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Abstract: Normally, most of the accidents that occur in underground facilities are not instantaneous;
rather, hazards build up gradually behind the scenes and are invisible due to the inherent structure
of these facilities. An efficient inference system is highly desirable to monitor these facilities to
avoid such accidents beforehand. A fuzzy inference system is a significant risk assessment method,
but there are three critical challenges associated with fuzzy inference-based systems, i.e., rules
determination, membership functions (MFs) distribution determination, and rules reduction to deal
with the problem of dimensionality. In this paper, a simplified hierarchical fuzzy logic (SHFL) model
has been suggested to assess underground risk while addressing the associated challenges. For rule
determination, two new rule-designing and determination methods are introduced, namely average
rules-based (ARB) and max rules-based (MRB). To determine efficient membership functions (MFs),
a module named the heuristic-based membership functions allocation (HBMFA) module has been
added to the conventional Mamdani fuzzy logic method. For rule reduction, a hierarchical fuzzy
logic model with a distinct configuration has been proposed. In the simplified hierarchical fuzzy logic
(SHFL) model, we have also tried to minimize rules as well as the number of levels of the hierarchical
structure fuzzy logic model. After risk index assessment, the risk index prediction is carried out
using a Kalman filter. The prediction of the risk index is significant because it could help caretakers
to take preventive measures in time and prevent underground accidents. The results indicate that the
suggested technique is an excellent choice for risk index assessment and prediction.

Keywords: risk assessment; membership functions (MFs); fuzzy inference system; simplified
hierarchical fuzzy logic (SHFL); underground risk; hierarchical fuzzy logic (HFL)

1. Introduction

Worldwide, rapid urbanization is taking place in many countries. Better health facilities,
along with more job opportunities, education facilities, businesses, and other facilities attract people to
migrate from rural areas to urban areas. Hence, cities are becoming more congested and the installation
of underground facilities is regularly growing. Consequently, enormous growth in underground
facilities is expected in the future due to such relocation of the masses [1]. These facilities consist
of underground metro buses, railway lines, parking lots, markets, power supply, water supply,
sewerage lines, etc. Any failure to these facilities can cause personal injury, death, mission degradation,
property destruction [2], etc. The theory of risk was initially presented in the field of economics at the
end of the 19th century. Nowadays it is generally used in almost all fields, i.e., environmental science,
natural disaster planning, and architectural engineering [3,4]. Risk indicates failure probability and
has a close relationship with uncertainty. The risk assessment is the deployment of quantitative or
qualitative actions to determine the risk correlated with a specific threat [2].
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Many accidents occur due to the lack of a proper mechanism for underground risk assessment [5].
Hence, it is mandatory to design an efficient technique for underground risk index assessment.
Several risk assessment methods have been proposed, such as for coal mines [6], natural disasters [7],
long-distance water transmission [8], road tunnels [9,10], water supply pipelines [11], bridges [12],
etc. In the recent past, fuzzy logic models have captured the attention of many researchers and have
been used extensively for risk assessment and other purposes [11,13] such as sensor designing [14],
measuring [15], identifying [16], controlling [17], assessing [5,18], etc. The fuzzy logic is a form of
many-valued logic in which the truth values may be any real number between 0 and 1 rather than
binary logic, in which the truth value may be either 0 or 1. Fuzzy logic is normally used to deal with
the partial truth. The core challenge faced by conventional fuzzy logic (CFL) is rules-explosion as new
variables arrive into the system [19]. For example, a fuzzy logic model having p input variables and
for each input variable q membership functions (MFs) are defined. Hence, to construct a full structure
fuzzy logic pq fuzzy rules would be required. For a fuzzy logic model having 12 input variables, for
each variable five membership functions are defined. To implement a full structure, fuzzy logic model
512 rules would be required. It is very difficult for experts to design 244140625(512) rules accurately [5,6].
Therefore to solve the problem of rule explosion, researchers introduced the hierarchical fuzzy logic
(HFL) concept. In HFL, the fuzzy logic model is divided into sub-modules hierarchically [6]. The HFL
significantly decreases the number of rules in the rules base. Rules reduction makes experts able to
design accurate rules, decrease the probability of error, and minimize the chance of overfitting rules [19].
The HFL is an appropriate choice for a situation in which a lot of variables need to be considered [20].
Many researchers have used the hierarchical fuzzy logic methods in different fields for different
purposes, i.e., for biped robot controlling [21], water mains risk assessing [20], modeling, controlling,
prediction [22], Internet safety [23], etc. Prediction of underground risk index is also essential to find
the trend of risk indices. Prediction of risk has been carried out in various fields to take measures in
advance and escape from losses [1,24]. The Kalman filter is a very famous technique that has been used
by many authors in different areas for prediction purposes such as energy consumption prediction [25],
detection and location of leaks in long-distance pipelines [26] water level prediction [27], body weight
prediction [28], etc.

