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Abstract: The prediction of dissolved gas change trends in power transformer oil is very important
for the diagnosis of transformer faults and ensuring its safe operation. Considering the time series
and nonlinear features of the gas change trend, this paper proposes a novel robust extreme learning
machine (ELM) model combining an improved data decomposition method for gas content forecast-
ing. Firstly, the original data with nonlinear and sudden change properties will make the forecasting
model unstable, and thus an improved variational modal decomposition (IPVMD) method is de-
veloped to decompose the original data to obtain the multiple modal dataset, in which the marine
predators algorithm (MPA) optimization method is utilized to optimize the free parameters of the
VMD. Second, the ELM as an efficient and easily implemented tool is used as the basic model for
dissolved gas forecasting. However, the traditional ELM with mean square error (MSE) criterion is
sensitive to the non-Gaussian measurement noise (or outliers). In addition, considering the nonlinear
non-Gaussian properties of the dissolved gas, a new learning criterion, called extended maximum
correntropy criterion (ExMCC), is defined by using an extended kernel function in the correntropy
framework, and the ExMCC as a learning criterion is introduced into the ELM to develop a novel
robust regression model (called ExMCC-ELM) to improve the ability of ELM to process mutational
data. Third, a gas-in-oil prediction scheme is proposed by using the ExMCC-ELM performed on each
modal obtained by the proposed IPVMD. Finally, we conducted several simulation studies on the
measured data, and the results show that the proposed method has good predictive performance.

Keywords: dissolved gas prediction; extreme learning machine; variational mode decomposition;
marine predators algorithm; extended maximum correntropy criterion

1. Introduction

With the rapid development of the power industry, the healthy and stable operation of
power transformers as key equipment of the power system is crucial to the safe operation
of the entire power system. Therefore, it is essential to proactively forecast the operational
status of power transformers and promptly implement appropriate measures to address any
anomalies [1]. During the long-term operation of the transformer, the internal insulating oil
will deteriorate, causing a small amount of hydrocarbon gas to dissolve in the insulating
oil [2]. Generally speaking, with the extension of the operating time, the dissolved gas
content will gradually accumulate, and the hydrocarbon gas is mostly flammable gas, which
poses a great threat to the safe operation of the transformer [3]. Therefore, monitoring the
change of dissolved gas content in oil becomes the basis for ensuring the safe and reliable
operation of transformers [4].
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In recent years, there has been a growing research focus on the analysis of dissolved
gases within transformers. These research methods can be divided into the following
categories: dissolved gas prediction method based on the autoregressive integral moving
average (ARIMA) model [5], which is implemented based on mathematical-statistical
principles through simple parameter estimation and model selection. However, the model
requires a large amount of gas data as a sample and has high requirements for data stability,
in addition, the model can only capture linear relationships, and the processing ability
of nonlinear relationships is poor. However, in practical applications, sample data is
lacking and the data fluctuates greatly, so the model is not suitable for practical engineering
applications [6]. Dissolved gas prediction methods based on the grey model (GM) [7,8]
only require a small amount of gas data to predict gas content over a period in the future.
However, this method requires the original data to have a monotonic tendency to change,
and it fails when the data oscillates or steeply rises (dip). In recent years, AI methods
have been applied in this area, with back-propagation neural networks (BPNNs) [9] being
one of the most used gas prediction methods, which has strong learning ability and data
fitting ability. However, this method requires a large amount of sample data for model
training, and the training time is long, which makes it easy to fall into the local optimal
solution [10]. Recurrent neural networks (RNNs) are commonly used in time series data
modeling and testing research [11], and their variants LSTM and GRU are developed on its
basis [12,13], which can solve the problems of gradient vanishing and gradient explosion
existing in the original RNN, and better consider the long-term dependence between data
for time series and reduce the impact of information attenuation. However, both RNN
and its variant network need to clearly set many time-series feature training data, and
have strict requirements for the hidden layer neuron and layer number settings, too few
settings make it difficult to achieve the expected results, and too many settings will greatly
increase the training time. In the long-term prediction process, errors accumulate and
increase prediction errors due to slow network model updates and increased repetitions [14].
Support vector machines (SVMs) and extreme learning machines (ELMs) are suitable for
solving small-sample prediction problems [15,16], both of which are robust in processing
nonlinear data and can effectively avoid over-fitting problems. Compared with ELM, SVM
has more parameters, parameter tuning is more difficult and lacks the ability to capture
time series, which is not suitable for modeling long-term time series dependencies. While
the above methods have achieved some success in gas forecasting, there are still some
shortcomings. On the one hand, when the test data fluctuates sharply, such as steep rises
or drops, the network model cannot effectively capture this change process. On the other
hand, since the transformer itself operates in a strong magnetic field, the data acquisition
and transmission process may be interfered with by noise (pulses). Neural networks lack
the ability to handle anomalous data, which may increase prediction errors [17]. Therefore,
how to avoid the impact of data abruptness or oscillation on gas prediction deserves
further study.

