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Abstract: In recent years, model optimization in the field of computational biology has
become a prominent area for development of pharmaceutical drugs. The increased amount
of experimental data leads to the increase in complexity of proposed models. With increased
complexity comes a necessity for computational algorithms that are able to handle the large
datasets that are used to fit model parameters. In this study the ability of simultaneous,
hybrid simultaneous, and sequential algorithms are tested on two models representative of
computational systems biology. The first case models the cells affected by a virus in a
population and serves as a benchmark model for the proposed hybrid algorithm. The second
model is the ErbB model and shows the ability of the hybrid sequential and simultaneous
method to solve large-scale biological models. Post-processing analysis reveals insights
into the model formulation that are important for understanding the specific parameter
optimization. A parameter sensitivity analysis reveals shortcomings and difficulties in the
ErbB model parameter optimization due to the model formulation rather than the solver
capacity. Suggested methods are model reformulation to improve input-to-output model
linearity, sensitivity ranking, and choice of solver.

Keywords: large-scale systems biology; ErbB signaling pathway; differential algebraic
equations; data reconciliation; parameter sensitivity; hybrid simultaneous optimization;
structural decomposition
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1. Introduction

Advances in biomedical research have led to an increase of experimental data to be interpreted in
the context of reaction pathways, molecular transport, and population dynamics. Kinetic modeling is
one method employed to interpret this data and is used in the pharmaceutical industry in developing
clinical trials for new medications [1]. Many of these models are based on first principles, such as
species balance equations and kinetic reactions. Often in the development of the model there are
parameters and initial conditions that are costly to measure or cannot be measured directly through
experimental procedures. These parameters are potentially estimated through the use of optimization
techniques. The role of kinetic modeling is expected to increase as pharmaceutical companies operate
more efficiently to bring new treatments to market. The ability of simultaneous and sequential solvers
used in kinetic modeling is proposed as a more efficient mechanism to model systems biology behavior
of newly developed treatments.

The Systems Biology Markup Language (SBML) has provided a database of biological models that
are publicly available in a standard format for computational biology [2]. The majority of these models
are composed of detailed reaction metabolic pathways that describe biological systems, in particular
those relevant to the human body. Simulations of this type of biological model have been previously
applied, but with the increase in available biological data and measurements, the alignment between
data and models is a continuous challenge. The best available solution techniques are limited to
small- and medium-sized models, but this also limits the usefulness of the models if severe assumptions
and over-simplifications are made. These simplifications are required in order for the optimizer to handle
parameter estimation and provide an acceptable fit between the data and model. This adversely affects
the potential of the model to capture the full dynamics of the system that it is describing.

An optimization technique known as the simultaneous approach has shown promise in efficiently
optimizing large models (i.e., thousands of variables and parameters) [3]. In this method, the model and
optimization problem are solved simultaneously, as opposed to the alternative approach of solving the
differential and algebraic equation (DAE) model sequentially [4]. DAEs are natural expressions of many
physical systems found in business, mathematics, science, engineering, and particularly systems biology.
These equations can be used to determine the most feasible model for a given system. Much of the recent
development for the simultaneous approach has occurred in the petrochemical industry, where on-line
process control applications require optimization of nonlinear models with many decision variables in
the span of minutes. These solution advancements are motivated by increased profits and automated
repeatability. The applications drive petrochemical processes to produce more from existing processing
units, stay within safe operating conditions, and minimize environmental emissions. Using the same
solution techniques, major advances in the biological systems area are possible. In this study, methods
developed in the APMonitor Optimization Suite [5] are applied to systems biology in MATLAB, Python,
or Julia programming languages. APMonitor is a software package used for applications including
advanced monitoring [6], advanced control [7], unmanned aircraft systems [8,9], smart grid energy
integration systems [10–13], and other applications [14,15] that utilize the simultaneous approach to
dynamic optimization. The examples shown in this work are computed from the SBML database of
curated models in APMonitor and MATLAB. The focus of this work is a framework for optimization
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of large-scale models for parameter estimation. Two examples are used to demonstrate the framework
but the applications are not the focus of the work, only the demonstration of a potential solution for
large-scale systems biology models.

Applying simultaneous DAE solvers to systems biology models present a unique and additional
challenge besides just the model size. Application of simultaneous DAE solvers to large models
is not a new concept [16,17], but it has been mostly confined to solve identifiable models.
Nonlinear programming (NLP) methods can solve over 800,000 variables in less than 67 CPU min [16].
However, there is a unique challenge in systems biology, because there is often a combination of both
large and unobservable models [18,19]. This adds a new degree of difficulty for the solver in returning
the optimal solution and fitting parameters. Additionally, many model parameters can be time-sensitive,
leading to step functions and discontinuities in the model.

The majority of models used in systems biology today contain anywhere from 1 to 25 states (see
Figure 1). This is largely due to the fact that anything beyond 25 states requires excessive computational
time in order to achieve an acceptable fit of parameter estimates with current methods. With the
increase in data availability and an emphasis on big data for drug testing, solvers must synthesize large
datasets available from lab or clinical testing. A few researchers have already derived models to capture
the dynamics of these large datasets, as found in [20,21], but reported large computational resource
requirements. The objective of this work is to reduce development costs for large models by improving
the parameter optimization to allow larger models and the incorporation of more data.
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Figure 1. A distribution of model sizes according to number of states from the
SBML database.

The ability of the proposed algorithms to estimate parameters is tested with one of the largest curated
models from systems biology. The ErbB signaling pathway model is selected from the database of
available curated SBML models as a benchmark problem. Figure 1 shows that there are very few models
of comparable size to the ErbB model in the SBML database with a complex network of reactions as in
Figure 2. The particular details of the ErbB model are not the focus of this work; instead, the model is
used to demonstrate the proposed methodology for parameter estimation of large-scale and potentially
over-parameterized models. Simulation and optimization methods have not yet advanced to allow larger
models. Chen et al. [20] reported that a single parameter estimate required 24 h clock time on a 100-node
cluster computer with the ErbB model.

