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Abstract: Melanoidins, as macromolecular heterogeneous organic polymers, are produced from the
Maillard reaction between amino and carbonyl groups during the thermal hydrolysis pretreatment
(THP) of sludge. The brown color and recalcitrance of melanoidins pose a serious threat to wastewater
treatment systems, such as invalidating UV disinfection and decreasing the efficiency of anaerobic
digestion; thus, they have gradually received much concern in recent years. However, currently
the study on THP-origin melanoidins is limited by a lack of reliable extraction and quantification
methods. This paper presents a comprehensive review of the physical, chemical, and biological
properties of melanoidins from different sources to fill the research gap on THP-origin melanoidins.
The adverse effects of melanoidins on the management of wastewater and sludge are discussed,
and for the first time, special attention is paid to the potential environmental hazards of THP-origin
melanoidins to natural ecosystems. The removal technologies of melanoidins are summarized and
compared as well. Finally, the suggested areas that future studies should focus on are provided. This
review is dedicated to providing guidance on melanoidin research and management for the better
development of the THP industry.

Keywords: melanoidins; thermal hydrolysis pretreatment; property; environmental hazards; removal

1. Introduction

Environmental costs rapidly increase hand-in-hand with industrialization and urban-
ization. Following the worldwide crisis of organic solid waste (OSW) generation, in recent
years, it has attracted attention on the continuous uptrend of energy consumption for OSW
management [1,2]. The sewage sludge produced in wastewater treatment plants (WWTPs)
is one of the most concerning OSWs due to its huge quantity, serious pollution, difficulty in
disposal, as well as great potential for resource recovery [3–5]. The cost of sludge disposal
is up to half of the total running costs in WWTPs [6,7]. Anaerobic digestion (AD) is a
widespread effective technology for sludge management, with low energy requirements,
high volume reduction, and renewable energy generation [8–10]. However, as hydrolysis
is the rate-limiting step of AD, thermal hydrolysis pretreatment (THP) has come into be-
ing to strengthen the disintegration and solubilization of particulate organics under high
temperatures and pressure by breaking microbial cells and disrupting the floc structure
of sludge [5,11]. In addition to improving the biogas production rate of the AD process,
THP also has some other remarkable advantages, such as enhancing sludge dewaterabil-
ity, providing pathogen-free biosolids, eliminating scum and the foaming of sludge, and
so on [8,12]. Therefore, THP combined with AD has been commercialized and applied
globally in full scale [13,14]. As an example, one of the most mature commercial THP tech-
nologies is Cambi® (Cambi ASA, Asker, Norway), operated at 165–180 ◦C and 6–8 bar for
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30–60 min [15–17], which up to now has served as sludge disposal in 88 full-scale facilities
in 27 countries (data collected from www.cambi.com (accessed on 1 January 2024)).

However, along with the benefits, the drawbacks induced by THP should not be
ignored, namely the formation of refractory by-products [18]. Most of these refractory
substances belong to Maillard reaction products (MRPs) called melanoidins [19,20]. The
Maillard reaction (MR) is a non-enzymatic browning reaction, which occurs between the
carbonyl of reducing sugar and the amino group of the protein, amino acid, or peptide
under heating conditions, including a series of sequential and parallel reaction pathways
and depending strongly on the reaction conditions [21,22]. Melanoidins, as late-stage
MRPs, are dark-colored macromolecular heterogeneous polymers, which mainly involve
the structures of heterocyclic amines, furans, aldehydes, ketones, etc. [23,24]. Traditionally,
the focus of melanoidins has been mainly on the food field, and melanoidins are considered
to be present in many foods, like coffee, roasted malt, vinegar, bread, and beverages (such
as sweet wine and dark beer), and have obvious effects on the texture, flavor, storage, and
nutrition of food [25,26]. In the environmental field, the typical conditions of sludge THP
overlap with those of MRs, namely, sludge providing sufficient reactants (polysaccharide
and protein) and high temperatures that provide reaction occasions, thus inevitably result-
ing in the formation of melanoidins [18]. With the characteristics of a dark color, strong
ultraviolet (UV)-quenching ability, and extremely poor biodegradability, the adverse effect
of melanoidins on wastewater treatment and sludge disposal has become a difficult issue to
be solved, and the existence of melanoidins usually leads to non-compliance with the envi-
ronmental standards for discharged wastewater [18,22]. Moreover, THP-origin melanoidins
with dark colors and high organic nitrogen have strong potential to contaminate natural
water and soil [27,28].