As an efficient method of data processing, modal decomposition (MD) methods [18,19]
have been widely used in the field of photovoltaic and wind power prediction. This method
can transform the mutation dataset into a smooth dataset in multimodal conditions, ef-
fectively reducing the impact of data mutation, but it is rarely used in the prediction of
dissolved gas in transformer oil. Riaz et al. used empirical mode decomposition (EMD) tech-
nology to extract features from the signal first, and then input the extracted feature signal to
SVM for classification processing and finally achieved good classification results [20]. How-
ever, the EMD method has certain shortcomings in extracting signal mutation information,
which is prone to modal aliasing, resulting in the inability to completely decompose the
noise (mutation) components in the signal [21]. Variational modal decomposition (VMD)
can eliminate modal aliasing [19], and the frequency characteristics of the decomposed
modal components are obvious, the stationarity is high, and the modes are independent of
each other, which is conducive to data prediction and processing. The core idea of VMD is
to convert the original signal into some non-recursive variational mode calculation process
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through decomposition, using effective bandwidth iteration and center frequency search
to obtain the best decomposition signal [19]. Like the wind power prediction data set, the
dissolved gas content in transformer oil often shows the characteristics of poor regularity
and high fluctuation. VMD has high decomposition accuracy when processing complex
data and can avoid modal aliasing, but it is necessary to set appropriate balanced iterative
mode filtering (BIMF) parameters, penalty factors, and tolerance coefficients. Among them,
BIMF parameters have the greatest impact on the decomposition accuracy of the model,
when the BIMF value is large, it will lead to excessive decomposition and increase the
amount of calculation, and when the BIMF value is too small, it will lead to insufficient
extraction of the original data features [22]. In addition, although the modal signal obtained
by VMD decomposition becomes smooth, there is still a sharp fluctuation (nonlinearity),
which makes the machine learning model represented by ELM have a predictive risk. As
an effective information theory learning criterion, the maximum correntropy criterion
(MCC) [23] of the Gaussian kernel function can capture the high-order statistics of error
information, which has potential advantages in dealing with nonlinear problems and sup-
pressing noise (outliers) [24], and its practicability and effectiveness have been verified
in the fields of state estimation and target tracking [25,26]. After the above analysis, we
need to solve the following problems: First, it is difficult to adjust the parameters of the
VMD decomposition method. The second is VMD decomposition, although it decomposes
the mutation data into smoothed data in multiple modalities. However, the decomposed
data is still a nonlinear fluctuation signal, which is not conducive to the direct use of the
machine model.

The contributions of this work are summarized as:

(1) The dissolved gas content in power transformer oil is characterized by poor regularity
and large fluctuations. The VMD method will be used to handle this complex data,
which has high decomposition accuracy and can avoid modal aliasing. However, the
use of the VMD method requires setting the appropriate number of decomposition
layers K and the penalty factor to obtain the optimal decomposition results. To solve
this problem, we can introduce the MPA optimization method to adjust the parameters
of VMD, to avoid the increase of prediction error caused by insufficient or excessive
mode decomposition;

(2) Given the high computational efficiency of ELM, it has great advantages in handling
small sample data and un-modeled nonlinear approximation. However, classical ELM
is not suitable for unmodeled nonlinear test systems that lack prior information, nor
for systems with large fluctuations in data [27]. To improve the robustness of ELM in
processing mutation data, we define a new ExMCC criterion and introduce it into the
ELM to develop a novel learning model, which is called ExMCC-ELM;

(3) Based on the above IPVMD and ExMCC-ELM, we propose a prediction model for
dissolved gas in transformer oil. Firstly, the IPVMD decomposition of the dissolved
gas sequence data in oil in the transformer is carried out to obtain an easy-to-process
stationary data set, and then the ExMCC-ELM model is established for gas data
prediction on the dataset. The simulation results show that the robust prediction
method based on IVMD-ExMCC-ELM proposed in this paper can accurately predict
the gas content under the condition of uncertain gas content abrupt changes and
oscillation laws.

2. Improved VMD
2.1. Variational Mode Decomposition (VMD)

VMD is a signal processing method that aims to decompose complex signals into
multiple intrinsic mode functions (IMFs) components. Each component has its own center
frequency and limited bandwidth, and the sum of all components should be equal to the
input signal. The principle of VMD can be described as follows:

(1) A constrained variational problem is constructed to obtain the decomposition
results of the signal, where each component corresponds to an intrinsic mode function.
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The constrained variational problem can be formulated as follows:

min
{uk},{ωk}

{
∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
ejωkt

∥∥∥∥2

2

}
(1)

s.t.∑
k

uk(t) = f (t) (2)

where {uk} = {u1, u2, · · · uk} is the set of k IMF components obtained through VMD
decomposition; {ωk} = {ω1, ω2, · · ·ωk} is the set of center angular frequencies for each
IMF component; δ(t) is the unit impulse function; ∂t represents the first-order derivative of
the function with respect to time t; ∗ represents convolution operation.