In this paper, a methodology comprised of two main modules, namely hierarchical fuzzy logic
module and a Kalman filter module for underground risk index assessment and prediction, has been
proposed. In the hierarchical fuzzy logic module, we have introduced a SHFL model with a distinct
configuration. The purpose of this model was to build a full-structure fuzzy logic model having
the least rules and the least levels. Usually, more levels in a hierarchical model complicate the
rule-designing process, and it becomes very challenging for experts to map rules from all levels to
obtain a single risk index value. Rule designing in a fuzzy inference system is also a challenging task.
Normally, experts are required for rule designing, but finding such experts with potential knowledge is
time-consuming and also very expensive. In the SHFL model, two rule-designing mechanisms called
average rules-based (ARB) and max rules-based (MRB) have been proposed to help rule designers.
Accurate membership functions (MFs) determination is also essential because it has a direct impact
on system accuracy. In the SHFL model, we have also added a heuristic-based membership function
allocation module to help the manager in the determination of optimized membership functions
(MFs) for the improvement in accuracy of the fuzzy logic model. The SHFL model helps to assess the
risk index based on factors provided to the model. Risk index prediction is also significant to take
preemptive measures to minimize the risk of failure. Herein we have used the Kalman filter to predict
the risk index to make the trend of underground risk indices in the future. Risk index prediction is
also significant to take some measurements in advance to avoid losses.

The remainder of the paper is structured as follows: Section 2 explains the related work;
in Section 3 the proposed method and experimental requirements are discussed in detail. The results
and discussion are given in Section 4, and the paper is concluded in Section 5.
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2. Related Work

Many efforts have been reported in the literature to assess risk in underground facilities as well
as in other fields. Some of the methodologies for underground risk assessment and other fields are
discussed in detail.

Image processing is an important technique used in nearly every field for detection, monitoring,
and assessment. Kleta et al. [29] summarized the potential solutions, methods, and benchmarks to
identify different types of damage. An approach based on an augmented reality concept consists of
three main stages, namely image preprocessing, automatic damage detection, and crack monitoring.
Several preprocessing methods have been applied to the images such as histogram equalization,
homomorphic processing, and noise reduction to correct the images. In the automatic damage detection
stage two techniques, namely color space transformation and thresholding algorithms, have been used.
In the third stage, they have deployed the image differencing method for automatic crack development
monitoring. Kuttisseril et al. [30] proposed a method based on image processing techniques such as
edge detection and contour detection to detect damage in underground structures. Different image
processing techniques have also been used for displacement monitoring [31], underground structural
health monitoring [30], etc.

Mostly underground accidents occur because of failures of infrastructure facilities, such as
subways, bridges, and buildings. Therefore, it is necessary to assess the underground risk in a timely
manner to avoid such accidents [5]. Khan et al. [32] suggested a general risk assessment technique
to acquire data and surveil underground facilities. Choi et al. [33] proposed a technique consisting
of four stages of underground construction projects to identify, analyze, evaluate, and manage the
risk. An identical system to determine the underground risk of a subway construction project was
suggested during the development of Incheon Airport, South Korea [34]. The purpose was to assess the
situation on the ground and ensure safety during the construction of the subway. A methodology was
developed to assess risk during the Warsaw, Poland Metro construction project [35]. Shamir et al. [36]
proposed a method to assess the breakage rate of pipes over time. The developed technique is based
on regression analysis. Numerous risk calculation methods in coal mines have been discussed in [9].
Several risk assessment techniques have been suggested for risk assessment, such as Monto Carlo
simulation, event trees (ET), fault trees (FT), failure mode, multi-criteria verbal analysis (MCVA),
and Grey Systems (GS) [37].

