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Abstract: The growing complexity of data derived from Industrial Internet of Things (IIoT) systems
presents substantial challenges for traditional machine-learning techniques, which struggle to ef-
fectively manage the needs of predictive maintenance applications. Automated machine-learning
(AutoML) techniques present a promising solution by streamlining the machine-learning process,
reducing the necessity for manual hyperparameter tuning and computational resources, thereby
positioning themselves as a potentially transformative innovation in the Industry 4.0 era. This re-
search introduces two distinct models: AutoML, employing PyCaret, and Auto Deep Neural Network
(AutoDNN), utilizing AutoKeras, both aimed at accurately identifying various types of faults in
ball bearings. The proposed models were evaluated using the Case Western Reserve University
(CWRU) bearing faults dataset, and the results showed a notable performance in terms of achieving
high accuracy, recall, precision, and F1 score on the testing and validation sets. Compared to recent
studies, the proposed AutoML models demonstrated superior performance, surpassing alternative
approaches even when they utilized a larger number of features, thus highlighting the effectiveness
of the proposed methodology. This research offers valuable insights for those interested in harnessing
the potential of AutoML techniques in IIoT applications, with implications for industries such as
manufacturing and energy. By automating the machine-learning process, AutoML models can help
decrease the time and cost related to predictive maintenance, which is crucial for industries where
unplanned downtime can lead to substantial financial losses.

Keywords: AutoML; predictive maintenance; artificial intelligence; IIoT; fault classification; CWRU
bearing dataset; AutoKeras; PyCaret

1. Introduction

The Internet of Things (IoT) has revolutionized several industries, including manu-
facturing, by enabling the integration of physical and digital systems to enhance real-time
services [1,2]. This development has paved the way for Industry 4.0, which is propelled by
IoT and artificial intelligence (AI) [3]. A key advantage of automated industrial systems
within Industry 4.0 is the substantial growth in the volume of data that can be gathered
from sensors, transceiver devices, and data storage systems [4,5]. This data can be pro-
cessed and analyzed to yield valuable insights regarding equipment performance, thus
facilitating a transition towards predictive maintenance (PdM) [6,7]. AI techniques can
be employed to automatically extract information from collected historical data, which in
turn can improve maintenance procedures and boost operational sustainability [8,9]. In
this context, PdM is gaining prominence across various industries, owing to its potential
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to decrease maintenance expenses and prolong the service life of equipment [10,11]. AI
tools such as machine learning (ML) have the potential to further improve industrial sys-
tems by enhancing decision-making capabilities in real-time scenarios [12]. ML is a field
of study that empowers computers to learn without explicit programming. It leverages
computational techniques to extract information directly from data, bypassing the need
for predefined equations or models. Therefore, the integration of AI and IoT technologies,
such as ML and PdM, can play a significant role in improving industrial systems’ overall
efficiency and sustainability in Industry 4.0 [3,7].

Rolling-element bearings (REBs) are a prime example of components that require
diligent PdM, as they are susceptible to various damages caused by the harsh operating
conditions they endure, such as high speed, heavy load, extreme temperatures, and con-
tamination. An unexpected bearing fault can lead to substantial financial losses and catas-
trophic failures, resulting in a breakdown of an entire mechanical system. Consequently,
conducting an REB fault diagnosis is essential for preventing accidents and ensuring safe
operation [13].

This paper aims to enhance the maintenance process of REBs by automating the
detection and classification of possible faults that may occur during operation. AutoML
models were proposed to provide a user-friendly methodology for non-expert users in
the manufacturing industry. Such models streamline the selection of machine-learning
algorithms or deep neural network architecture that is most suitable for a given dataset
and task. Thus, they greatly reduce the need for human intervention and expertise.

The rest paper is ordered as follows: Section 2 provides a literature review of the
related works. Section 3 introduces the categories of maintenance management and focuses
on PdM. Section 4 describes the proposed methodology. Section 5 presents an overview
of the used dataset. Section 6 discusses the experimental results. Finally, Section 7 lists
the conclusions.

2. Related Works

In recent years, several studies have utilized ML models to reduce downtime which
ultimately results in improving the efficiency of production processes. These studies can be
grouped into three main categories, which are summarized in this section. The first category
focuses on using ML for PdM, where algorithms are used to predict equipment failures
before they actually occur. The second category investigates the utilization of AutoML
techniques. AutoML automates model selection, hyperparameter tuning, and feature
engineering. This allows non-experts to build high-performance models with slight effort.
AutoML facilitates early detection of equipment failures. This early detection reduces
downtime, and improves productivity in PdM. Incorporating AutoML with IoT systems
allows predictive decision-making and real-time monitoring, which make it a crucial tool
for Industry 4.0. [14–16]. Finally, the third category investigates the application of ML in
the CWRU bearing faults dataset, which is widely used for benchmarking PdM algorithms.