(2) To solve the constrained variational problem in the VMD method, it can be trans-
formed into an unconstrained variational problem by introducing a quadratic penalty
factor α and Lagrange multiplier operator λ. Specifically, introducing the quadratic penalty
factor α ensures a higher accuracy of signal reconstruction in the presence of Gaussian
noise. Introducing the Lagrange multiplier operator λ ensures that the constraints are
satisfied during the solving process. Based on this, the augmented Lagrange function Γ can
be derived as follows:

Γ({uk}, {ωk}, λ) =

α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2
+∥∥∥∥ f (t)−∑

k
uk(t)

∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (3)

To further solve the variational problem mentioned above, the alternating direction
method of multipliers (ADMM) can be used. In ADMM, a set of variables (un+1

k , ωn+1
k and

λn+1
k ) are updated iteratively until convergence is reached to find the saddle point of the

augmented Lagrange expression. The corresponding update expressions are as follows:

ûn+1
k (ω) =

f̂ (ω)− ∑
i ̸=k

ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (4)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(5)

λ̂n+1(ω) = λ̂n(ω) + τ

[
f̂ (ω)−∑

k
ûn+1

k (ω)

]
(6)

To obtain the K IMF components, the iterative update of variables should be performed

until the iteration-stopping condition ∑
k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2

/
∑
k

∥∥∥ûn+1
k

∥∥∥2

2
< ε is satisfied. Once

the iteration-stopping condition is met, the iterative updates can be terminated, and the
K IMF components can be obtained. In general, how to select the optimal K is still an
important issue for the performance of the VMD, this work will use a novel optimization
method to address this problem.

2.2. Marine Predators Algorithm (MPA)

MPA is a new type of meta-heuristic optimization algorithm that is initialized in
the same way as most meta-heuristic search algorithms. The initial solution is evenly
distributed over the search space on the first test. This approach helps the algorithm better
explore the search space to find a better solution.
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In the MPA process, optimization is based on different speed ratios of the three stages
of the predation-predation cycle. The three-stage prey position update pattern can be
described as follows [28]:

(1) When the rate is relatively high, or the prey moves faster than the predator, the
following mathematical model can be used to apply the rule:

When Iter < 1
3 Max_Iter,

−−−−→
stepsizei =

→
RB ⊗ (

−−−→
Elitei −

−−−→
Preyi ), (i = 1, · · · , n) (7)

−−−→
Preyi =

−−−→
Preyi + P.

→
R ⊗
−−−−→
stepszei (8)

where
→
RB is a random vector containing a normal distribution based on Brownian motion; P

is a constant equal to 0.5;
→
R is the vector of random numbers in [0, 1]; ⊗means multiplying

by entries; Iter is the current number of iterations; Max_Iter is the maximum number
of iterations.

(2) The following model is applied when the rate ratio is relatively low or when predators
and prey move at almost the same speed:

When 1
3 Max_Iter < Iter < 2

3 Max_Iter, for the first half of the population:

−−−−→
stepsizei =

→
RL ⊗ (

−−−→
Elitei −

→
RL ⊗

−−−→
Preyi ), (i = 1, · · · , n/2) (9)

For the second half of the population:

−−−−→
stepsizei =

→
RB ⊗ (

→
RB ⊗

−−−→
Preyi −

−−−→
Preyi ), (i = n/2, · · · , n) (10)

where
→
RL is a vector of random numbers based on the Lévy distribution, indicating Lévy

motion, while prey updates its position based on the predator’s movement in Lévy motion;
−−−→
Preyi is calculated in the same way as Equation (8).

(3) When the low rate is faster than the predator than the moving prey, the following
model is applied:

When Iter > 2
3 MAX_Iter,

−−−−→
stepsizei =

→
RL ⊗ (

→
RL ⊗

−−−→
Elitei −

−−−→
Preyi ), (i = 1, · · · , n) (11)

−−−→
Preyi =

−−−→
Elitei + P · CF⊗

−−−→
stepszei (12)

The product of
→
RL and Elitei simulates the movement of the predator in the Lévy

strategy, while increasing the step size at the Elitei position simulates the movement of

the predator to help update the predator’s position; and CF =
(

1− Iter
Max_Iter

)(2 Iter
Max_Iter ) is

adaptive parameters used to control the predator’s movement step.

(4) Vortexes and fish gathering facilities (FADs) also have an impact on the behavior of
marine predators, and they are often considered locally optimal solutions in the search
space. With this in mind, introducing the FADs effect during the simulation process
can avoid falling into the local optimal solution. Therefore, we can mathematically
represent the FADs effect:

−−−→
Preyi =


−−−→
Preyi + CF

[ →
Xmin +

→
R ⊗ (

→
Xmax −

→
Xmin)

]
⊗
→
U . . . . . . . . . . . . . . . r ≤ FADs

−−−→
Preyi + [FADs(1− r) + r](

→
Preyr1 −

→
Preyr2) . . . . . . . . . . . . . . . r ≥ FADs

(13)
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where FADs = 0.2 is FAD the possibility of influencing the optimization process;
→
U is a binary vector containing 0s and 1s; r is a consistent random number in the
range [0, 1]; Xmin and Xmax are vectors representing the upper and lower bounds of
the dimension, respectively; The subscripts r1 and r2 are random indexes of the prey
matrix.

2.3. MPA-Optimized VMD

In the process of optimizing VMD parameters using MPA, the selection of the appro-
priate fitness function plays a crucial role in the optimization results. In this paper, the
overall orthogonality index IO of the decomposed IMF is selected as the fitness function
for parameter optimization. IO reflects the degree of confusion between the orthogonality
and decomposition results of the IMF components, with smaller values indicating better
orthogonality. In the MPA algorithm, the prey position parameter corresponds to the value
of the variable.