The most common and efficient technique to assess underground and manage underground risk
is fuzzy logic [5]. Fuzzy logic methods are used in many different fields. Tripathy et al. [5] developed a
method for safety risk assessment in underground coal mines. Their proposed technique is based on
the Mamdani fuzzy logic method. A case study has been carried out to validate the applicability of the
suggested method. Chen et al. [38] suggested a fuzzy decision-making methodology to handle the
supplier chain selection issue in the supply chain system. Gul et al. [39] used a fuzzy set theory in the
aluminum industry. Zhao et al. [40] suggested an approach based on fuzzy logic for risk assessment in
green projects. Zhang et al. [8] suggested a fuzzy comprehensive evaluation method to analyze the risk
of a long-distance water supply system. Li et al. [41] suggested a technique for long-distance water
transmission pipeline risk evaluation. Pokoradi et al. [3] discussed in detail the fuzzy logic-based risk
assessment approach for human safety.

The main problem faced by conventional fuzzy logic is rule explosion; a lot of work has been
done by many researchers to overcome this problem. Fayaz et al. [5] developed a technique for
underground risk assessment using hierarchical fuzzy logic (HFL). Yager et al. [42] constructed a
hierarchical-type fuzzy systems model, namely a hierarchical prioritized structure, and studied its
structure in detail. An expert system based on HFL has been proposed to evaluate the risk of water
mines in [20]. A methodology to decrease the computational time of the hierarchical fuzzy logic
modes was suggested by Chang et al. [19]. Plamena et al. [43] designed an HFL model for natural
risk assessment in Southwest Bulgaria. Heung et al. [44] suggested a technique based on HFL and
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the genetic algorithm (GA) to control traffic at a road junction. HFL logic is designed to decrease the
number of rules, and the GA algorithm is used for rule generation.

The prediction techniques in almost every field have been used to help system managers with
planning. Numerous researchers have used different prediction techniques for various purposes,
such as for the pipeline failure prediction of a water distribution system [22], earthquake prediction [45],
soil hydraulic properties prediction [46], weather prediction [47], etc. A Kalman filter is also a very
significant method used by several authors for prediction purposes. Safdar et al. [25] used a Kalman
filter for energy consumption prediction in Korean residential buildings. Average and maximum
predicted values for daily, weekly, monthly, and yearly energy consumption have been calculated.
Benkherouf et al. [26] presented a new technique based on the Kalman filter to locate and detect
leaks in long-distance pipelines. Israr et al. [26] used the Kalman filter for water level prediction.
Another method was introduced in [27] to predict the weight of a person using the Kalman filter.

Although different authors have proposed various methods, there is a need to develop a method
to assess and predict the underground risk index accurately. The proposed technique is an attempt in
this regard.

3. Methods

Figure 1 shows the proposed conceptual model for underground risk index assessment and
prediction. The suggested model has two main modules: a simplified hierarchical fuzzy logic (SHFL)
model and the Kalman filter predicted model. The simplified hierarchical fuzzy logic (SHFL) model
has been designed with a unique structure to decrease the number of rules. We have also enhanced
the capability of conventional hierarchical fuzzy logic and added two rule schemes for efficient rule
specification. For accurate membership function determination, a heuristic-based approach has been
introduced. A detailed description of each module is given below.
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Figure 1. Proposed conceptual model.

The simplified hierarchical fuzzy logic (SHFL) model, as illustrated in Figure 2, consists of
three layers: the input layer, medium layer, and top-level layer. The input layer consists of eight
different variables, namely water supply pipeline risk probability (P1), water supply pipeline risk
severity (P2), sewerage supply risk probability (P3), sewerage supply risk severity (P4), metro structure
risk probability (P5), metro structure risk severity (P6), geo-environmental risk probability (P7),
and geo-environmental risk severity (P8). The medium-level layer has four sub-modules, consisting of
water supply risk index fuzzy logic (WPRF), a sewerage supply risk index (SPRF), a Metro structure
risk index fuzzy logic (MRF), and geo-environmental risk index fuzzy logic (GRF). WPRF, SPRF, MRF,
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and GRF are used to calculate the water supply pipeline risk index (M1), sewerage supply pipeline
risk index (M2), metro structure risk index (M3), and geo-environmental risk index (G). The variables
P1 and P2 are inputted to WPRF, the WPRF fuzzy logic gets the P3, and P4 variables as inputs, the
MRF gets the P5, and P6 variables as inputs, and geo-environmental fuzzy logic (GERF) gets P7 and P8