Focusing on the first category, a PdM approach aimed at diagnosing critical failures
in medical equipment was proposed in [17]. The approach relied on understanding the
physics of failure, real-time IoT data collection, and ML for fault prediction. The approach
was applied to a case study of a Vitros-Immunoassay analyzer and proved to provide
significant cost savings and a short investment payback period. However, it is limited to
certain failure modes and parameters and requires sufficient data for accurate predictions.
Lee et al. [9] discussed the use of AI-based algorithms for monitoring the cutting tool
wear and spindle motor bearing failures where the support vector machine (SVM) and
artificial neural network (ANN) methods were used. Another study in [18] presented a
machine-learning approach based on random forest for the maintenance of electric motors.
The system was tested on a real industry example, and preliminary results showed high
accuracy in predicting different machine states. Nasser and Al-Khazraji [19] proposed a
hybrid convolution neural network and long short-term memory networks (CNN-LSTM)
approach for fault prediction and diagnosis. In [20], a deep learning model called causal
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augmented convolution network (CaConvNet) is proposed for long-sequence time-series
prediction. While the model outperformed its counterparts in the literature, it faced
limitations such as a complex architecture that can result in extended training durations
and increased computational expenses.

In comparison to the aforementioned studies, the proposed work aims to apply Au-
toML to develop a PdM model. The approach intends to optimize the ML pipeline, in-
cluding feature selection, algorithm selection, and hyperparameter tuning, to enhance the
model’s accuracy and reduce the time and effort required to develop the model.

Numerous recent studies have emerged in the field of PdM utilizing AutoML.
Leite et al. [21] presented a model for real-time fault detection and diagnosis (RT-FDD)
in discrete manufacturing machines (DMMs), which compared 16 ML classification algo-
rithms such as Extra Trees and Random Forest. Tornede et al. [22] proposed a remaining
useful lifetime (RUL) estimation as a co-operative coevolutionary algorithm. Cinar et al. [23]
implemented a new PdM system using a set of key performance indicators (KPIs) and
metrics for enhancing performance-monitoring processes. In [24], the study explored the
potential of using AutoML on real-world data. Garouani et al. [25] presented a framework
of AutoML for researchers aiming to engage industry 4.0 with the field of smart manufac-
turing. Finally, in [26], the researchers analyzed the features of the constant current (CC)
and constant voltage (CV) phases for making the life prediction and capacity estimation of
lithium-ion batteries (LIBs).

For the third category, this work aims to improve the diagnostic process and manage
failures more effectively. To this end, AutoML approach is utilized for failure prediction
in REBs. AutoML automates the section and tunning of ML models that are most suit-
able for a given dataset and task [27]. Several ML algorithms based on extracted features
from the vibration dataset of the CWRU Laboratory were used for various fault classifi-
cations [28]. Some recent and related studies were used for comparative analysis with
this work. Wen et al. [29] developed a new deep transfer learning (DTL) method for fault
diagnosis. The work in [30] demonstrated the effectiveness of combining signal-processing
methods with ML techniques. The work presented by Sharma et al. [31] aimed to detect
and classify faults in various industries. Five different algorithms were used, and their
performance was compared on different datasets. In [32], the use of fusion models and
algorithms for multisource sensing data was investigated, and only four features were
utilized. Jian et al. [33] proposed a one-dimensional fusion neural network (OFNN) method
for the intelligent diagnosis of faults, which was applied with a wide kernel and combined
with the Dempster–Shafer evidence theory. The work in [34] utilized some ensemble-
learning algorithms, including gradient-boosting classifiers, bagging, and extra tree, as
diagnostic techniques. Wen et al. [35] presented the transfer CNN based on ResNet-50
with the depth of 51 convolutional layers. Wang et al. [36] introduced a CNN model
which constructed a signal-to-image conversion method based on fault bearing vibration
characteristics propagating along the space. Han and Jeong [37] proposed a weighted
arithmetic mean CNN ensemble model to improve the stability of CNN models. The study
in [38] showed that ML models can effectively diagnose REB faults. The study found that
the k-nearest neighbors (k-NN) and SVM classifiers performed the best, using specific
frequency-domain and time-domain features. However, the study used an imbalanced
dataset which could potentially bias the classification results. Rajput et al. [39] developed a
method called fuzzy convolution neural network (FCNN). While the method accurately
diagnosed faults in rotating parts and successfully classified different types of faults, it
faced difficulties in detecting outer-race faults due to imbalanced data.