IO can be expressed by the following formula:

IO = 1− exp(−R) (14)

where R is the spectral radius of the correlation coefficient matrix between the IMF compo-
nents, and exp is the natural exponential function.

The correlation coefficient matrix between the various IMF components obtained
by the IMF decomposition is denoted as C, and the spectral radius R of the correlation
coefficient matrix is defined as:

R = max(|λ|) (15)

where |λ| denotes the modulus of the eigenvalues of the matrix C.
By selecting IO as the fitness function, the MPA algorithm will minimize the IO value

by adjusting the value of the parameter, so as to make the IMF components after VMD
decomposition more orthogonal, and the decomposition result more structured and inter-
pretable. The prey position parameter is the parameter that needs to be optimized, and
the optimal solution to minimize the fitness function (IO value) is found by constantly
updating the value of the prey position parameter, and then the optimal number of de-
composition layers K and the penalty parameter α. This can improve the decomposition
effect of the VMD algorithm and the accuracy of signal processing. The specific process is
as follows [29]:

(1) Set the initial parameters of the VMD and MPA algorithms;
(2) Initialize the number of predator populations and the number of iterations in the MPA

algorithm. Considering the influence of population size and number of iterations on
optimization accuracy and computational efficiency, this paper defines the population
size as 20 and the number of iterations as 50;

(3) Initialization produces initial prey, and predators build an elite matrix (predator
vector). Note that both predators and prey consider themselves search agents because
when predators search for prey, the prey is also looking for food. Calculate the fitness
value corresponding to that time;

(4) The MPA optimization process, as described in Section 2.2;
(5) After updating the predator’s position, the corresponding fitness is calculated and

compared to the previous fitness value. Choose the best fitness position as the top
predator position;

(6) Repeat steps (1–5) until the termination condition is met and output the apex predator
position coordinates, which are input into the VMD as the optimal parameters for the
decomposition signal.

The flowchart of MPA to optimize VMD is given in Figure 1.
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Figure 1. MPA optimizes the VMD process.

It should be noted that in situations where the input dataset exhibits weak correlation,
managing the IMF components can be challenging. One approach to addressing this issue
is to employ advanced feature selection methods and incorporating domain knowledge
can further enhance the management of IMF components in such challenging scenarios.
Additionally, one can try to use them in combination with other IMF components that are
more correlated. By synthesizing multiple IMF components, the accuracy and stability of
the predictive model can be improved.

3. Extreme Learning Machine with Extended Maximum Correntropy Criterion
3.1. Extended Maximum Correntropy Criterion

Correntropy is an effective measure of the generalized similarity between two random
variables. Given two random variables y, the correntropy can be defined as [23]:

V(x, y) = E[κσ(x− y)] (16)

where κσ(·) represents the kernel function with kernel width; E[·] is the expectation operator.
The Gaussian kernel is usually used as a kernel function in (18), expressed as:

κσ(x− y) = Gσ(x− y) =
1

2πσ2 exp

(
− (x− y)2

2σ2

)
(17)

One can see from (17) that the correntropy only contains a second-order moment of
error (SOME) with a single kernel width in the exponent part, which may lead to unsuitable
performance for complex environments. Therefore, this paper will design a new extended
correntropy consisting of two SOME with two different kernel widths in the exponent part,
called extended correntropy (ExC), which is defined as:

VC(x, y) = E[κC,σ(x− y)] (18)

κC,σ(x− y) = exp[−(γ (x− y)2

2σ2
1

+ (1− γ)
(x− y)2

2σ2
2

)] (19)



Processes 2024, 12, 193 8 of 19

where γ is the parameter that determines the ratio of two kernels; σ2 and σ2 are differ-
ent kernel widths, and when σ1 = σ2 or ( γ→ 0(or1) ), the ExC will degenerate to the
original correntropy.

In practice, the probability density function of the two random variables is unknown,
and the number of samples {xi, yi}N

i=1 is finite. Therefore, the sample mean estimate in
Equation (20) is defined as:

V∗C(x, y) = 1
N

N
∑

i=1
exp

[
−
(

γ
(xi−yi)

2

2σ2
1

+ (1− γ) (xi−yi)
2

2σ2
2

)]
= 1

N

N
∑

i=1
κC,σ(xi − yi) =

1
N

N
∑

i=1
κC,σ(ei)

(20)

where N represents the number of samples, xi and represents the i-th element of random
variables X and Y.