As shown in Figure 1, in the last two decades, the studies on melanoidins have mainly
been divided into three aspects: (1) melanoidins from model MR systems (blue pattern),
(2) melanoidins in food (red pattern), and (3) melanoidins associated with wastewater (yel-
low pattern). An in-depth literature investigation revealed that melanoidins are coming into
ever-sharper focus in the environmental field, for example, in food-engineering wastewater
(particularly characteristics of melanoidins, the dose effect, and the application of effective
decolorization treatments). However, the research on THP-origin melanoidins in sludge is
still in the early stages; the published research and review articles have mainly focused on
their formation, characterization, or effects on subsequent AD process [29,30]. However, to
date, not only there is a lack of systematic knowledge on the targeted qualitative and quan-
titative analyses, but it also appears that fully comprehending the properties of melanoidins
to solve their effects and regulation is largely overlooked by the relevant literature.

Therefore, the main objective of this article was to comprehensively summarize the
properties of melanoidins formed during the THP of sludge and emphasize their environ-
mental hazards and removal technologies. This review can provide guidance on melanoidin
management and improve the development of the THP industry. It is worthwhile to note
that due to the limited research on melanoidins in the field of sludge, many references in
this review come from the THP of other OSWs, food processing wastewater, and even the
food industry to pave the way for future research on THP-origin melanoidins in sludge.

www.cambi.com
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Figure 1. Bibliometric map of studies on melanoidins as visualized by keyword network from
1122 articles published from 2000 to 2023, retrieved from Web of Science database.

2. Foundation of the Research on THP-Origin Melanoidins in Sludge
2.1. Methods for Melanoidin Extraction

Developing extraction methods for melanoidins is critical to the study of precise
characterization. Through extraction, the adverse impacts of melanoidins on the environ-
mental field might also be mitigated [11]. As for food-origin melanoidins, the extraction
methods are divided into physical methods (such as dialysis, ultrafiltration, gel filtration
chromatography, and macroporous adsorption resin) [31] and chemical methods (such as
organic solvent extraction and acid precipitation) [26]. During physical extraction, espe-
cially membrane separation (such as dialysis and ultrafiltration), establishing a universal
method that applies to all kinds of melanoidins is the main obstacle. The molecular weight
(MW) of melanoidins serves as the basis of purification, distinguishing them from most
of the other dissolved matters in the substrate [32,33]. However, the MWs of melanoidins
are variable with the differences in reactants [18]. To date, the frequently used membrane
cut-off is 5 kDa or 10 kDa according to the type of matrix. For example, the MW cut-off
is set as 5 kDa for extracting the melanoidins from cocoa beans and dark beer, whereas it
is 10 kDa for extracting melanoidins from coffee and vinegar [34,35]. It is worth conduct-
ing pre-experiment analysis (e.g., size exclusion chromatography) to determine the MW
contribution of the matrix, so as to provide a reference for melanoidin extraction [33,36].

Among the chemical methods, organic solvent extraction is the most adopted [31].
For example, an isopropanol extraction method was developed for melanoidins from
sugarcane molasses [37], while ethyl acetate extraction was reported to be effective for
melanoidins from distillery wastewater [38,39]. However, the main drawbacks of organic
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solvent extraction include the low recovery rate, low selectivity, large amount of solvent
consumption, high overall cost, and potential toxicity [40,41]. Moreover, it is hard to
maintain the structural integrity of melanoidins after extraction by organic solvent, which
becomes a limitation of the applicability of this method [26]. To improve the efficiency
of melanoidin extraction by organic solvents, the selection of the solvent is an important
factor which mainly depends on the chemical structure of melanoidins, especially the
polarity [42].

That is why macroporous resin adsorption has gradually gained acceptance as a pow-
erful method for melanoidin extraction, since it is capable of yielding a relatively complete
melanoidin profile [43,44]. For instance, Zhang et al. [26] compared acetone precipitation
and macroporous resin adsorption in melanoidin extraction from dark beer, and concluded
that resin adsorption was more effective at maintaining the accurate structure and profitable
antioxidant activity of the extracted melanoidins. Generally, macroporous resin adsorption
is a sustainable and eco-friendly method along with resin regeneration and reuse [45]. Our
group, for the first time, established the protocol of a macroporous resin method to extract
melanoidins from thermal hydrolyzed sludge (THS) and determined the optimal operating
conditions [19,46]. This laid the foundation for further study on THP-origin melanoidins.