To ensure unbiased results, the current study used a balancing technique to overcome
this challenge.

According to [40], a medium Gaussian SVM was proposed. The study utilized vi-
bration signals collected on-site, extracted features, and clustered and classified them for
motor health classification. Different Gaussian kernel functions were analyzed for their
impact on SVM performance. The study identified a limitation of the medium Gaussian
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SVM, which was reduced performance on high-dimensional data and sensitivity to the
choice of hyperparameters. In this paper, it is assumed that the features extracted by
Lin [40] are available and that the feature-engineering process was already performed.
Despite recent studies primarily focusing on advancing PdM processes and integrating
smart sensors into critical instruments and machinery used in manufacturing plants, there
is still room for improvement in the journey toward the Industry 4.0 revolution in line
with the IoT concept. ML algorithms have played a crucial role in developing accurate
models for PdM. However, some challenges persist, such as high computational costs and
redundant model information, while minimizing human intervention. In response to these
issues, adopting AutoML algorithms, which embody a pipeline model that automatically
fine-tunes hyperparameters, presents a promising solution. The primary contributions of
this study are as follows:

i. Development of AutoML-based prediction algorithms (PyCaret and AutoKeras) for
application on REB fault datasets;

ii. Design of a preprocessing algorithm to enhance the prediction process’s performance;
iii. Conducting of a comparison study between the proposed prediction algorithms;
iv. Comparative analysis of the models proposed in this research against prior works to

showcase their effectiveness in addressing the same case study.

3. Predictive Maintenance

Among the different categories of maintenance management policies, PdM is recog-
nized as the most recent and holds substantial value in comparison to traditional poli-
cies [41]. According to the literature, these policies can be classified into three primary
categories based on the strategies used [42]:

• Corrective maintenance, also known as run-to-failure (R2F), is a straightforward
strategy that involves addressing equipment issues only when they cease to function,
often necessitating the replacement or repair of specific components.

• Preventive maintenance (PvM) is a scheduled maintenance strategy carried out pe-
riodically at predetermined intervals. While this approach is effective in preventing
equipment failure, it may also result in unnecessary costs for corrective maintenance.

• PdM is a strategy that involves continuous system monitoring to anticipate potential
failures using a combination of machine-learning techniques, integrity factors, engi-
neering approaches, and statistical inference methods. Zonta et al. [43] define PdM
as models that rely on historical data and domain knowledge, enabling advanced
failure anticipation using statistical or machine-learning algorithms. This approach
ultimately improves decision making related to maintenance activities and helps pre-
vent downtime. The evolution of IoT, sensing technology, and AI has facilitated a shift
in maintenance strategies from R2F to PvM, and, finally, to PdM [44].

4. Proposed Methodology

This study involves developing a PdM model with the goal of improving maintenance
strategies and minimizing the impact of equipment malfunctions in an Industry 4.0 context.
The methodology flowchart, depicted in Figure 1, illustrates the general workflow of the
study. The process begins with loading the data, followed by a data-preprocessing phase
that prepares the dataset for model application. Next, two different AutoML models,
PyCaret and AutoKeras, are employed. PyCaret is utilized to develop an efficient ML
model based on the training dataset, while AutoKeras is used to construct a deep neural
network model. During the prediction phase, the data are divided into two sets: one for
testing and the other for validation with unseen data. Finally, a comparison is made using
specific evaluation metrics to identify the best-performing model, ultimately leading to
the selection of the PdM model that excelled in the classification problem of the adopted
case study. It is important to highlight that in this work, the data-preprocessing step—
which includes data sampling, balancing, and encoding categorical data—is carried out
before training the models. The capability to perform preprocessing is possessed by both
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models. However, the decision was made to have preprocessing executed separately to
ensure compatibility, maintain consistency, and, ultimately, enhance performance. Figure 2
presents a detailed overview of the modeling phase, depicting the several steps involved in
training both PyCaret and AutoKeras models.

1 
 

 
  Figure 1. General proposed methodology flowchart. 

2 

 
  Figure 2. Detailed overview of the modeling phase.