When considering the size of the model, the sophistication and computational expense are tradeoffs
that are carefully considered during the development process. Larger and more sophisticated models
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are often able to capture more details of the system, but at the expense of larger computational
time and increased uncertainty due to over-parameterization. While the appropriate balance between
sophistication and computation expense is not explored in this work, enabling larger models and more
data synthesis with less computational expense reduces one of the major drawbacks of developing and
using large-scale models.
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Figure 2. ErbB signaling pathway through a network of reactions with rates that are
proportional to individual reactant concentrations [22]. This reaction graph is a simpler
version of the ErbB signaling pathway than Chen et al. [20] (used in this study) due to the
impracticality of displaying a larger model.

1.1. Sequential Gradient-based Approaches

Gradient-based methods for parameter estimation can be separated into two groups as sequential and
simultaneous strategies. In the sequential approach, also known as control vector parameterization, each
iteration of the optimization problem requires the solution of the DAE model, and only the manipulated
variables are discretized. In this formulation the manipulated variables are represented as piecewise
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polynomials [23–25], and optimization is performed with respect to the polynomial coefficients.
Until the 1970s, these problems were solved using an indirect or variational approach, based on the
first order necessary conditions for optimality obtained from Pontryagin’s Minimum Principle [26,27].
This approach takes a dynamical system from one state to the next based on given constraints to the
system by minimizing the Hamiltonian over the set of all permissible controls. Often the state variables
have specified initial conditions and the adjoint variables have final conditions; the resulting two-point
boundary value problem (TPBVP) is addressed with different approaches, including single shooting,
invariant embedding, multiple shooting or some discretization method such as orthogonal collocation on
finite elements. A review of these approaches can be found in [28]. On the other hand, if the problem
requires the handling of active inequality constraints, finding the correct switching structure as well as
suitable initial guesses for state and adjoint variables is often very difficult. Early approaches to deal with
these problems can be found in [27]. It has been established that sequential approaches have properties of
single shooting methods and do not perform well with models that exhibit open loop instability [29,30].
Shooting methods may fail with unstable differential equations before the initial value problem can be
fully integrated, despite good guess values [31].

An improvement over the single shooting methods is multiple shooting, which is a simultaneous
approach that inherits many of the advantages of sequential approaches. It solves a boundary value
problem by partitioning the time domain into smaller time elements and integrating the DAE models
separately in each element [32–35]. The initial value problem is solved in each of the smaller
time intervals.

1.2. Simultaneous Gradient-based Approaches

In the simultaneous approach, also known as direct transcription, both the state and control profiles
are discretized in time using collocation of finite elements. This approach corresponds to a particular
implicit Runge–Kutta method with high order accuracy and excellent stability properties. Also known as
fully implicit Gauss forms, these methods are usually too computationally expensive (and rarely applied)
as initial value problem solvers. However, for boundary value problems and optimal control problems,
which require implicit solutions anyway, this discretization may be a less expensive way to obtain
accurate solutions. On the other hand, the simultaneous approach leads to large-scale NLP problems
that require efficient optimization strategies [16,17,36,37]. As a result, these methods directly couple the
solution of the DAE system with the optimization problem; the DAE system is solved only once at the
optimal point, and therefore can avoid intermediate solutions that may not exist or may require excessive
computational effort.

Manipulated variables are discretized at the same level as the state variables. The
Karush–Kuhn–Tucker (KKT) conditions of the simultaneous NLP are consistent with the optimality
conditions of the discretized variational problem, and convergence rates can be shown under mild
conditions [38–40]. More recently, these properties have been extended to Radau collocation. In
Kameswaran and Biegler’s papers [41,42], convergence rates are derived that relate NLP solutions to
the true solutions of the infinite dimensional optimal control problem.
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Similar to multiple shooting approaches, simultaneous approaches can deal with instabilities that
occur for a range of inputs. Because they can be seen as extensions of robust boundary value solvers, they
are able to “pin down” unstable modes (or increasing modes in the forward direction). This characteristic
has benefits in problems that include transitions to unstable points, optimization of chaotic systems [35]
and systems with limit cycles and bifurcations, as illustrated in [30]. Simultaneous methods also allow
the direct enforcement of state and controlled variable constraints, at the same level of discretization
as the state variables of the DAE system. As discussed in Kameswaran and Biegler [42], these can
present some interesting advantages on large-scale problems. Recent work [42–44] has shown that
simultaneous approaches have distinct advantages for singular control problems and problems with high
index path constraints.

The simultaneous approach has a number of advantages over other approaches to dynamic
optimization. Betts [45] provides a detailed description of the simultaneous approach with full-space
methods, along with mesh refinement strategies and case studies in mechanics and aerospace.
Systems biology models may also be ill-conditioned and non-convex where many gradient-based local
optimization methods fail to find global solutions. This obstacle has been overcome by methods
involving deterministic and stochastic global optimization [46].

1.3. Parameter Optimization

A model for a biological system is necessary in order to evaluate parameters that are not as readily
measured experimentally. Further, experimentation methods to evaluate all mechanism parameters are in
many cases impractical, but fortunately current techniques allow for use of models to estimate unknown
parameters [47]. It is important to ensure that there is the right structure in the model (observability)
for parameter estimation and that the data contains sufficient information to produce correct parameter
values. In the case of computational systems biology, the structure of the model typically indicates that
a subset of the model parameters may not be uniquely estimated. In Chis et al. [18], a comparison
of techniques for the selection of the parameter subset shows that the generating series approach in
combination with an identifiability analysis is the most widely applicable strategy.

Another challenge in parameter estimation for systems biology is that the experimental data
available for biological models is often noisy and taken at a limited number of time points.
Lillacci and Khammash [48] proposes a method based on an extended Kalman filter (also known
as a dynamic recursive estimator) to find valid estimates of model parameters and discriminate
among alternative models of the same biological process. Word et al. [49] also discusses the
capabilities of nonlinear programming and interior-point methods to efficiently estimate parameters in
discrete-time models.