It is noteworthy that new developments gradually appear in melanoidin extraction
with some auxiliary techniques, and multi-step purification has been established with
higher efficiency [31]. For example, high hydrostatic pressure was successfully adopted
to release melanoidins from black garlic to assist extraction [47]. Nevertheless, there is
no consensus on which extraction method works best, since this should be determined
according to the specific melanoidins. Unfortunately, at present, there have been no articles
on the comparison of melanoidin extraction methods targeting the differences in their
structures and properties, and thus, related investigation is needed to fill this gap.

On the other hand, in recent years, water-insoluble melanoidins have attracted much
attention [26,48]. To solve the insolubility problem, some pretreatments can be adopted [49].
For instance, Rodriguez et al. [50] and Celik et al. [51] used enzymatic hydrolysis to release
the insoluble protein structures in melanoidins from dairy products, coffee, and bread
crusts. Alves and Perrone [52] and Oracz et al. [53] obtained water-insoluble melanoidins
from bread and cocoa beans by acid and alkali hydrolysis, respectively, peeling off the
bound phenolic compounds in melanoidins to make them soluble. However, much is
still unknown about the existence of water-insoluble melanoidins in THS, thus failing to
distinguish the similarities and differences between soluble and insoluble melanoidins, and
this can be a future research direction.

2.2. Methods for Melanoidin Quantification

Quantification is as necessary and fundamental as extraction in the study of melanoidins.
The content of melanoidins is closely associated with their effects on the environment and
ecology [54,55], thus serving as a basis to evaluate their environmental risks. Due to the
hazard rating of THP-origin melanoidins still being uncertain, accurate quantification of
melanoidins is of vital importance for regulating their in situ formation and THP condi-
tions [56]. To date, the major hinderance to developing a straightforward way to calculate
the content of melanoidins is that the composition and structure are both variable without a
fixed form [18]. Most previous researchers were limited by using some indirect indicators to
represent the melanoidin content in solution, such as COD, color, or browning index [57,58];
however, due to being short of targeted representativeness, the above indicators are not
convincing enough. For example, some melanoidins are dark brown and others are light
yellow at the same concentration, so using 475 nm to represent brown is not a reliable
method [32].

Indeed, there are some relative quantification methods for melanoidins [42]. One of the com-
mon approaches is excitation–emission matrix fluorescence (EEM) semi-quantification [59,60],
employing fluorescence regional integration and parallel factor analysis to indicate the
relative content of melanoidins in all dissolved organic matters [60]. Hyphenated tech-
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niques with steric exclusion chromatography, photo diode array detectors, or fluorescence
systems have also been adopted in melanoidin semi-quantification, which are usually used
to measure the main characteristic indices of refractory dissolved organic matters for each
chromatograph peak [42], but these hyphenated methods are expensive and cannot cover
all the components in melanoidins [18].

Even if the relative quantification methods seem to be mature, knowing the absolute
concentration of melanoidins is necessary but unsettled. One of the most common methods
is gravimetric estimation, in which the melanoidin content can be expressed as the weight
of the melanoidins extracted after freeze-drying [31,61]. However, the disadvantage of this
method is that the lyophilized product perhaps contains other substances in the matrix
besides melanoidins. Further, earlier research by Martins and van Boekel [62] absolutely
quantified melanoidins through measuring the concentration of 14C-labeled sugars in-
corporated into melanoidins; however, this method has not yet been widely recognized.
Comparatively, colorimetric quantification with a model MR system as the standard is a
promising method to obtain the absolute concentration of melanoidins, due to its rapid
and simple operation and high reproducibility. Meanwhile, it is little affected by the com-
plex composition of melanoidins [63,64]. For example, the melanoidins in THS [46] and
distilled spent grain [65] have been absolutely quantified by colorimetry as 445.78 mg/L
and 268.60 mg/g, respectively. Kaspchak et al. [66], Yang et al. [67], and Yang et al. [68]
also used colorimetry to determine the molar concentration of melanoidins in several types
of environmental samples. However, refinement of colorimetric quantification is needed,
specifically the selection of standard model melanoidins, the determination of proper wave-
lengths, and the validation of the methodology [42]. Therefore, to our knowledge, there
is still room for the development and application of melanoidin quantification methods,
especially in complex matrices.

3. Properties of Melanoidins
3.1. Physical Properties

In the food field, melanoidins have gained significant attention due to their close association
with the color, aroma, flavor, taste, and viscosity of various solid and liquid foods such as coffee,
beer, cocoa, honey, bakery products, and malt [21]. The dark brown color is the most typical
physical property of melanoidins [69]. Carrying chromophore groups in high MW (HMW)
final MRPs is the main reason for the color appearance [70,71]. The color of melanoidins
has become a concern in wastewater treatment which can seriously interfere with UV
disinfection systems and ultimately result in the darkening of the effluent [20]. On the other
hand, the color of melanoidins provides a basis for their approximate quantification (usually
at 420 or 475 nm) in complex matrices such as distillery and molasses wastewater [72].