Figure 2 shows the function curve under different parameters, as can be seen from
Figure 2a, when y is constant and σ2 = 0.5, the curve gradually becomes flat as σ1 increases.
It can be seen from Figure 2b that when the kernel width value is constant, the function
curve tends to be flat with the crease of y, but the overall trend still meets the requirements
of convergence and boundedness.
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Finally, in conjunction with Figure 2, we summarize the general properties of ExMCC
as follows [30]:

Property 1: Symmetry, VC(x, y) = VC(y, x).
Property 2: VC(x, y) is positive and bounded, 0 < VC(x, y) ≤ 1.
Property 3: If 0 ≤ γ ≤ 1, then VC(x, y) represents a combined second-order statistic

that maps the feature space.
Based on the above properties, we can easily conclude that ExC is an extended form of

correntropy. Compared with correntropy, when we select the appropriate free parameters
in ExC, it is not only more robust to abnormal data, but also has better convergence speed
and stability. Similar to correntropy, the EXC is capable of suppressing the interference of
non-Gaussian noise due to its inherent robustness to outliers and its ability to capture higher-
order statistical moments beyond the mean and variance. Unlike traditional measures
such as the MSE, which are sensitive to outliers and assumptions of Gaussianity, the ExC
is based on the probability distribution of the data, allowing it to effectively mitigate the
impact of non-Gaussian noise by focusing on the underlying statistical structure of the data
rather than solely relying on the second-order statistics. This enables ExC to better capture
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the true underlying signal in the presence of non-Gaussian noise, making it a valuable tool
for robust signal processing. Like the maximum correntropy criterion (MCC), the ExC can
also be used as a learning criterion in machine learning fields, which will be denoted as
extended MCC (ExMCC) in this work.

3.2. Extreme Learning Machine

An extreme learning machine (ELM) is a single hidden layer feed-forward neural net-
work. The number of hidden layer nodes is usually set artificially, while the input weights
and biases are determined randomly. In the process of learning and calculation, the weights
and biases are not iteratively calculated, and the optimal solution can be calculated when
training data is available. Therefore, compared with traditional feedforward networks such
as BP, ELM has more advantages in time series data prediction such as fast training speed,
strong generalization ability, fewer hyperparameters, and high accuracy. Recently, ELM has
been widely used in the forecasting of time series data, and satisfactory prediction results
have been obtained. The calculation procedure of the ELM can be described as follows:

Given a set of sample data I = (x, y), where x = [x1, x2, . . . , xN]
T and y = [y1, y2, . . . , yN]

T

represent N-dimensional input and desired output vectors, respectively. Therefore, the
hidden layer output of ELM can be expressed as:

h(xi) = G(wi, xi, bi)
= G(wixi + bi)

(21)

where hi(·) is the output of the i-th hidden layer node; wi is the weight between the input
layer and the hidden layer; bi is the hidden layer bias; G(·) is the hidden layer activation
function, and in this study, sin is used as the activation function.

Then, we further get the ELM output as:

Y =
L

∑
i=1

βihi(x) = H(x)β (22)

where Y = [y(x1), y(x2), . . . , y(xN)]
T is the output matrix; H(x) = [h(x1), h(x2), . . . , h(xN)]

T,
(h(x) = [h1(x), h2(x), . . . , hL(x)]T) is the hidden layer output matrix; β = [β1, β2, . . . , βN ]

T

is the weight between the output layer and the hidden layer.
By solving the Moore-Penrose generalized inverse matrix of H(x), and training the

ELM by using the input weights and hidden layer bias, the output weights are obtained:

β = H−1(x)Y (23)

When employing ELM for time series data forecasting, in certain instances, the weight
of the final output of ELM may exhibit significant fluctuations due to substantial changes
in forecasted data, consequently leading to poor stability of the forecast results. To address
this issue, this paper introduces the ExMCC robust criterion, designed to be impervious to
abnormal data, thereby enhancing the robustness of ELM in the presence of abnormal data
and effectively mitigating the issue of weight fluctuations caused by abnormal data.

3.3. ELM with ExMCC

In this section, we use ExMCC as a learning criterion for ELM to develop a robust
ELM model named ExMCC-ELM, so that when the training data is contaminated, the ELM
output can be guaranteed to have a stable optimal weight. The detailed derivation process
of ExMCC-ELM is as follows.
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Based on the theoretical basis of ExMCC, we rewrite Equation (21) as:

JC(β) = 1
N

N
∑

i=1
exp

[
−
(

γ
(di−hi βi)

2

2σ2
1

+ (1− γ) (di−hi βi)
2

2σ2
2

)]
= 1

N

N
∑

i=1
κC,σ(D− Y) = 1

N

N
∑

i=1
κC,σ(ei)

(24)

where D = [d1, d2, . . . , dN ]
T represents the desired output; Y = [y(x1), y(x2), . . . , y(xN)]

T

represents actual output; ei = di − yi = di − hiβi, di, hi and represents the i-th elements of
D, H and β.

The optimal solution of the weight β is obtained using the maximization cost function
JC. Specifically, JC finds the differential with respect to the gradient method and makes
it zero.