In the past, different approaches, including both simultaneous and sequential approaches, have been
used for optimization of large-scale models, such as the genome-scale dynamic flux balance models
studied in Leppävuori et al. [4]. A method is proposed for parameter estimation selection using both
simultaneous and sequential approaches to optimize the model parameters. In the sequential estimation
strategy with direct sensitivities, the authors conclude that “in this formulation, the size of the problem



Processes 2015, 3 707

grows large with the genome-scale metabolic models, and would be outside the capabilities of today’s
laptop hardware.”

Regarding parameter selection, Gutenkunst et al. [50] make the important distinction that modelers
should focus on predictions rather than strictly on parameters. That is, even if individual parameters are
poorly constrained, collective fitting of parameters can lead to well-constrained predictions. In many
models, the available in vivo data means that the full set of parameters is often not uniquely identifiable.
Thus, the model should be evaluated and reduced by fixing some parameters to literature values or
properly grouping some sets of parameters. Rodriguez-Fernandez et al. [51] propose a method of doing
this in a single step with a MINLP-based optimization approach.

Coelho et al. [52] discuss a general framework for uncertainty analysis in parameter estimation.
Uncertainty analysis is beyond the scope of this paper because the major case study involves a model
that already has optimal parameters, which are perturbed and it is left to the solver to return to the
optimal solution. Nevertheless, in a typical parameter optimization case study in which the nominal
values are not known, it would be an important consideration. Chung [53] proposes a sensitivity analysis
for a distributed parameter estimation problem. This method results in improved parameter estimates.
The idea of using sensitivity to determine parameter perturbations is one way to enhance the convergence
of the ErbB model.

2. Simulation and Optimization of DAE Systems

A framework for simulation and parameter estimation in systems biology is developed to detail
the novel strategy proposed for overcoming challenges with large-scale models and relatively few
parameters. The framework is also applicable to other systems with relatively low degrees of freedom
and large state dimensions.

2.1. Simulation of DAE Systems

One common form for mathematically describing dynamic systems is through the use of differential
and algebraic equations (DAEs), which includes both equality and inequality constraints (see
Equation (1)).

0 = f

(
d x

d t
, x, u

)
(1a)

0 < g

(
d x

d t
, x, u

)
(1b)

where x is a vector of states that may appear in differential or algebraic form, u is a vector of inputs, f
is a set of equality constraints, and g is a set of inequality constraints. This DAE form is less restrictive
than other forms that require special arrangement to fit into semi-explicit form

(
d x
d t

= f (x, u)
)
, discrete

form (x[k + 1] = f (x[k], u[k])), or that only allow equality constraints but not inequality constraints
(see Equation (1b)). Another potential restriction with prior work is that a solver may only be able to
solve differential equations (Ordinary Differential Equations (ODEs)) but not coupled with algebraic
equations. The solution of DAEs has a long history of computational techniques for efficient simulation
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of large-scale and complex systems. Two general approaches for simulation of DAEs are shown in
Figure 3 with a sequential approach [54–61] shown on the left and a simultaneous approach [17,62–71]
shown on the right.
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Figure 3. Overview of sequential (left) and simultaneous (right) approaches to solve
DAE systems.

For both approaches, the equations are solved as an initial value problem (IVP) where the initial states
(x0) and decision variables

(
uk∀(1..N)

)
over the time horizon are specified as seen in Figure 4, in which

N is the number of time steps in the discretized horizon.

���������	
�
��������

���������
�����

Figure 4. DAEs are discretized and solved over a time horizon with System States (x)
determined from the equations and Inputs or Parameters (u) that may discontinuously adjust
at points in the simulated time horizon.

There is no objective function to drive variables to a best case value and the presence of inequality
constraints may allow multiple feasible solutions. If there are no inequality constraints but only equality
constraints, then the simulation requires an equal number of equations and variables to be completely
specified. In the case where there are more independent equations than variables, the system is described
as over-specified and a solution may not exist that can satisfy all equations. In the case where there are
more variables than equations and active inequality or equality constraints, the system is described as
under-specified or with additional degrees of freedom. In this case, additional variables can be specified,
otherwise those variables can be selected by an optimizer to minimize a particular objective.

An advantage of solving DAEs with a sequential method is that the solution is a series of smaller IVPs
as compared with one large IVP with a simultaneous approach. In the sequential approach, the time step
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is adjusted either smaller to achieve greater accuracy or larger to speed up computational time. With a
simultaneous approach, the DAE system is discretized before the solution and converted to a Nonlinear
Programming (NLP) problem for solution by a large-scale iterative solver. The simultaneous approach
converges all variables and equations in the time horizon with one call to the solver. If the solution
does not meet integration accuracy requirements, the grid is refined and another solution is attempted.
The later approach may be advantageous when there is a need to trade off certain variables or parameters
that are calculated or fixed. With a simultaneous approach, any point along the time horizon can be
specified or fixed as long as another variable is given to the optimizer to adjust. For example, a final
value for a particular variable could be fixed if the initial condition is calculated.

2.2. Optimization of DAE Systems

When there are additional degrees of freedom, such as unknown parameters in dynamic data
reconciliation or a manipulated variable move plan in Model Predictive Control (MPC), an objective
function J can be defined to drive the selection of those variables (see Equation (2)).

min
u,x

J (x, u) (2a)

0 = f

(
d x

d t
, x, u

)
(2b)

0 ≤ g

(
d x

d t
, x, u

)
(2c)

where the objective function J (x, u) is minimized by adjusting the state vector x and the vector of
decision variables u. The same set of equality (f ) and inequality (g) constraints are present as described
in Section 2.1. The numerical solution of Equation (2) is more challenging than the simulation case of
Equation (1) because there may be many feasible values of x and u that must also minimize the objective.
When there are few decision variables, an approach may be to try all combinations of decision variables
to locate those that satisfy both constraints and then select the combination that produces the lowest
objective. This direct search method is rarely applied in practice because of the number of trial points
for u that must be computed grows quickly as the dimension of u increases. Two popular methods for
optimizing systems of DAEs are again the simultaneous and sequential methods (see Figure 5).