Another major physical property of melanoidins is the surface property. Extensive
studies have used microscopic imaging to visualize the surface structure of melanoidins
from different sources. For example, glucose/L-asparagine model melanoidins were ob-
served through Transmission Electron Microscopy (TEM), and results showed that the
number and size of the amorphous aggregates increased over time, reaching lengths of
several micrometers [73]. Scanning electron microscopy (SEM) was employed to illus-
trate the irregular polygonal block and granular morphological structures of ginseng
melanoidins [74]. Additionally, Atomic Force Microscopy (AFM) was applied for black
garlic melanoidins for surface feature analysis [47]. In general, the surface morphology of
melanoidins is irregular and rough. This rough surface of melanoidins can induce molecu-
lar aggregation and then reduce the liquid viscosity [47], which may affect the treatment
efficiency of melanoidin-containing wastewater. In addition to roughness, melanoidins
also have an amphiphilic nature and chargeability on the surface, which are attributed
to the presence of hydrophilic–hydrophobic components and the negative charge carried,
respectively [46,75]. The amphiphilic properties of melanoidins make them available as a
good emulsifier [76]. For example, Feng et al. [75] used confocal laser scanning microscopy
(CLSM) to indicate the stabilized emulsions of 0.25 wt% coffee melanoidins; it was also
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observed that the foaming of coffee melanoidins was related to their amphiphilic prop-
erty [77]. Additionally, the negative charge of melanoidins is also a unique property, which
is the foundation of their adsorption behavior. For example, coffee melanoidins were
determined to expose negative charges through Anion Exchange Chromatography elution,
and the charge distribution was found to be heterogeneous with a polyanionic feature [46].

As for THS melanoidins, Wang et al. [78] observed the surface features through
Atomic Force Microscopy and compared them to glucose–glycine model melanoidins, and
it was found that THS melanoidins showed larger agglomerates on the surface than model
melanoidins [78]. This means that THS melanoidins may hold more sludge components on
the surface gaps, probably affecting the flocculation of sludge. However, to date, little is
known about hydrophobicity and chargeability of THS melanoidins, and the effect of the
surface properties of melanoidins on sludge rheology and dewaterability needs to be well
explored as well.

3.2. Chemical Properties

Melanoidins are formed through the cyclization, dehydration, retro aldolization,
rearrangement, isomerization, and condensation of MR intermediates [79]. Due to the
complexity of the products, the chemical structure of melanoidins still remains relatively
unknown [77]. Melanoidins’ chemical properties are determined by their chemical structure
and exhibit distinct characteristics in various fields. The discussion here mainly focuses
on metal chelation ability, antioxidant activity, and chemical stability, as these chemical
properties are closely correlated with melanoidin management in the environmental field.

The anionic hydrophilic nature of melanoidins allows them to form stable complexes
with metal cations [21]. The ketone and hydroxyl groups of pyranone or pyridone residues
act as the main donor in melanoidins chelating with metals [80]. Melanoidins have different
affinities for different types of metals. For example, lactose–glycine model melanoidins
mainly had the ability to chelate Cu2+, Fe2+, and Zn2+ [81], whereas molasses melanoidins
could form complexes with more kinds of metals, including Pb2+, Zn2+, Ni2+, Cu2+, Fe2+,
Cd2+, and Co2+ [82]. Added to that, there are differences in the chelating properties of
melanoidins from different sources. For example, the melanoidins from traditional balsamic
vinegar showed higher Fe2+-chelating capacity but lower heme-binding ability compared
with the melanoidins from barley coffee and dark beer [34]. According to Morales [83], the
composition of carbohydrates was considered a crucial factor in melanoidins–metal chela-
tion, with glucose demonstrating higher efficiency than lactose. In addition, melanoidins
can form large complex molecules with various heavy metals in an acidic medium, resulting
in precipitation [80], so they have the potential to be developed into repair agents to solve
metal contamination in soil [84]. Finally, it should be emphasized that the chelating proper-
ties of melanoidins will also affect their antioxidant and antibacterial activities [34,35].