∂JCMC
∂β = 0

⇒ 1
N

N
∑

i=1

[
exp

[
−
(

γ
(di−hi βi)

2

2σ2
1

+ (1− γ) (di−hi βi)
2

2σ2
2

)]
∗
[

γ

σ2
1
(di − hiβi)hi +

1−γ

σ2
2
(di − hiβi)hi

]]
= 0

⇒
N
∑

i=1

[
c(ei) ∗

[(
γ

σ2
1
+ 1−γ

σ2
2

)
hT

i di −
(

γ

σ2
1
+ 1−γ

σ2
2

)
hT

i hiβi

]]
= 0

⇒ β =

{
N
∑

i=1

[
c(ei) ∗

[(
γ

σ2
1
+ 1−γ

σ2
2

)
hT

i hi

]]}−1{ N
∑

i=1

[
c(ei) ∗

[(
γ

σ2
1
+ 1−γ

σ2
2

)
hT

i di

]]}
⇒ β =

[
HTCH

]−1
HTCD

(25)

c(ei) = exp

[
−
(

γ
(di − hiβi)

2

2σ2
1

+ (1− γ)
(di − hiβi)

2

2σ2
2

)]
(26)

where C = diag(c(ei)) represents the diagonal matrix.
Obviously, Equation (26) is a fixed-point equation β, so the fixed-point iterative

method is used to calculate the optimal solution for β. The overall calculation flow of the
proposed ExMCC-ELM algorithm is organized in Algorithm 1. In addition, in ExMCC-
ELM, it will degenerate into MC-ELM when γ = 0(or1) or σ1 = σ2. Using ExMCC as a
learning criterion for ELM can improve ELM robustness by utilizing its ability to model
and suppress non-Gaussian noise. Traditional ELM assumes that both input data and noise
follow a Gaussian distribution, but in practical applications, non-Gaussian noise such as
outliers can often interfere with the data. ExMCC allows for the modeling of non-Gaussian
noise. By maximizing the ExC between features and noise, the influence of outliers on the
ELM model can be reduced, better adapting to the characteristics of non-Gaussian noise.
Therefore, using ExMCC as the learning criterion for ELM can improve ELM robustness in
dealing with abnormal data.

Algorithm 1. ExMCC-ELM model. Initialize ExMCC-ELM: σ1, σ2, λ, βi, bi

Training phase:
Training input: x = [x1, x2, . . . , xN1 ]

T ⇒ (xi, xi+1), 0 < i < 250
Training output: y = [y1, y2, . . . , yN1 ]

T ⇒ xi+2
Final output : β, bi

Testing phase:
Testing input: β, bi and x = [x251, x252, . . . , xN2 ]

T ⇒ (xi, xi+1), 250 < i < 300
Testing output: y = [y1, y2, . . . , yN2 ]

T ⇒ xi+2
1. For k← 1 to M(M = 10)
2. Calculate the error vector ei, based on the initial βi, bi: ei = di − hiβi
3. Calculate the diagonal matrix C: C = diag(c(ei))

4. Calculate the output weight β: β =
[
HTCH

]−1
HTCD

5. Determine whether the loop ends: |JC(βk)− JC(βk−1)| < ω, (ω = 0.00001)
6. End For
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By using the decomposed data obtained from the VMD with MPA optimization
developed in Section 2, one can train the proposed model ExMCC-ELM, and then use the
test data to evaluate its prediction capability. Figure 3 gives a diagram to illustrate the
complete prediction process by using the proposed method for dissolved gases forecasting.
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4. Gas-in-Oil Prediction Scheme via ExMCC-ELM and IPVMD
4.1. Data Construction

Given the large variety of internal gases in power transformers, the connection between
individual gases is not tight and the amount of data is lacking. To solve this problem, this
paper uses the method of constructing data pairs to predict various gases.

Firstly, the dissolved gas data in the oil (H2, C2H4, C2H2, C2H6, CH4) [31] are used as
inputs for IPVMD decomposition, and the decomposition vectors of these five gases were
obtained respectively.

The raw dissolved gases in oil data are shown in Figure 4.
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To verify whether IPVMD can efficiently extract the temporal information of the gas
content sequence. Taking H2 gas as an example, the IPVMD method was used to perform
modal decomposition of the raw H2 data. Figure 5 illustrates the convergence curve of the
MPA-optimized VMD decomposition H2 process. Figure 6 shows the raw data of H2 and
the five-modal data [IMF1, IMF2, · · · , IMF5] after IPVMD decomposition and the optimized
K is selected as 5 by using the MPA algorithm. It can be seen from Figure 5 that the original
strong fluctuation and irregular data after VMD decomposition become smooth in the five
modes, which is helpful for training and testing the data of each modality.
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Figure 6. H2 raw data versus modal decomposition data.

Then, the limited data sample IMFk = [x1, x2, · · · , x300](k = 1 : K), K is the number
of modes to be decomposed by the VMD, which is determined by the MPA algorithm) is
divided into training data and testing data of the ExMCC-ELM model, respectively, where
the first 250 points {xi}250

i=1 are used as the training set and the last 50 points {xi}300
i=251 are

used as the testing set. Training and testing use data pairs constructed in the form of input
and output, respectively.
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4.2. MPAVMD-ExMCC-ELM Model Prediction Process

In this paper, the VMD decomposition method is used to decompose the nonstationary
timing signal of dissolved gas in transformer oil and convert it into a stationary signal
in multi-mode. Secondly, in the face of the uncertainty of signal decomposition, the IO
optimization method is further used to optimize the parameters of VMD, and the most
satisfactory signal decomposition results have been obtained. Thirdly, the lack of sample
data, strong volatility, and poor regularity are not conducive to the characteristics of
network model training and testing. This paper introduces ExMCC optimization criteria in
the ELM model to overcome the above shortcomings. In this study, the original gas data
was divided into training and testing parts, and the

Step 1: Initialize IPVMD and ExMCC-ELM
The exMCC-ELM model was trained with the first 250 sets of data, the last 50 sets of

data were tested, and the gas data involved was included H2, C2H4, C2H2, C2H6, CH4.
The specific steps are as follows:
Step 2: The gas data H2, C2H4, C2H2, C2H6, CH4 was decomposed by IPVMD respec-

tively to obtain its decomposition vector [IMF1, IMF2, · · · , IMFK]. K is the number of modes
of VMD decomposition, which is determined by the VMD optimization algorithm, and the
K value may be different for different gases.