The core of the sequential approach on the left of Figure 5 is the same as in Figure 3 where
forward-propagation solvers are used to compute xk with uk fixed at specified values that are either
provided by an initial guess or otherwise updated by the secondary loop. This secondary optimization
loop computes several candidate solutions and gradients of those solutions while updating the guess
value for uk. This cycle continues until convergence criteria are met to ensure that Karush–Kuhn–Tucker
(KKT) conditions for optimality are satisfied. The simultaneous approach on the right side of
Figure 5 includes the objective and constraints in a single solution attempt to simultaneously converge
the equations and minimize the objective function. This is accomplished by transforming the DAE into
NLP form and adding the standard objective function for NLP solvers. Some refinement of the grid
structure may be necessary to reduce integration error and satisfy accuracy requirements. Terminating
the solver before convergence is achieved does not typically result in a feasible solution to f and g
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because it is only at the converged solution that a feasible solution is computed. On the other hand, if
the sequential solution approach is terminated after a specified number of iterations, a sub-optimal but
feasible solution exists.
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Figure 5. Overview of sequential (left) and simultaneous (right) approaches to optimize
DAE systems.

3. Hybrid Simultaneous and Sequential DAE Optimization

This section details the hybrid approach that combines a simultaneous and sequential approach to
improve convergence speed and reliability (see Figure 6).
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The method is a hybrid method in two ways, including (1) initialization and discretization that occurs
before the model is converted from DAE to NLP form, and (2) a simultaneous core solution with no
degrees of freedom in a loop with efficient sensitivity and gradient calculations. The first step for
initialization is accomplished with a sequential approach to adjust the step size with guess values for
uk. The optimal discretization is likely to change with changing uk values produced by the optimization,
but this may be a better method than heuristic discretization methods. The second step is the optimization
loop, which uses a simultaneous simulation to provide a search direction for uk. The calculation of a
search direction from the simultaneous simulation is a post-processing solution step and is more efficient
than solving additional adjoint equations often augmented to a sequential solution approach.

Gradient-based sequential solutions require derivative information of the objective sensitivity with
respect to the adjustable parameters to determine a search direction that improves the objective. A new
search direction is selected with the Newton–Raphson method. This method determines a change in
parameters (du) that satisfies the Karush–Kuhn–Tucker (KKT) optimality conditions (Equation (3a))
with Lagrange multipliers for the lower

(
λi∀(1..p)

)
and upper

(
λi∀(p+1..2p)

)
bounds for u. The gradient is

approximated with a Taylor series approximation (Equation (3b)) with the first and second derivatives
of the objective. A search direction is calculated by inverting the second derivative matrix (see
Equation (3c)) as implemented in the APMonitor Modeling Language and Optimization Suite [72].

∇uJ(ū+ du)−
p∑

i=1

λi (a− u)−
p∑

i=1

λi+p (u− b) = 0 (3a)

∇uJ(ū+ du) ≈ ∇uJ(ū) +∇2
uuJ(ū) du (3b)

du = −
(
∇2

uuJ(ū) du
)−1∇uJ(ū) (3c)

Accurate first (Jacobian) and second (Hessian) derivatives improve the search direction but can
be computationally expensive to obtain. The most computationally expensive option is to use finite
difference methods where p + 1 separate simulations are performed with small perturbations in the
parameter value of ui∀(1..p). Second derivative approximations may be obtained with p2 + p additional
numerical integrations, but this is not typically performed due to increased computational burden.
Without a suitable Hessian approximation, the method becomes a steepest descent algorithm where
the Hessian is set as the identity matrix with a search direction of du = −∇uJ(ū). Several approximate
methods exist to obtain an approximate Hessian solely from Jacobian information. One such method
is a quasi-Newton approach where a rank-1 BFGS update maintains a positive definite Hessian or an
inverted Hessian approximation. This methods starts as a steepest descent algorithm and then transitions
to a Newton–Raphson approach as the Hessian information is obtained.

Instead of finite difference methods, accurate first derivatives (∇uJ(ū)) can be obtained by solving
adjoint sensitivity equations [73–75]. The cost is the additional computational expense and configuration
to solve additional equations at every time step. Without exact Hessian information, a quasi-Newton
approach can be used to converge more rapidly than the steepest descent method.

A third method to obtain accurate derivative information is a post-processing step to a simultaneous
time-discretized solution. Time discretization is performed with orthogonal collocation on finite
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elements [76] for solution by nonlinear programming (NLP) or mixed integer nonlinear programming
(MINLP) solvers. This method is fast because it only involves a sparse matrix inversion as a
post-processing step to a single dynamic simulation. Exact derivatives to machine precision are
available through automatic differentiation for equation gradients with respect to states (∇fx(x, u)) and
parameters (∇fu(x, u)), and for objective gradients with respect to states (∇Jx(x, u)) and parameters
(∇Ju(x, u)). Note that ∇Ju(x, u) is not the same as ∇Ju(u). In the case of ∇Ju(u), there is no state
x dependence because the states are deemed as implicit functions of u. The sensitivities are determined
by solving the following set of linear equations at the solution of the dynamic simulation with parameter
current guess ū and corresponding state solution x̄ (see Equation (4)).∇xf(x̄, ū) ∇uf(x̄, ū) 0

∇xJ(x, u) ∇uJ(x, u) −1
0 I 0


 ∇ux

∇uu

∇uJ(ū)

 =

 0

dui = 1

0

 (4)

An efficient implementation of this calculation involves obtaining a Lower Upper (LU) factorization
of the left hand side (LHS) mass matrix. The linear system of equations is successively solved for the
different right hand side (RHS) vector where the row corresponding to dui is set equal to 1 and all
other elements are set equal to 0. The solution produces the sensitivity of the states with respect to
the parameters at every time point in the horizon (∇ux) as well as the sensitivity of the objective with
respect to the parameters (∇uJ(ū)). The Hessian of the objective with respect to the parameters is then
calculated with Equation (5).