According to existing research, the antioxidant activity of melanoidins is attributed
to multiple mechanisms, such as trapping positively charged electrophilic species, radical
scavenging, metal chelation, or the termination of radical chain reactions [25]. The reducing
activity is ascribed to certain structures with the ability to offer electrons, for instance,
the hydroxyl group, pyrrole and other N-heterocyclic aromatic structures, and exposed
amino acid groups (e.g., tryptophan, tyrosine, and methionine), while the free radical
scavenging capacity is usually due to the aromatic and phenolic structures [77]. The
antioxidation behavior of melanoidins can be measured through different methods, such
as being indicated by ferric ion reducing antioxidant power (FRAP), 2,20-azino-bis-(3-
ethylbenzthiazoline-6-sulphonic acid) (ABTS), free radical 2,2-diphenyl-1-picrylhydrazy
(DPPH), and hydroxyl or superoxide anion radical scavenging activity [26,33]. Although
the antioxidant activity of food melanoidins is regarded as a profitable property to help
reduce the risk of disease [85], for THS melanoidins, antioxidation will perhaps make a
negative impact, since melanoidins as antioxidants may be involved in hydrogen transfer
and/or electron donations within the sludge, then interfere with biological treatment
processes, which deserves more attention and in-depth research.
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The chemical stabilities of melanoidins are reflected in many aspects, such as being
exposed to heating, strong oxidizing or reducing conditions, and UV irradiation [47].
The thermal stability of melanoidins is typically evaluated by observing the variation in
mass with increasing temperatures using synchronous thermal analysis technology [26,47].
The oxidizing/reducing and UV stabilities can be evaluated by exposing melanoidins to
H2O2/Na2SO3 solutions and UV light, respectively, to calculate the degradation ratio of
melanoidins [47]. It was showed that black garlic melanoidins were unstable under strong
oxidizing conditions, but could maintain a relatively stable state under strong reducing
conditions, and similar results were observed in beer melanoidins [26,47]. Generally, the
chemical stabilities of melanoidins are influenced by several conditions, such as the pressure
and heating temperature of the MR, the metal ions incorporated into the melanoidins, and
the aggregation degree of melanoidin aggregates [86,87]. Due to their high chemical
stabilities, melanoidins may accumulate in the environment and have a persistent impact
on the natural ecosystem.

3.3. Biological Properties

The biological properties of melanoidins mainly include anti-inflammatory and anti-
microbial capacities, anti-cancer abilities, anti-photoaging abilities, phytotoxicity, cytotoxic-
ity, genotoxicity and so on [21,69,88], among which some functions deserve special concern
in the environmental field [89]. The antibacterial property has been extensively reported for
different melanoidins [90–93]. The melanoidins from coffee, beer, and dessert wine all have
significantly stronger antibacterial activity over Gram-positive bacteria than Gram-negative
bacteria who have a lipopolysaccharide component in their outer membrane [35,93,94].
The antimicrobial activity can be mediated by the interaction of melanoidins chelating
with Mg2+ in the cell membrane via membrane-damage mechanisms [35,91]. In the envi-
ronmental field, the melanoidins from molasses distillery wastewater were reported to be
the main contributor of antimicrobial components in wastewater, compared with hexose,
polyphenol, and caramel [95]. Moreover, the HMW melanoidins in the >100 kDa fraction of
molasses distillery wastewater showed higher antioxidant and antimicrobial characteristics
than the low MW (LMW) melanoidins [72]. In terms of THS melanoidins, their adverse
effects on methane production during AD [29,94] and side-stream nitrogen removal [12]
indicate, from the side, that melanoidins should have potential in antimicrobial function,
but thorough direct research is still lacking.

Recently, the phytotoxicity induced by wastewater-origin melanoidins has been ex-
perimentally confirmed. Seed germination and plant growth bioassays showed that the
root and shoot lengths decreased significantly when the seeds of Allium cepa and Cicer
arietinum were treated with increasing concentrations of melanoidin-containing distillery
effluent, implying the concentration dependence of melanoidin phytotoxicity [96,97]. In an
earlier study, Yuan et al. [98] tested the fertilizer potential of the liquid product from the
hydrothermal treatment of swine manure that contained melanoidins, and results showed
that the higher temperature led to more dangerous behavior in seed germination. This
circumstantial evidence suggests that targeted study on phytotoxicity induced by THS
melanoidins is worthwhile.