Step 3: The obtained decomposition vector IMFk = [x1, x2, · · · , x300](k = 1 : K) is
used as the training data and test data of the ExMCC-ELM model respectively, where the
first 250 points are used as the training set and the last 50 points are used as the test set.
Training and testing use data pairs constructed in the form of input and output, respec-
tively. That is, the input and output of the ExMCC-ELM model training process are:
x =

[
x1, x2, . . . , xN1

]T ⇒ (xi, xi+1), 0 < i < 250 , y =
[
y1, y2, . . . , yN1

]T ⇒ xi+2 ; The in-

put and output of the test process are x =
[
x251, x252, . . . , xN2

]T ⇒ (xi, xi+1), 250 < i < 300 ,
yk =

[
y1, y2, . . . , yN2

]T ⇒ xi+2 .
Step 4: The prediction results of each decomposition vector [IMF1, IMF2, · · · , IMFK]

are reconstructed to obtain the prediction results of the raw gas: y = 1
K

K
∑

k=1
yk.

In this paper, the performance of the prediction method is evaluated using mean
absolute error (MAE), mean squared error (MSE), root mean square error (RMSE), and
symmetric mean absolute percentage error (SMAPE), defined as follows:

MAE = 1
N

N
∑

i=1

∣∣∣∣di − yi

∣∣∣∣
MSE = 1

N

N
∑

i=1
(di − yi)

2

RMSE =

√
1
N

N
∑

i=1
(di − yi)

2

SMAPE = 100%
N

N
∑

i=1

|di−yi |
(|di |+|yi |)/2

(27)

where N is the sample size; di is the expected value; yi is the actual predicted value.
The structure diagram of the IPVMD-ExMCC-ELM model for predicting dissolved

gases in transformer oil can be seen in Figure 7.
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5. Experiments and Analysis

In this study, BP, ELM, IPVMD-ELM, and ExMCC-ELM were used as the control
experimental groups to reflect the performance of the proposed method under various test
conditions. All simulations in this paper are performed using MATLAB 2022a in i5-8250 U
and 1.6 GHz CPUs.

5.1. Prediction and Analysis of H2

To verify whether IPVMD can effectively extract the time information of the gas
content sequence. In this section, taking H2 gas as an example, the original H2 data were
decomposed using the IPVMD method, and then tested and verified based on ELM and
the improved ExMCC-ELM model.

To demonstrate the effectiveness and rationality of the experiment, we use BP, ELM,
and ExMCC-ELM as comparative tests to verify the effectiveness of the proposed method
based on the gas data in the original state. In this paper, BP is set to the single hidden
layer, the number of neurons in the hidden layer is set to 10, and the number of neurons
in the hidden layer of ELM, IPVMD-ELM, ExMCC-ELM, and IPVMD-ExMCC-ELM is set
to 5, 5, 3, and 3, respectively, to ensure that each method is in the best prediction state.
Figure 8 shows the prediction results and errors of various methods for 50-day H2 data,
as shown in the figure, the prediction results based on the original H2 data have a large
error, compared with BP and ELM models, the ELM model based on ExMCC optimization
criterion improves the prediction results to a certain extent, because the ExMCC criterion
is not sensitive to strongly fluctuating data, indicating that ExMCC is effective for the
improvement of ELM model. However, this improvement did not allow the ExMCC-ELM
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model to maintain its intended performance throughout the process. This suggests serious
drawbacks to directly applying raw H2 data for the next time series forecast. However,
based on the H2 data after IPVMD modal decomposition, this problem can be effectively
solved, and the decomposed data can effectively solve the influence of data mutation on
the original ELM model, which greatly improves the prediction accuracy.
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Figure 8. 50-day H2 prediction results of IPVMD-ExMCC-ELM versus other methods: (a) prediction
results and (b) prediction error.

It can be seen from the data in Table 1 that the MAE and MSE results of IPVMD-
ELM are 32.13% and 66.64% lower than those of ELM prediction results, respectively, and
the IPVMD-ELM prediction error is relatively stable and there is no huge mutation. The
IPVMD-ExMCC-ELM model synthesizes all the characteristics of IPVMD and ExMCC
optimization criteria, showing excellent robustness, estimation accuracy, and stability.

Table 1. H2 prediction results for each method.