∇2
uuJ(ū) = ∇ux

T ∇xxJ(x̄, ū)∇ux (5)

This calculation also relies on the Hessian of the objective with respect to the states (∇xxJ(x̄, ū)) that
is available at the solution with the use of automatic differentiation.

In summary, a new hybrid dynamic optimization method is proposed that solves a simultaneous
simulation in the inner loop and a sequential optimization for the outer loop. The proposed hybrid
method combines the simultaneous solution and sensitivity calculation that have high computational
efficiency with the lower-dimensional sequential approach that has only parameters as decision variables.
This combination is shown to perform nearly as fast as the fully simultaneous approach where parameters
and model states are calculated together. The method also provides updated parameters at every cycle of
the outer loop sequential iterations in case early termination or convergence monitoring is desired.

3.1. Model Parameter Estimation with HIV Case Study

A common benchmark model and simulation results are used to verify the proposed approach with
literature values. The model used is a basic model describing dynamics of healthy, infected, and virus
infected cells over thirty days with nine parameters, three variables, and three differential equations
(see Equations (6a)–(6c)) [77]. An additional algebraic equation (see Equation (6d)) is added to scale
the virus response as it changes by many orders of magnitude. The proposed algorithm successfully
replicates the results published in literature and simulations in MATLAB. While the HIV model is
a simple dynamic model with only four states, it is useful for demonstrating the proposed approach
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to much more complicated systems of equations. The full source code for this example is provided
online [78].

The initialization strategy is applied to a parameter estimation problem in systems biology similar to
the approach taken in [79]. In this case, a dynamic response of the spread of the virus is predicted and
aligned with virus count data. The simulation predicts a count of the healthy cells (H), infected cells (I),
and virus (V ) in a patient. The log10 value of the virus is fit to data with a least squares objective with
six parameters

(
kri∈(1..6)

)
.

dH

dt
= kr1 − kr2 H − kr3 H V (6a)

dI

dt
= kr3 H V − kr4 I (6b)

dV

dt
= −kr3 H V − kr5 V + kr6 I (6c)

VL = log10V (6d)

The parameter kr1 is the natural rate of healthy cell generation per year. The parameters kr2, kr4, and
kr5 are the fractional death rate of healthy cells (H), infected cells (I), and virus count (V ), respectively,
on an annual basis. The parameter kr3 is the rate constant for healthy cells becoming infected cells.
An infection of a healthy cell reduces the healthy cell count and consumes a virus while increasing the
infected cell count (H + V

kr3−−→ I). The rate constant is multiplied by the number of healthy cells and
virus count as each of those quantities affects the rate of infection. Infected cells have a higher death
rate than healthy cells (kr4 > kr2) in this model. Virus production depends on the parameter kr6 and the
number of infected cells.

The simultaneous algorithm is consistent with sequential methods that include error control. A next
step is to verify the parameter estimation capabilities with the benchmark problem. In order to perform
the parameter estimation, the objective function is set to minimize the absolute error between the
model and synthetic data. An arbitrary measurement noise of ±0.5 log order is added to the synthetic
data. All six parameters values are perturbed by 10% from the optimal values to determine whether
the proposed algorithm can find the correct parameter values from several different starting points.
It is found that the simultaneous method is able to accurately optimize to the correct parameter values.
Figure 7 shows the concentration of the virus from the synthetic data and the predicted model values with
the estimated parameters. As seen in the figure, the simultaneous method is able to correctly find the
parameters that allow the model to fit the synthetic data. The initialization is accomplished in two steps
with the dynamic decomposition solution in lower block triangular form (0.7 s) followed by simultaneous
(29 iterations in 1.1 s) or sequential dynamic parameter estimation (4 iterations in 2.1 s). The dynamic
optimization problems of 843 variables and 840 equations are solved in APMonitor (APOPT solver) on
a 2.4 GHz Intel i7-2760QM Processor. The APOPT solver fails to find a solution when initialization is
not used. The decomposition successfully initializes the dynamic optimization problem by providing a
nearby solution that is sufficiently close to the optimized solution. The optimized solution is shown in
Figure 8 on a semi-log scale plot.



Processes 2015, 3 714

0 5 10 15
1

2

3

4

5

6

7

8

Tim e (day s )

lo
g

1
0

 v
ir

u
s

 (
n

u
m

b
e

r 
o

f 
v

ir
u

s
e

s
 p

e
r 

m
ic

ro
lit

e
r 

o
f 

b
lo

o
d

)

 

 

A P M  M odel

S y nthet ic  data

Figure 7. The parameters of the HIV model are adjusted to fit synthetic virus concentrations
from simulated lab data.
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Figure 8. Results of the HIV model parameter estimation, including predicted, actual, and
measured virus (V), infected cells (I), and healthy cells (H).

The discretized dynamic simulation is not successful without initialization, so the lower block
triangular form of the sparsity is used to identify small subsets that can be solved successively and
independently (see Figure 9). Although the DAE model has only four variables and equations, the
optimization problem has over 800 variables and equations when it is discretized in time. A dot in
Figure 9 indicates that the particular variable is present in that particular equation. For example, variable
402 is in equations 401–404. Each of the four variables of Equation (6) is solved at each time point in
the horizon. These are the variables and equations along the diagonal on the left subplot of Figure 9.
The zoomed-in view of variables and equations 400–420 shows repeated clusters of four variables and
equations, which are the DAE model at each point in the time horizon. The upper right diagonal of
that same subplot shows a zoomed-in view of variables 200–220 and equations 630–650, which are
the non-differential variables (H, I, V, VL) in the collocation equations that relate derivative terms to
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non-derivative terms. The lower diagonal elements are the differential terms dH
dt

, dI
dt

, and dV
dt

in the
collocation equations. The right subplot of Figure 9 shows the rearranged sparsity pattern with blocks of
variables and equations that are solved successively and independently for the purpose of initialization.
Full details on the decomposition and initialization method for DAEs are given in a related work [80].
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Figure 9. Lower block triangular form with blocks of variables and equations that are solved
successively and independently.

