout the different experimental phases.

The activity of Ca. Scalindua was not negatively affected by the organic compounds
present in the marine RAS WW nor by the absence/imbalance of certain TE, as hypothe-
sized earlier. The current study, thus, suggests that anammox reactors containing marine
strains such as Ca. Scalindua could be directly applied to treat RAS WW, without TE
supplementation. This represents a clear advantage of using marine anammox strains in
marine RAS, as seawater already contains all the essential TE for the normal growth and
functioning of these bacteria.

In this study, we maintained optimal culture condition for Ca. scalindua throughout
the experimental phases. We maintained strict anaerobic conditions and Ca. Scalindua was
fed with RAS WW containing high concentrations of NH4

+ and NO2
− and low concen-

tration NO3
−. Future studies need to investigate the performance of Ca. Scalindua under

typical up-scaled RAS conditions regarding nitrogen compounds and O2, in order to vali-
date the use of marine anammox bacteria as nitrogen treatment technology in commercial
scale RAS.
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