4.1. Data Preprocessing

The dataset employed in this study comprises nine features that were derived from
the original vibration data, representing 10 categories of labels, as provided by [40]. The
dataset consists of 230 labels for each category, yielding a total of 2300 data points. The
proposed methodology involves conducting data preprocessing to prepare the dataset
for modeling. This process aims to ensure the accuracy and reliability of ML models in
predicting equipment failures. Given that the dataset already contains extracted features,
the preprocessing primarily involves the normalization, balancing, and encoding of the
categorical data. Normalization is applied to numerical features to scale them to a common
range, which is essential for ML models that rely on distance measures. Data balancing is
performed to avoid bias towards the majority class, which could result in poor performance
when detecting the minority class. Numerous studies have demonstrated that normaliza-
tion and data balancing significantly improve the performance in various applications,
including PdM (e.g., [45,46]). The categorical target variable is encoded to facilitate its use
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in ML algorithms. Algorithm 1 outlines the process of preparing the dataset for modeling
by performing data preprocessing. This results in a preprocessed dataset that is ready to be
used as input for either the PyCaret or AutoKeras models.

Algorithm 1 Data Preprocessing.

Input: CWRU dataset (d), input feature columns (f), output target (t)
Output: Preprocessed dataset (pd)

1. Normalize: Feature normalization (d)
2. X← f
3. Y← t
4. Xn← normalize(X)
5. Balance: Dataset balancing (Xbal,Ybal)
6. Xbal,Ybal← balance(Xn, Y)
7. Map: Mapping categorical target from 0 to 9
8. ymap←map(Ybal)
9. Split: Splitting dataset into training, validation, and test sets (sd)
10. X_train_val, X_test, y_train_val, y_test← (Xbal, ymap, test_size = 0.05)
11. X_train, X_val, y_train, y_val← (X_train_val, y_train_val, test_size = 0.2)
12. Return pd← (X_train, y_train, X_val, y_val, X_test, y_test)

4.2. AutoML (PyCaret) Model

The primary objective of this model is to identify and prevent equipment failures by
analyzing real-time data collected from the system. Utilizing the power of AutoML, the
model employs a range of ML techniques and optimization algorithms to understand and
adapt to the system’s behavior, ultimately enhancing the accuracy and efficiency of the
maintenance process. By incorporating the capacity to learn and adapt from past experi-
ences, this model seeks to minimize the time and resources required for maintenance tasks,
leading to cost savings and improved productivity. PyCaret is a machine-learning library
that requires few lines of code and makes the machine-learning processes more streamlined
by automating tasks such as data preparation, model selection, hyperparameter tuning, and
deployment. It supports various machine-learning tasks and offers a user-friendly interface
for data visualization and model interpretation [46–48]. In this research, the power of the
PyCaret library for constructing and evaluating ML models to predict equipment failures
is demonstrated. In this model, the compare function was used to evaluate a wide range of
advanced ML algorithms automatically. To assess the model’s generalization ability, the
dataset was divided into three subsets. A portion of 5% was reserved for validation to
simulate the model’s performance on unseen data. The remaining 95% was then divided
into the 80% training set and 15% testing set to ensure the model was trained on a diverse
and sufficient dataset. An automated process was employed for selecting the best algo-
rithm and tuning its hyperparameters. This process entailed evaluating various models on
the training set and choosing the best-performing one based on evaluation metrics. The
selected model was further optimized by tuning its hyperparameters using cross-validation
on the training set. Finally, the model’s performance was assessed on the test and validation
sets with the optimized hyperparameters, and the results were compared to those obtained
from the non-tuned model.

4.3. AutoDNN (AutoKeras) Model

AutoKeras automates the selection of optimal hyperparameters and network architec-
ture for a given dataset, saving significant time and effort. It also simplifies the process of
data preparation and model selection by providing built-in neural network models and
preprocessing techniques [49,50]. The model was initialized with a maximum of 15 trials
and trained for 32 epochs.

Algorithm 2 outlines the essential steps for selecting the best PdM model, which is
based on a comparison of accuracy (acc), precision (prec), recall (rec), F1 score (f1), and
confusion matrix (cm).
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Algorithm 2 Best Model Selection.

Input: Preprocessed dataset (pd), AutoML and AutoDNN models
Output: Best Auto Predictive Maintenance Model (bAutoM)

1. Train and evaluate AutoML Models:
2. AutoML← train_ AutoML (X_train, y_train)
3. AutoML _metrics← evaluate_model (AutoML, X_val, y_val)
4. Train and evaluate AutoDNN Model
5. AutoDNN←train_AutoDNN(X_train, y_train)
6. AutoDNN _metrics = evaluate_model(AutoDNN, X_val, y_val)
7. Model selection based on evaluation metrics (em):
8. begin
9. em←(acc, prec, rec, f1,cm)
10. Best_evaluation_metrics (best_em)
11. BAutoM←None
12. best_em←[0, 0, 0, 0, None]
13. for i in range (len(em)):
14. if AutoML metrics[i] > AutoDNN_metrics[i]
15. if AutoML_metrics[i] > best_em[i]
16. BAutoM←AutoMl
17. end if
18. end if
19. else if
20. AutoDNN_metrics[i] > best_em[i]
21. BAutoM←AutoDNN
22. end if
23. end for
24. Return BAutoM
25. end

5. Case Study

Due to rapid advancements in science and technology, electric machines are widely
used in manufacturing applications. Consequently, these machines often operate under
unfavorable conditions, such as excessive loads and humidity, necessitating maintenance
to prevent motor breakdowns. Key components to consider in the maintenance process
include stators, shafts, rotors, and bearings of rotating machines [51].