Before this method of parameter estimation is applied to large-scale biological models, it is necessary
to create an automatic conversion from SBML to an APMonitor form of the model. This not only
eliminates the human error in the conversion process but also allows for the quick evaluation of many
publicly available models. The converter is available at the following reference [81]. This conversion
tool is used to automatically convert the model that describes the ErbB signaling pathways [20], referred
to as the ErbB model, to demonstrate further capabilities with large-scale systems.

3.2. Systems Biology: ErbB Signaling Pathway Model Parameter Estimation

The ErbB signaling pathway (referred to henceforth as the ErbB model) is particularly important
to understand and model for the purpose of pharmaceutical development. There are currently a wide
variety of anti-ErbB drugs in use or development [20]. These are significant because it has been shown
that a loss of signaling by any member of the ErbB protein family can result in embryonic lethality,
while excessive ErbB signaling can result in the development of a variety of cancers [82,83]. Thus it
is important to understand and model this pathway to ensure appropriate amount of ErbB signaling to
reduce side effects. The ErbB model serves as a test case for this study of a large-scale model that is
challenging to solve for parameter estimation. The references cited in this paper give additional details
and innovations with the ErbB model. The focus of this work is a framework to numerically optimize
large-scale systems biology models. Like the HIV example case, full source code for this example
problem is also provided online [78].

The ErbB model has been the subject of several key studies in the field of computational biology [84].
Anderson et al. [84] develop tools that are used to produce biologically meaningful, simplified models
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from large-scale models, using the ErbB model as a case study. The purpose of using the ErbB model
in this study is to show the ability of the proposed methods to decrease computational time required to
obtain a good fit to data in a large systems biology model.

The ErbB model is a large model with 225 parameters, 504 variables and 1331 DAEs describing the
kinetics of the signaling pathway. In the article, the authors estimated 75 of the initial conditions and rate
constants out of the 229 identified by the sensitivity analysis. This is accomplished through simulated
annealing, which required 100 annealing runs and 24 h on a 100-node cluster computer on average to
obtain just one good fit. This constitutes a very large model in computational biology, as discussed above
(see Figure 1). In this figure, the ErbB model is in an upper category at 525 states.

3.2.1. Improved Convergence through Model Transformation

To increase the likelihood of successful convergence for the model, it is desirable to have less
nonlinearity in the model. In this example a logarithmic scale of model parameters is implemented.
The ErbB model parameters vary across a large range of about fifteen orders of magnitude. The log10
scaling provides a means to optimize the parameters without the inconsistencies in magnitude of
perturbation. For example, a near zero-valued parameter that is perturbed by a value of one changes
significantly, while that same perturbation of one causes a negligible change in parameter value for
large-valued parameters. For the log scaling of these models, parameters that are originally zero-valued
are kept at a value of zero, given that log10(0) is undefined. The model parameters that involve the step
function are kept at their original values because they are not selected for optimization and are treated as
known values. In addition, most of these step function parameters are zero-valued in one segment of the
time horizon and then later turned on, becoming non-zero-valued. For future reference, another method
of logarithmic scaling to handle zero-valued parameters would be to scale them as log10(θ+1) so that the
parameters are still valued at zero in the corresponding times, while being adjusted accordingly at other
times. Although this would cause some problems with perturbations, the key aspect of the logarithmic
scaling is consistency.

Although logarithmic scaling is implemented in this specific example, any model transformation that
improves the linearity of input/output relationships has the potential to improve model convergence.
In some cases, such as this, model transformation is necessary to achieve successful convergence.
Otherwise the solver fails to find a solution within a maximum allowable time limit or maximum number
of iterations.

3.2.2. Solver Performance on 341 Benchmark Problems

With the large-scale model problem, the choice of solver also proved to be a critical decision.
A benchmark on the CPU times required for solution of 341 SBML models is performed for Nonlinear
Programming (NLP) solvers APOPT [85], BPOPT, IPOPT [86], SNOPT [87], and MINOS that employ
sequential quadratic programming (SQP). The results are shown in Figure 10. The benchmark indicates
that the highest percentage of models solve successfully with BPOPT (interior point SQP method). The
solver SNOPT (active set SQP method) has the shortest solution times for a large fraction of the models.
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This benchmark study points to a number of characteristics of interior point and active set methods for
solving large-scale and sparse systems of differential and algebraic equations.
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Figure 10. Benchmark solver results for biological models comparing six solvers over
341 curated models from the biomodels database.

The purpose of these benchmark results is to show the speed of different popular solvers and the total
number of problems that each can solve if given unlimited time. Only two examples are presented
in detail in this paper. The benchmark results across 341 models give a broader view of potential
applications in systems biology. The intercept shows that the solver SNOPT is fastest or tied for fastest
on 52% of the set of 341 models. Other notable solvers include APOPT that is fastest or tied on 33%
and BPOPT on 27% of the problems. IPOPT and MINOS are fastest or tied on 16%. Although SNOPT
is a fast solver, it is least capable at finding a solution given additional time and solves only 86.2% of
the problems when given τ = 5 or 25 more time than the fastest solver. Notable solvers for convergence
success include BPOPT at 93.5% and APOPT at 91.5% success rates. It is important to have a solver
that can complete the solution quickly and with a high final success rate. Researchers often try multiple
solvers when attempting challenging problems. These benchmark results show several promising solvers
over a range of systems biology problems.