At the cellular and genetic levels, there has been little agreement on whether melanoidins
are capable of cytotoxicity and genotoxicity or not. For example, Glosl et al. [99] re-
ported that glucose–glycine model melanoidins exhibited modest but significant genotoxic
effects on human lymphocytes; in particular, the LMW fraction showed the most reac-
tive effect on Caco-2 cells. However, Diaz-Morales et al. [88] found that both the raw
and digested melanoidins from three different bakery products displayed no cytotoxic-
ity towards Caco-2 and HUVEC cells, which totally differed from the former study. For
food-origin melanoidins, it is now considered that higher heating temperatures and longer
heating times are more likely to produce melanoidins with stronger toxicities [31]. Recently,
Chowdhary et al. [96] clearly showed that the melanoidins from distillery wastewater were
genotoxic because they could cause chromosomal variation phenomena in a chromoso-



Processes 2024, 12, 135 8 of 17

mal aberration study of Allium cepa. Moreover, from the ultra microstructure of Allium
cepa observed using TEM, multi-vacuoles were formed in root tip cells under melanoidin
treatment, which represented the defense mechanism to melanoidins [100]. Based on these
studies, there is a strong possibility that THP-origin melanoidins may have cytotoxicity
and genotoxicity, considering that they are generated under more violent heating condi-
tions than those from food or wastewater, but unfortunately, related research is almost
non-existent.

3.4. Summary of Methods to Characterize Melanoidins’ Properties

In order to gain comprehensive knowledge of melanoidins’ properties, the common
characterization techniques used are summarized and compared in Table 1.

Table 1. Methods and techniques for determining the characteristics of melanoidins.

Category Properties Main Methods/Techniques Ref.

Physical properties

Color
Tristimulus Reflectance Spectroscopy;

Colorimetry;
UV–vis spectrophotometry

[68]

Flavor Static headspace analysis;
Mass spectrometry [101,102]

Surface structure
TEM;
AFM;
SEM

[75,78]

Amphiphilic nature/
Emulsifying property

Resin adsorption;
Automated drop volume tensiometer [75]

Chargeability
Anion Exchange Chromatography;

Zeta potential SZ-100 nanoparticle analyser
(HORIBA Scientific, Kyoto, Japan)

[46,77]

Chemical properties

Metal chelating property

Titration;
Dialysis equilibrium;

Spectral analysis;
Immobilized metal affinity

chromatography

[103]

Antioxidant activity
FRAP;
ABTS;
DPPH

[33]

Oxidizing/reducing/
UV stabilities

Exposing to H2O2/Na2SO3 solution/
UV light [47]

Biological properties

Antibacterial activity

Broth dilution and agar dilution; [104–107]
Disk diffusion; [72,105]

Flow cytometry; [108]
CLSM [106]

Phytotoxicity Seed germination test [96–98]

Cytotoxicity/
Genotoxicity

Chromosomal aberrations analysis;
Mitotic index calculation [100]

4. Effects of Melanoidins in Practical Applications
4.1. Effects of Melanoidins on Wastewater Treatment and Sludge Disposal

THS melanoidins will be retained in the sludge digestion effluent, due to hardly
biodegrading during AD, and returned to the main stream of the WWTP to affect the
entire wastewater treatment system [20,109]. Dwyer et al. [20] continuously monitored
Oxley Creek water reclamation plant (65 mL/d, Brisbane, Australia) for a year and a half
after implementing THP, and found that the plant effluent experienced increased color,
decreased UV transmission, and increased dissolved organic nitrogen. Devos et al. [110]
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also documented that the total nitrogen concentration in the sludge digestion return liquor
increased with the increase in THP temperature. Additionally, melanoidins can seriously
interfere with UV disinfection systems for wastewater due to their UV-quenching prop-
erty. Some reported that the melanoidin quenching was mainly attributed to the LMW
fraction (<10 kDa) [111], whereas others reported that the cause laid in the HMW fraction
(>10 kDa) [20,112]. Although the mechanism of melanoidins’ UV-quenching activity is still
controversial, it can be concluded that there is a correlation between UV quenching and MW
distribution. As for biological effects, the above-mentioned toxic properties of melanoidins
contribute to the inhibition of side-stream nitrogen removal when treating digestion return
liquor, as melanoidins inhibit the microbial community and nitrogen-associated metabolic
pathway [113].

THS melanoidins can also affect the chemical composition and properties of sludge.
The formation of melanoidins needs to consume reducing sugars and hydrolyzed proteins,
thus leading to a drop in the contents of carbohydrates and proteins in sludge [114,115].
Instead, the aromatic and cyclic structures and humic and polymeric substances all in-
crease [11,116]. Moreover, it was experimentally demonstrated that melanoidins would de-
teriorate sludge dewaterability by trapping massive water molecules and carrying negative
charges, and that the water holding capacity of a sludge cake with 480 mg melanoidins/g
TS increased by 20% compared to that without melanoidins [117]. It was reported that the
hydrophobicity of THS was improved by 17% with the THP temperature increasing from
120 to 210 ◦C, since the protein structure was destroyed at higher THP temperatures and
more hydrophobic groups (e.g., peptide bonds) were exposed [118].