BP ELM IPVMD-ELM ExMCC-ELM IPVMD-ExMCC-ELM

MAE 0.2741 0.2350 0.1595 0.1485 0.0863
MSE 0.1027 0.1082 0.0361 0.0633 0.0147

RMSE 0.3204 0.3289 0.1900 0.2517 0.1211
SMAPE 0.0153 0.0133 0.0092 0.0087 0.0053

5.2. Prediction and Analysis of Other Gases

After the detailed analysis in the previous section, we have obtained the optimal
performance of the IPVMD-ExMCC-ELM method in decomposing and predicting the
original H2 gas. However, in power transformer oil, there are usually multiple hydrocarbon
gases present, such as CH4, C2H2, C2H4, and C2H6, with weak correlations among them.
This weak correlation makes it challenging to estimate the individual gas concentrations
jointly. Therefore, further validation is needed to assess the applicability of the proposed
method for predicting different gas data. Figures 9–12 demonstrate the prediction results
and errors for several different gases.

Table 2 lists the evaluation indicators for each prediction result, and the data in the
table shows that the proposed methods exhibit good predictive performance compared
to the IPVMD-ExMCC model, which has higher accuracy. In C2H4 with the highest
prediction accuracy, MAE, MSE, and SMAPE were improved by 27.25%, 51.01%, and
30.00%, respectively. In CH4 with lower prediction accuracy, MAE, MSE, and SMAPE were
improved by 38.08%, 44.20%, and 34.48%, respectively. It can be seen that the proposed
IPVMD-ExMCC-ELM model can accurately predict the content of dissolved gas in power
transformer oil.
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Figure 9. 50-day C2H4 prediction results of IPVMD-ExMCC-ELM versus other methods: (a) predic-
tion results and (b) prediction error.
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Figure 10. 50-day C2H2 prediction results of IPVMD-ExMCC-ELM versus other methods: (a) predic-
tion results and (b) prediction error.
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Figure 11. 50-day C2H6 prediction results of IPVMD-ExMCC-ELM versus other methods: (a) predic-
tion results and (b) prediction error.
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Table 2. Prediction results evaluation for each method.

BP ELM IPVMD-ELM ExMCC-ELM IPVMD-ExMCC-
ELM

CH4

MAE 0.4056 0.3244 0.1833 0.2747 0.1135
MSE 0.2721 0.2432 0.0457 0.1798 0.0255

RMSE 0.5217 0.4931 0.2137 0.4240 0.1597
SMAPE 0.0067 0.0054 0.0029 0.0046 0.0019

C2H2

MAE 0.4143 0.3846 0.1807 0.3994 0.1196
MSE 0.2647 0.2554 0.0501 0.2184 0.0263

RMSE 0.5145 0.5054 0.2239 0.4673 0.1620
SMAPE 0.1315 0.1374 0.1118 0.1310 0.1028

C2H4

MAE 0.2738 0.2480 0.0921 0.2284 0.0670
MSE 0.1453 0.1316 0.0149 0.1148 0.0073

RMSE 0.3811 0.3628 0.1222 0.3389 0.0855
SMAPE 0.0221 0.0203 0.0080 0.0184 0.0056

C2H6

MAE 0.3027 0.2952 0.1682 0.2586 0.1044
MSE 0.1984 0.2036 0.0675 0.1638 0.0209

RMSE 0.4455 0.4513 0.2599 0.4047 0.1445
SMAPE 0.0117 0.0111 0.0069 0.0096 0.0042

5.3. Analysis of the Impact of Different Parameter Settings on the Prediction Effect

In this section, we will investigate the influence of kernel width σ and scale factor
γ on the proposed IPVMD-ExMCC-ELM model. As shown in Figure 13, when the scale
factor is fixed, the prediction accuracy of the model is weakly affected by different kernel
widths. In contrast, the estimation error obtained when σ1 = σ2 is the largest, which fully
indicates that the proposed ExMCC optimization criterion is better than the original MC.
Figure 14 shows that when the core width is fixed, the prediction error increases as the
γ increases. This is because a small kernel width is conducive to suppressing the effects
of abnormal data or large fluctuations, and this suppression effect gradually decreases
as the core width increases. Therefore, the estimation error gradually increases. After
the simulation study in this paper, the entropy gravity with a small kernel width should
dominate the ExMCC in all experiments, and the predicted effect of the proposed method
is the best when σ1 = 4, σ2 = 0.5, and γ = 0.3.
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6. Conclusions

The power transformer is an important bridge for energy transmission and conversion
in the power system, which is of great significance to the safe operation of the system. To
realize the prediction of gas in transformer oil, a new IPVMD-ExMCC-ELM prediction
model is proposed. Firstly, the IPVMD decomposition method is used to perform modal
decomposition of the original gas dataset to obtain a stable data set that is easy to process.
Then, the application of ELM in the prediction of dissolved gas concentration in transformer
oil is introduced, and the proposed ExMCC optimization criterion is introduced into ELM.
The simulation results show that the robust prediction method based on IPVMD-ExMCC-
ELM proposed in this paper can accurately predict gas content under the condition of
uncertain gas content mutation and oscillation law. The effectiveness and feasibility of
the proposed method are verified by simulation analysis. In general, the advantages
of IPVMD-ExMCC-ELM proposed in this paper are mainly reflected in the following
aspects: Under the evaluation indexes of MAE, MSE, RMSE, and SMAPE, IPVMD-ELM
and ExMCC-ELM have higher prediction accuracy than traditional ELM. On the other hand,
IPVMD-ExMCC-ELM has higher predictive accuracy than IPVMD-ELM and ExMCC-ELM.
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