Bearings are crucial rolling elements in machines, and any changes in their health con-
ditions, such as operating under varying loads, directly impact the efficiency, performance,
lifespan, and stability of the machines [52]. Figure 3 depicts the components of an REB,
which include the inner race (IR), outer race (OR), ball, and cage [53,54]. 

3 

 
  Figure 3. REB: exploded and geometric view [54].

As illustrated in Figure 4, the test system comprises a 2 hp motor, a torque trans-
ducer/encoder, a dynamometer, and control electronics. The fault test is implemented at
the fan-end bearing to support the motor shaft. The CWRU dataset includes vibration data
collected using accelerometers attached to both the drive end and fan end of the motor
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housing. In some experiments, an additional accelerometer was also attached to the motor
base plate for support. A 16-channel digital audio tape (DAT) recorder was used for data
collection [55].

Vibration signals contain valuable information about the health of the equipment. By
extracting features such as the maximum value (max: measure of the highest magnitude
of the signals), minimum value (min: measure of the lowest magnitude of the signals),
mean (measure of the central tendency of the signals), standard deviation (sd: measure
of the spread of the signals), root mean square (rms: measure of the average magnitude
of the signals), skewness (measure of the symmetry of the signals), kurtosis (measure of
the peakedness of the signals), crest factor (measure of the peak-to-peak magnitude of
the signals), and form factor (measure of the shape of the signals) from these signals, it is
possible to identify patterns that may indicate potential equipment failures. These features
provide information about the level, variability, symmetry, peakedness, and shape of the
signals, and can be used to train ML models for PdM tasks. In addition to these features,
other characteristics of the signals such as frequency, time, and waveform can also be
analyzed to improve the accuracy. The specific features that will be most effective for a
given task will depend on the characteristics of the equipment and the data available [56]. 

4 

 
  
Figure 4. CWRU bearing system [55].

The dataset comprises a large collection of vibration signals from bearings subjected
to various fault conditions. In total, it contains 10,000 fault conditions, with each fault
condition represented by 230 vibration signals. The fault conditions are categorized by fault
type and severity. The fault types are inner-race faults, outer-race faults, and ball faults.
The fault severity levels are small, medium, and large. In addition to the fault conditions,
the dataset also contains normal conditions. The normal conditions represent bearings
without any faults. Table 1 provides a summary of the fault and normal conditions. The
table includes the types of faults, levels of severity, and the corresponding abbreviations
used [36].

Table 1. Fault conditions in the CWRU bearing dataset.

Fault Type Severity Description Abbreviation

Inner race
Small (7 mils)

Fault in the inner race of the bearing
IR_007_1

Medium (14 mils) IR_014_1
Large (21 mils) IR_021_1

Outer race
Small (7 mils)

Fault in the outer race of the bearing
OR_007_6_1

Medium (14 mils) OR_014_6_1
Large (21 mils) OR_021_6_1

Ball
Small (7 mils)

Fault in the balls of the bearing
Ball_007_1

Medium (14 mils) Ball_014_1
Large (21 mils) Ball_021_1
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The objective of this work is to develop a classification model that recognizes the
provided nine types of faults as classes. A tenth class called "Normal" is included to
represent a healthy bearing with no faults. This class serves as a reference for comparison
with the other fault classes and it has no specific fault size. The data for the Normal class
was collected from the same locations as the data for the other fault classes, which are the
drive end, the fan end, and the base [57].

6. Results and Analysis

In this section, the performance of the two proposed models is analyzed, and the
impact of hyperparameter tuning on the results is assessed using both the testing and
validation sets.

6.1. Data Preparation Process

The initial dataset was suffering from imbalances issues, as the majority of samples
belonged to the Normal class. The Random Under Sampler was applied to address this
imbalance. Afterward, the data were normalized by the Robust Scaler, which scales the
features using statistics that are robust to outliers. Finally, categorical values were mapped
to numerical values using dictionary mapping. Table 2 summarizes the steps involved in
the data-preprocessing process used in this research.

Table 2. Preprocessing operations applied on the fault classification dataset.