3.2.3. Unobservable Parameters

A common scenario is when certain parameters in a model have no or little influence on the predictions
of the measured data. Those parameters cannot be estimated from available data because there is
no information in the measurements to guide the selection of those parameters. For linear systems,
an observability analysis is a common method to determine how many parameters can be estimated.
Another approach is to simply leave insensitive parameters at default values by including a small penalty
for all parameter value movement. A small cost function is included in the objective function for the
possibility that the objective function is insensitive to the unknown parameter. This prevents the solver
from moving the parameter to a random number if there is no objective function gradient with respect to
the parameter. The cost function is added to the objective in the form k(θ− θ0)

2 where k is a constant,
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θ is the parameter to be optimized, and θ0 is the initial value of that parameter (not the optimal value).
By default k is set to a small value at 10−3 to not interfere with the primary objective of fitting model
predictions to measured values.

3.3. Results of ErbB Parameter Optimization

The objective function minimizes the squared error between the model and two measurable
concentrations, referred to as pAkt and pERK. Instead of using simulated annealing to estimate the
parameters, a multi-start optimization is used. To accomplish this, the method first initializes the problem
by receiving the input of a time horizon of parameters, the majority of which are subject to the indicator
variables. This step returns the results of the simulation with the initial optimal parameters given by
the model. The parameter values are then randomly varied from ±1.0 log order from the prior value.
However, to receive consistent results between test runs, it is determined to vary the parameters randomly
as ±1/(sensitivity). The solver is then utilized to determine if a parameter optimization could return
an acceptable fit with the available measurements. The model is highly constrained with little flexibility
in order to return the optimal solutions. Without the log scaling or other initialization factors added to
the model, the results are limited to the estimation of only a few parameters at a time. The estimation
procedure is performed in APMonitor through MATLAB, Julia, or Python programming environment.

Figure 11 shows the lower block triangular form of the ErbB model for improved initialization of the
parameter optimization. Transforming into lower block triangular form also decomposes the problem
into a simpler form for solution. In this decomposition, the structure of the time-discretized model is
detailed to expose sets of variables and equations that can be solved successively and independently
from other variables and equations. This decomposition improves initialization by identifying possible
sources of infeasible constraints or model formulations that may lead to solver failure (e.g., division by
zero) [80].

The parameter optimization fits the model parameters to data available for the pAkt and pERK state
variables. In Figure 12, the dots (pAkt measured, pERK measured) represent the measured values of the
state variable, the blue line (pAkt, pERK) shows the fit after the parameter optimization, and the red line
(pAkt0, pERK0) indicates the model fit after the initial cold start solution.

The simultaneous parameter optimization showed a significant improvement to the previous
capabilities of solvers utilized for the ErbB model. However, it is unlikely to converge to a solution
if too many parameters are perturbed and optimized at once. With a simultaneous approach, several
more model parameters are optimized in a group, given that the parameters are carefully selected in
the methods above. While the actual parameter values are not always returned, the overall fit to data is
retained, again emphasizing the point brought out by Gutenkunst et al. [50] that an overall fit is more
essential than the actual model parameter values. The CPU times required for solution with different
numbers of parameters optimized are shown in Table 1. The tests were performed on an Intel(R)
Core(TM) i5-3210M CPU @2.50 GHz with 6.00 GB of RAM.
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Figure 11. Lower block triangular form of ErbB model with original sparsity on the
left and rearranged sparsity with successive blocks of variables and equations that are
solved successively.
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Figure 12. Results of parameter optimization with pAkt and pERK measurement as
model objective.

Table 1. CPU times for solution of ErbB model with hybrid and simultaneous methods.

Parameters Hybrid Simultaneous

1 33.2 s 30.6 s
3 50.4 s 45.4 s
5 41.5 s 67.8 s
10 75.3 s failure

Optimizing for ten parameters with the hybrid approach resulted initially in a failure to converge,
but it is observed that a successful solution is found by skipping co-linear parameters in the sensitivity
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ranking. This failure is due to original combination of parameters that have the same scaled effect
on the predictions with a combination that should be optimized as a single parameter instead of as
separate parameters.

Post-Processing Analysis and Parameter Sensitivity

The order in which parameters are estimated is determined by the parameter sensitivity with respect
to model objective functions. The sensitivity analysis shows that the measured variables have no
sensitivity to some parameters. These parameters, as well as zero-valued parameters, are kept at original
levels without perturbation given that the perturbation of any one of these parameters would introduce
additional pathways in the kinetic mechanism. Given these constraints, the sensitivity analysis shows
that only 140 of the 225 rate constants in the ErbB model can be estimated. The remaining parameters
are ordered from the most sensitive to least sensitive, and the most sensitive parameter is optimized
first. In subsequent optimizations, additional parameters are perturbed and optimized in conjunction
with the parameters from previous optimizations. That is, in the first run, the most sensitive parameter is
perturbed and optimized, in the next run the two most sensitive parameters are perturbed and optimized
simultaneously, and so forth.

A sensitivity analysis is performed on the model parameters with respect to the model objective
functions. The sensitivity is in reference to the two measured state variables to which the model is
fit, namely pERK and pAkt. The results of the sensitivity analysis are shown below in Figure 13.
Note that the model parameters have different sensitivities at different time points. It is significant to
note that while a model parameter may not have a large effect on the objective over the dynamic time
horizon (ranging from time step 1 to 35), the parameter can have a large effect on the steady state portion
of the model. This reveals an important insight for the sensitivity ranking. If only the end sensitivity with
respect to the objective function is considered for a model parameter, it may give a misleading result. A
parameter that has low sensitivity at the end of the time horizon may in fact be a critical parameter early
on. This principle is seen in the parameter k60, which has zero sensitivity at the start of the time horizon
but by the end has a significant sensitivity. In this particular case, the sensitivities of each parameter with
respect to both pAkt and pERK are averaged over the entire time horizon and ranked accordingly.