Melanoidin-containing THS will face some challenges in the subsequent AD. Many
publications have demonstrated the negative impact of THP temperatures above 175 ◦C on
biogas production [119,120]. For example, Abe et al. [121] reported a decrease in biogas
of 33% when the THP temperature changed from 170 to 200 ◦C. These researchers ascribe
the inhibition of biogas to melanoidin formation at extremely high temperatures, although
there is no direct evidence. Yin et al. [30] also reported that the production of volatile
fatty acids (VFAs) during AD was reduced by 12% when affected by the melanoidins
produced from thermal pretreated food waste. The inhibitory effects of melanoidins are
closely dependent on their dose, since melanoidins at different concentrations present
different bacteriostatic or bactericidal results [21]. As speculated in a previous review [68],
the presence of melanoidins does not just cause inhibitory effects, while it may have no
effect or even promote AD at low doses. However, the mechanism of the influence of
melanoidins on AD is unclear, and in particular, whether melanoidins can promote biogas
or VFA production needs to be confirmed in depth.

4.2. Potential Hazards and Risks of Melanoidins for Natural Environment

The melanoidins in original THS liquor were measured to be 455.78 mg/L [46], while
their concentrations in the digestion liquor or final effluent of WWTPs have not yet been
measured or estimated. However, considering the widespread application of THP and the
high refractoriness of THP-origin melanoidins, those existing in the treated effluent ought
to be easily accumulated in aquatic and soil environments, and may even interact with
other environmental factors to aggravate pollutions. As reported, once the melanoidin-
containing distillery wastewater was used for long-term land irrigation without proper
treatment, it was harmful to crop growth and biological health [122], and the melanoidins
from distillery wastewater in high concentrations have strong mutagenic, carcinogenic, and
cytotoxic effects on cells [99]. More importantly, the released melanoidins in the natural
environment may interfere with the original biogeochemical fate and dynamics of abiotic
components in soils, sediments, and waters. For example, melanoidins could be engaged
in electronic competition with anaerobic methanogenic bacteria to affect the natural carbon
cycle [29]. Therefore, the polluting path and fate of melanoidins, as well as their effects on
the environment, shall not be overlooked.
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In addition, toxic substances in ecosystems are often persistent and affect all the biota,
including humans, through food and water supplies [123]. Taking into account the high
stability and increased release of THP melanoidins into the environment, they may poten-
tially interact with organisms through the food chain or be mediated by environmental
factors to finally affect human health [124]. According to statistics, the residents in the
distillery wastewater contaminated area faced higher probabilities of health problems such
as irritation of the eyes, skin allergies, headache, fever, vomiting sensations, stomach pain,
etc. [40]. This is not a unique instance; as documented, people residing in the vicinity of a
coffee processing plant who consumed this polluted water suffered from similar symptoms,
and even breathing problems as well [125]. In addition, melanoidins in the body were also
found to accelerate the progression of various diseases, such as cardiovascular complica-
tions, diabetes mellitus, and Alzheimer’s disease [40]. This highlights an urgent need to
treat melanoidins in a proper way before WWTP effluents enter the outer environment.

5. Methods of Melanoidin Removal
5.1. Physicochemical Removal

There is a high concentration of melanoidins (2–20 g/L) in several types of agro-
industrial wastewater, such as distillery, winery, and brewery wastewater, for which the
decolorization and degradation of melanoidins during treatment have attracted much
attention [57,126]. Several studies have performed physicochemical methods to remove
melanoidins, such as adsorption [127], flocculation [128], ozonation [129], coagulation [27],
ultrafiltration [130], UV/H2O2 oxidation [131], electrochemical methods [132], and mem-
brane treatments [133]. Among these, adsorption, especially by activated carbon (AC),
is widely used to remove color and specific organic contaminants due to its simplicity,
effectiveness, and economy [56]. There is plenty of research applying AC derived from
different biomasses, such as bagasse, sawdust, wood, and rice husk [134], and variously
modified ACs, such as Cu-impregnated [135], amine-modified [28], and H2O2-modified
ACs [136], in adsorption experiments on model melanoidins, and generally, satisfactory
results have been obtained with a removal rate higher than 80%.