Preprocessing Operation Details

Data Balancing Random Under Sampler
Normalization Robust Scaler

Encoding

Categorical mapping
‘IR_007_1’: 0, ‘IR_014_1’: 1, ‘IR_021_1’: 2,
‘OR_007_6_1’: 3, ‘OR_014_6_1’: 4, ‘OR_021_6_1’: 5,
‘Ball_007_1’: 6, ‘Ball_014_1’: 7, ‘Ball_021_1’: 8,
‘Normal_1’: 9

6.2. AutoML and AutoDNN Validation Models

In the PyCaret model, the preprocessed data were used as input, and the setup function
provided by the PyCaret library was applied. The resulting configuration parameters are
illustrated in Table 3.

Table 3. AutoML (PyCaret) model configuration summary.

Description Value

Session id 8337
Target fault
Target type Multiclass
Original data shape (2185, 10)
Transformed data shape (2185, 10)
Transformed train set shape (1748, 10)
Transformed test set shape (437, 10)
Numeric features 9
Number of folds 10

The compare function was used to train and evaluate multiple machine-learning
algorithms using predefined metrics, including accuracy, recall, precision, and F1 score.
These metrics can be defined and calculated as follows [58,59]:

Accuracy is defined as the number of correct predictions made by the model over the
total number of predictions. It can be represented as:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)
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where TP (true positive) represents the number of positive cases correctly classified as
positive, while FP (false positive) refers to the number of negative cases wrongly classified
as positive. Similarly, FN (false negative) corresponds to the number of positive cases
mistakenly classified as negative, and TN (true negative) indicates the number of negative
cases correctly identified as negative.

The Recall metric measures the model’s ability to accurately identify all positive cases.
It is defined as the number of true positive predictions made by the model over the total
number of actual positive and it can be calculated by:

Recall = TP/(TP + FN) (2)

Precision measures the model’s ability in identifying positive cases correctly. It is
defined as the number of true positive predictions over the total number of positive
predictions, and it can be calculated as:

Prec.= TP/(TP + FP) (3)

Finally, the F1 score is a metric that balances the harmonic mean of recall and precision,
as follows:

F1 = 2 × (Precision × Recall)/(Precision + Recall) (4)

A confusion matrix is a table that summarizes the performance of a given machine-
learning classification model based on a set of test data. It indicates the TP, TN, FP, and FN
for each class label. The matrix is built by comparing the predicted class labels generated
by the model with the actual class labels in the test dataset. The rows represent the actual
class labels, whilst the columns represent the predicted class labels. A correctly classified
sample is a true positive or true negative, while a misclassified sample is a false positive or
false negative. The confusion matrix presents a comprehensive examination of the model’s
performance across all classes and can be applied to calculate other metrics such as accuracy,
precision, and recall.

Table 4 presents the results of the compare model function for the top five machine-
learning algorithms. Random forest (RF) achieved the best performance, followed by
gradient-boosting classifier (GBC), extra trees (ET), light gradient-boosting machine (Light-
GBM), and finally, extreme gradient boosting (XGBoost). In general, the evaluated models
achieved high accuracy, in the range of 95.94% to 96.34%. The recall scores were also high,
where all models achieved values greater than 95%. The RF model had the highest value
of 96.34%. Precision scores were from 96.12% to 96.52%, and the F1 score was the highest
for the RF model at 96.32%. For the computational time, the XGBoost model was the fastest,
with 0.0640 s training time (TT), on the other hand, the GBC model was the slowest, with
0.9490 s TT. The RF classifier was the best-performing model among those evaluated.

Table 4. Results of compare model function in PyCaret for the top five ML algorithms.

Model Accuracy (%) Recall (%) Prec. (%) F1 (%) TT (S)

RF 96.34 96.34 96.51 96.32 0.1610
GBC 96.28 96.28 96.52 96.28 0.9490
ET 96.23 96.23 96.43 96.22 0.1670
LightGBM 96.17 96.17 96.36 96.16 0.3560
XGBoost 95.94 95.94 96.12 95.92 0.0640

The next step was to fine-tune the best model (RF model) using PyCaret’s tune model
function. The auto-tuning process optimizes the hyperparameters of the model to further
improve its performance. The result of the auto-tuning process is shown in Table 5, which
displays the performance metrics of the model on each fold of the cross-validation.
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Table 5. Performance metrics of auto-tuned RF algorithm.