The sensitivity plots may have some discontinuities in the first derivative (shown as sharp peaks or
valleys) for two reasons. First is a natural discontinuity that occurs due to the indicator variables used in
the model. At time step 21 (t = 1800 s), some model parameters are turned off and others are turned on
with a piecewise function for the model that changes at time step 21. This results in a change in model
dynamics, as seen in Figure 13a,b. The other discontinuities come from an algebraic manipulation of the
log scaling. Because some of the sensitivities are negative-valued, they do not display on a logarithmic
plot. The sensitivity plot shows the log value of absolute value of the sensitivity with respect to the given
state variables. Because some of the parameter sensitivities change suddenly from positive to negative,
there is a natural discontinuity in the first derivative.

Some interesting phenomena are apparent from the sensitivity graphs. Parameters that are scaled
duplicates are co-linear or dependent parameters and are therefore impractical to optimize at the same
time. For example, the two parameters k44 and k42 exhibit this paired relationship, and at all time steps
the two sensitivities are proportional. In this case, either a linear combination of the parameters is
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estimated or one parameter is removed by the sensitivity selection process. It is possible, however, that
parameters that appear to be pairs have different nonlinear sensitivities and the same graphical behavior
is not observed as the parameters are adjusted throughout the parameter estimation. This behavior is not
shown in the sample parameters in Figure 13 nor is it pursued in this study, although it could potentially
reveal some insight about parameter optimization.
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Figure 13. Parameter sensitivity over the time horizon (subplots a and b) and singular value
magnitudes for principal parameter search directions (subplots c and d). The relative levels
of the singular values show that some parameters have a strong effect on the predictions
while others have a minimal effect or are co-linear and do not need to be estimated.

The results of a singular value decomposition (SVD) [88] performed in MATLAB are shown in
Figure 13c,d. This analysis is an essential step in understanding the number of parameters to be estimated
in the model. For the eleven most sensitive parameters shown, Figure 13 shows that when evaluating the
sensitivities with respect to the pERK predicted value, only three of the parameters have a significant
influence on the objective, while about six of the parameters have an effect on the pAkt predicted value.
The SVD analysis is also informative in minimizing the number of parameters needed for estimation
by relating parameters that can be expressed as combinations of sets of other parameters. The methods
behind the recombination of parameters are beyond the scope of this paper, but there is a possibility for
reformulating models to minimize the model size and number of parameters to be optimized.

4. Discussion

The non-identifiability of many biological models leads to difficulties in parameter estimation,
and several methods are shown to improve model convergence, including log scaling of the model
parameters, sensitivity ranking, choosing correct perturbations, and structural decomposition. Further, a
single strategy among these elements is insufficient to lead to a successful solution, but the combination
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of all of these elements improved the solution time. In the successive initialization and parameter
estimation, each of these methods is implemented one at a time, improving intermediate solutions until
the original problem is solved.

The simultaneous optimization of multiple parameters is a particular challenge in the ErbB case
study. Only after the SVD analysis is the difficultly attributed to the actual model structure rather
than the solver. The SVD analysis shows that it is impractical to optimize more than a small subset
of independent parameters to achieve a proper fit. Perturbing and optimizing any other parameters has
a negligible effect on the overall fit because of the low sensitivities magnitude. This study shows that
the solver algorithms used for parameter optimization in dynamic biological models are effective in
reducing the computational time (144,000 CPU min [20] for simulated annealing, a sequential method,
versus approximately 1 CPU min for either the hybrid or simultaneous method) for parameter estimation.

The parameter sensitivity analysis reveals that different measurements of objective functions result
in different numbers of parameters that can be optimized. The ErbB case shows that an evaluation of
the objective function by minimizing the pAkt value results in more distinct parameters with significant
sensitivity. This can be used to estimate more parameters within a model. By increasing the diversity of
the data to which the model is fit, different parameter sets can be estimated based on a similar sensitivity
analysis. The challenge, of course, comes in the fact that obtaining additional data for parameter fitting
is costly and sometimes impossible. A more sophisticated model may capture more dynamics, but may
require more experimental measurements in order to uniquely identify parameters.

5. Conclusions and Future Direction

A contribution of this work is to demonstrate the ability of hybrid simultaneous and sequential solvers
to optimize sets of parameters in models typical of systems biology. Furthermore, model reformation
strategies are proposed to increase the likelihood of a successful solution. A sensitivity analysis over the
entire time horizon provides particularly sharp insights into the behavior of the model. This sensitivity
analysis provides a contribution to the knowledge of the ErbB model and reveals insights that may allow
optimization of additional model parameters. A conversion tool from SBML to APMonitor is created to
facilitate the solution of systems biology models with the given methods. Finally, a benchmark test on
these solvers is conducted to show the most effective solvers and combinations of solvers for solution of
systems biology models.

The sensitivity analysis proved to be particularly insightful revealing parameters that are co-linear
or else produce little change in the model predictions for the two measured values. Singular value
decomposition (SVD) identifies parameters that have the largest influence on the model fit as well as
parameters suitable to be combined into pseudo-parameters that are linear combinations of the original
parameter space.

Two case studies are considered to test the applicability of the proposed hybrid method in comparison
with a simultaneous solution. The HIV model provides a proof of concept and demonstrates that these
methods can successfully simulate literature values of the model with the different approaches. The ErbB
model reveals several important aspects of model identifiability and highlights some of the difficulties
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typical of biological models. Initialization methods are employed, including log scaling, sensitivity
ranking, choice of solver, and cost and identifiability.

The original basis of the testing on biological models is to demonstrate the ability of the solvers to
handle the unique challenges in large-scale biological models. The ErbB model highlights some other
significant aspects of the optimization techniques and demonstrates that the sensitivity analysis predicts
some of the issues with the model formulation. Future work can extend these methods to other large-scale
biological models and remove the limitation of simplified models due to computational concerns.

While only the APOPT solver is used for the analysis of the two case studies, further work could
expand to investigate the effectiveness of different solvers and combinations of solvers. While this idea
is touched upon in this study, it has not been fully developed and could lead to further improvements in
the optimization of systems biology models. Other optimization techniques such as simulated annealing
or a genetic algorithm can be used to further investigate model parameter estimation in biological models.
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