Another melanoidin removal method of concern is the advanced oxidation process
(AOP), and hydroxyl radicals are thought to be involved in all AOPs [136]. Cañizares
et al. [137] compared three AOP methods, including conductive-diamond electrochemical
oxidation (CDEO), Fenton oxidation, and ozonation to treat melanoidin-containing colored
wastewater produced in the fermentation process, and found that CDEO and ozonation
had better decolorization results than Fenton oxidation. In addition, some studies have
combined two physicochemical treatments to complementally intensify melanoidin re-
moval, such as an electrolytic treatment combined with activated carbon adsorption [138],
and ultrasound combined with Fenton oxidation [139]. However, there are few studies on
the removal and decolorization of THP-origin melanoidins in actual wastewater.

5.2. Biological Removal

In fact, the costs of different methods to remove melanoidins highly depend on the spe-
cific operations and actual wastewater situations, and comparatively, physical or/and chem-
ical methods are not suitable for full-scale treatment [140]. Agarwal et al. [141] reviewed the
technologies employed globally for melanoidin removal and concluded that an efficient and
cost-effective treatment scheme should comprise a physicochemical treatment followed by
a biological treatment. A microbial treatment is generally a good choice that is eco-friendly
and economically competitive over a single physicochemical approach [142]. To date, quite
a few bacteria and fungi have shown an excellent ability to remove melanoidins from
wastewater, such as the bacteria Pseudomonas putida, Bacillus licheniformis, Alcaligenes sp.,
and Lactobacillus plantarum [40,122,140]; white-rot fungi; and yeasts [143,144]. Compara-
tively, fungi have the capacity to biodegrade recalcitrant pollutants with a higher toler-
ance to toxins and more robustness [145]; however, the main constriction for removing
melanoidins using fungi is the high demand in food supplements and the necessity of
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dilution [92]. Microbial melanoidin removal is documented to present a dual mechanism:
some adsorb the color, whereas some degrade melanoidins biologically; some may use
both adsorbing and degrading mechanisms [146]. However, the investigation concerning
the removal pathways during melanoidin degradation and the involved mechanisms is far
from sufficient. And this happens to be an important aspect for safety considerations, since
it was found that the toxicity of molasses wastewater was increased after treatment with
Pleurotus sp. [92].

It is worth mentioning that extracellular enzymes play an important role in melanoidin
removal by bacteria and fungi, such as manganese peroxidase and lignin peroxidase [37],
so enzymatic treatment is regarded as a promising method for melanoidin removal as
well. Zhang et al. [147] improved the melanoidins’ decolorization efficiency through the
addition of cutinase from Thermobifida alba, which acted on the conjugated structures in
melanoidins. In addition, the exploitation of new microbial species is needed, and in
particular, the construction of potential mixed microbial consortia should become a priority
to improve the practical adaptability to complex melanoidin-containing wastewater [148].
Unfortunately, although there are many studies on the biological treatment of molasses and
distillery wastewater [122,141,147], it seems that the removal of THP-origin melanoidins
has not yet entered the sight of researchers. Last but not least, practically combining
melanoidin removal with other processes installed in WTTPs is of special consideration, so
as to ensure the developed methods are both efficient and economically viable.

6. Conclusions and Outlook

This paper presented a systematic summary of the properties of THP-origin melanoidins
and highlighted the potential hazards and removal methods. Melanoidins are macro-
molecular heterogeneous organic polymers, and they are non-enzymatic browning reaction
products of MRs during the THP of sludge. They have a significant impact on wastewater
treatment, as well as the natural environment and health of organisms, which means that
the formulation of related legal standards for melanoidin discharge is urgent in the future.

So far, reliable extraction and quantification methods for melanoidins are still lacking,
which poses a huge challenge to the research on THP-origin melanoidins. Therefore,
not only the understanding of the structure of melanoidins is inadequate, but also the
physicochemical and biological properties exhibited need to be better elucidated. The
technologies for THP-origin melanoidin removal are currently less discussed; however,
molasses wastewater treatment has proved that physical, chemical, and/or biological
methods are able to function in removing melanoidins, providing an opportunity for
WWTPs to imitate the practice and develop their own systems to manage melanoidins.

As a final note, based on the sustainable development conception, it is necessary to seek
the potential values of THP-origin melanoidins, which will help reduce the environmental
risk, while possibly changing unwanted melanoidins into value-added products. As
previously reported, the melanoidins in wastewater after extraction and purification might
be applicable in the biomedical industry and they can also be potentially used as nutritional
feed additives, antimicrobial agents, and preservatives [46]. In addition, the high stability
and interface features of melanoidins make them profitable as potential emulsifiers in the
materials field [149]. Dedicated research is needed to realize the promising applicability of
THP-origin melanoidins.
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