Fold No. Accuracy (%) Recall (%) Prec. (%) F1 (%)

0 96.57 96.57 96.84 96.60
1 94.86 94.86 95.15 94.88
2 96.57 96.57 96.98 96.61
3 96.57 96.57 97.00 96.55
4 98.86 98.86 98.89 98.86
5 97.71 97.71 97.74 97.70
6 94.29 94.29 94.23 94.14
7 96.00 96.00 96.20 95.99
8 97.13 97.13 97.12 97.11
9 95.40 95.40 95.64 95.24
Mean 96.40 96.40 96.58 96.37

Std. 0.0128 0.0128 0.0126 0.0131

The tuned RF model showed a slight improvement in performance with accuracy,
recall, precision, and F1 score of 96.40%, 96.40%, 96.58%, and 96.37%, respectively. The
standard deviation values for these metrics were low, ranging from 0.0126% to 0.0131%, as
displayed in Table 5. The performance of the model on the testing set, as measured by the
predict model function, was excellent, with an accuracy, recall, and F1 score of 99.70%.

For the AutoKeras model, Figure 5 shows a histogram displaying the performance
metrics for the testing sets associated with different failure types in the proposed AutoDNN
model. The x-axis represents the different failure types, numbered from 0 to 9, and the
y-axis denotes the score, measured in terms of precision, recall, and F1 score. The plot
indicates that the F1 score for most failure types is relatively high, with scores ranging from
83% to 100%. However, the precision score for failure type 4 (OR_014_6_1) is relatively
low at 78%, and the recall score for failure type 7 (Ball_014_1) is also relatively low at 83%.
The weighted average score for the performance metrics, in addition to the total accuracy,
is 95%.
 

5 

 
  Figure 5. Performance of proposed AutoDNN model on testing sets.

The architecture of the AutoDNN model generated by AutoKeras is illustrated in
Figure 6. The model comprises an input layer that accepts data with nine features. The
input data undergoes processing via a multi-category encoding layer for data preprocessing,
followed by a normalization layer to ensure that all inputs have a consistent scale. The
processed data is then fed into two dense layers, each with 32 neurons. Batch normalization
and rectified linear unit (ReLU) activation are applied between the dense layers. The output
layer consists of a dense layer with 10 neurons, followed by a softmax activation layer
for classification.
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6 

 
  
Figure 6. Proposed AutoDNN model architecture generated by the AutoKeras model.

6.3. Model Evaluation

In Figure 7, the feature importance plot generated by the PyCaret evaluate model
function indicates that the standard deviation (sd) feature has the highest importance in
predicting fault diagnosis, followed by the root mean square (rms) and mean features.
The remaining features, including kurtosis, minimum, maximum, form factor, crest factor,



Processes 2023, 11, 1507 13 of 18

and skewness, have relatively lower importance. Interestingly, the skewness feature is the
least important among them. These results suggest that prioritizing the sd, rms, and mean
features may lead to better classification performance. 

7 

 
  Figure 7. Feature importance generated by Pycaret’s evaluate model function.

The performance of the proposed AutoDNN model, as presented in Figure 8, demon-
strates superior results on validation sets compared to testing sets. The overall weighted
average score, comprising total accuracy, reaches 97%, exceeding the corresponding score
of 95% for testing sets. Upon closer examination of individual failure types, the F1 scores
are generally high, ranging from 91% to 100%. However, there are few exceptions where
the precision score for failure type 4 is relatively lower at 89%, and failure type 7 displays a
comparatively lower recall score of 88%. Notably, these scores are only marginally inferior
to those obtained for the same failure types on the testing sets. 

8 

 
  Figure 8. Performance of proposed AutoDNN model on validation sets.

The confusion matrices in Figure 9 show that the PyCaret model performed better
before tuning. The best RF model predicted all failure types accurately, while the tuned RF
model had misclassifications for failure types 2, 4, 5, 6, 7, and 8. Despite this, the tuned RF
model still achieved a good F1 score of 96.37% on the testing set.
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(a) (b) 

 
  Figure 9. Confusion matrix of the best AutoML model: (a) random forest classifier before tuning; and

(b) random forest classifier after tuning.

The confusion matrices of the AutoKeras model in Figure 10 show exceptional per-
formance, accurately predicting the majority of the classes. The testing and validation
confusion matrices were identical, indicating that the model did not overfit the training
data. For both sets, all classes except class 4 had perfect precision and recall scores. How-
ever, for class 4, the precision was 89% for the validation set and 82% for the testing set,
and the recall was 94% for the testing set. 

10 

  
(a) (b) 

 
  

Figure 10. Confusion matrices of the AutoDNN model: (a) testing sets; and (b) validation sets.

6.4. Results Discussion

Figure 11 shows the comparison between the two proposed AutoML models on both
testing and validation sets. The first plot displays the performance on the testing set, where
the PyCaret model achieves an impressive score of 99.70% for all metrics. In contrast, the
AutoKeras model has slightly lower scores of around 95%. The second plot displays the
performance on the validation set. The best model (RF model) scores 95.60% for all metrics,
while the AutoDNN model outperforms with a score of 97%. 

11 

(a) (b) 
 

Figure 11. Performance comparison between the two proposed models: (a) testing sets; and
(b) validation sets.
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Table 6 presents a summary of the performance of various ML models employed for
fault classification in ball bearings, including the proposed AutoML models and traditional
machine-learning methods from previous studies. The proposed AutoML model (PyCaret)
utilizing the best machine-learning model (random forest) achieved an impressive accuracy
of 99.70% on the testing sets and 95.60% on the validation sets, using only nine features.
Comparatively, the best results achieved by other studies are those from Wang et al. [36]
with a CNN achieving 99.92% accuracy using four features, and Rajput et al. [39] with
a Fuzzy-CNN achieving 99.87% accuracy using 16 features. The CNN and Fuzzy-CNN
models may have slightly higher accuracy, but the proposed AutoML model has several
advantages that make it a more attractive choice. One of the primary benefits of AutoML
models is their ability to automate the entire machine-learning process, including data
preprocessing, model selection, and hyperparameter tuning. On the other hand, the CNN
and Fuzzy-CNN machine-learning methods demand significant manual effort, including
feature engineering and meticulous selection of layers, number of neurons, kernels, pooling
size, and activation functions.

Furthermore, the design of Fuzzy-CNN models with effective fuzzy rules and mem-
bership functions requires expert knowledge of fuzzy logic. This necessitates a significant
amount of domain knowledge of the application in question and its data. Thus, the need
for highly skilled professionals and human intervention is greatly increased. While it is
true that CNN and Fuzzy-CNN models may have slightly higher accuracy, the AutoML is
more perforable due to its ease of use and automation ability. In addition, the Fuzzy-CNN
model developed in [39] achieved a comparable accuracy level, but with a considerably
larger feature set. This indicates that the proposed AutoML model may provide a more
efficient and effective solution. By using fewer features, the AutoML model streamlines
the process, potentially leading to faster training and reduced computational resources
without sacrificing accuracy. The proposed AutoDNN model (AutoKeras) demonstrates
competitive performance, achieving an accuracy of 95.00% on the testing sets and 97.00%
on the validation sets. While this model does not surpass the CNN model in [36] or the
Fuzzy-CNN model in [39] in terms of accuracy, it still significantly outperforms the majority
of other methods presented in the table. Consequently, the AutoDNN model (AutoKeras)
offers a valuable alternative for those seeking a reliable and efficient machine-learning
solution with less effort.

Table 6. Summary of results comparison with recent relevant studies.

Author Method Accuracy (%) Number of Features

Lin [40]

Medium Gaussian SVM 96.00
9Coarse Gaussian SVM 93.60

Fine Gaussian SVM 89.60
rms
sd

72.60
71.30

Haung et al. [32] (training set of 75%)
back-propagation neural network (BPNN) 91.60

4radial basis function neural network (RBFNN) 83.60
wavelet neural network (WNN) 84.80

Wang et al. [36] CNN 99.92 4

Fulgencio et al. [38] SVM 84.70 16
CNN 90.60 16

Rajput et al. [39] Fuzzy-CNN 99.87 16

Proposed AutoML model (PyCaret) Best ML:RF (testing sets) 99.70

9
Best ML:RF (validation sets) 95.60

Proposed AutoDNN model (AutoKeras) AutoDNN (testing sets) 95.00
AutoDNN (validation Sets) 97.00
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7. Conclusions

This study focused on developing an automated approach for accurately classifying
different types of faults in industrial IoT ball bearings using the CWRU dataset. The
study aimed to investigate the potential of AutoML techniques for predictive maintenance
while minimizing the need for manual hyperparameter tuning. The experimental results
demonstrated that both the proposed AutoML and AutoDNN models effectively achieved
accurate fault classification. Remarkably, the top-performing AutoML model attained an
impressive 99.7% accuracy, recall, precision, and F1 score on the testing sets, with random
forest emerging as the best algorithm. However, the proposed AutoDNN model displays
better accuracy on the validation set, scoring 97% as opposed to AutoML’s 95.60%. The
study underscores the benefits of employing AutoML techniques, enabling non-experts
in the industry to handle predictive maintenance tasks more efficiently. Consequently,
AutoML offers advantages such as automation, improved accuracy, and reduced resource
requirements. Future work could explore integrating advanced feature-engineering tech-
niques and domain knowledge to further enhance the model’s performance.
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