variables as inputs. The results from the fuzzy logic are entered into the top-level layer fuzzy logic
as input in the top layer. The output of the simplified hierarchical fuzzy logic (SHFL) model is then
further inputted to the Kalman filter module; the Kalman filter module provides the predicted risk
index based on the current risk index values.
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The proposed simplified hierarchical fuzzy logic (SHFL) model, as illustrated in Figure 2, provides
partial solutions in the middle layer; these partial solutions are then used in the next subsequent
modules to generate the final system output. The simplified hierarchical fuzzy logic (SHFL) model is
primarily designed to reduce the computational complexity when the variables are greater in number.
In the conventional fuzzy logic model, as shown in Figure 3, all inputs are directly entered into a
single fuzzy logic method; hence, as new variables enter the system, the number of rules increases
exponentially in the rules base.

In the proposed SHFL model, the Mamdani fuzzy logic method [48] has been used because
of its simplicity and efficiency [5]. The main components of the Mamdani fuzzy logic method are
fuzzification, knowledge base, fuzzy inference system, and defuzzification. In fuzzification, the crisp
inputs are translated into fuzzy values using membership functions (MFs). The fuzzy sets are defined
in the knowledge base. The rule base is comprised of if–then rules. If–then rules are used for capturing
the indefinite models of reasoning. These rules play a significant role and enable us to decide in
situations of uncertainty and imprecision. The structure of Mamdani fuzzy logic is presented in
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Figure 4 for the WPRF fuzzy logic. Similarly, the Mamdani fuzzy logic for SPRF, MSRF, and GRF has
been used, having the same characteristics as in Figure 4.
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A fuzzy inference system performs mapping of fuzzy inputs to fuzzy outputs using fuzzy theory
models. The MFs play an essential role in the fuzzy theory. In the SHFL model, triangular MFs
have been used. The triangular MFs reduce the computational complexity, are very useful, and are
most commonly used in Mamdani fuzzy logic [49]. The formula for triangular MF is defined in
Equation (1). Defuzzification is used for converting fuzzy output values to crisp values. There are
different defuzzification methods [50]; in the proposed SHFL model fuzzy logic the center of gravity
algorithm has been used in defuzzification [51]. The triangular curve is a function of vector x, and
depends on three scalar factors, a, b, and c, as given by

f(x; a, b, c) = max
(

min
(

x − a
b − a

,
c − x
c − b

)
, 0

)
. (1)

The fuzzy inference model diagram is given in Figure 5 to elaborate the simplified hierarchical
fuzzy logic (SHFL) model in detail. As mentioned earlier, in the middle layer there are four fuzzy logic
types: the P1 and P2 variables are input to WPRF fuzzy logic, the SPRF inputs are P3 and P4 variables.
MRF takes P5 and P6 as inputs, and P7, and P8 are input to GRF. µ (xi) indicates the degree of truth
for each input premise in the fuzzification processes in the middle layer. The computed truth value
for the premise of each rule is represented as (zi) in the inference process of the middle layer. In the
composition processes, all the subsets allocated to each output variable are combined to form a single
fuzzy subset for each output variable, which is represented as u(yk), where k = 1, 2, 3, 4 are in the
middle layer. b1, b2, b3, b4 are the crisp output values after defuzzification processes in the middle
layer. The output crisp values of each fuzzy logic type in the middle layer are further input to top-level
layer fuzzy logic. The same fuzzification inference, composition, and defuzzification processes are
applied in this fuzzy logic in order to get the final risk index value.
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Fuzzy membership function determination is something of a trial and error exercise. The set
of membership functions (MFs) where the empirical relationship between inputs and outputs is
represented with a satisfactory level of accuracy may be considered final, and can be further used
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for prediction purposes with other data as well. In the conventional Mamdani fuzzy logic technique,
the determination of MFs is done through experts and remains fixed for the entire dataset [3]. In the
proposed work, a module called Heuristic-Based Membership Functions Allocation (HBMFA) has been
added to the traditional Mamdani fuzzy inference system to make the membership functions flexible.
In the proposed SHFL model for each fuzzy logic module, the membership function generations are
carried out through the HBMFA module by using historical data. The fuzzy logic module gets the same
historical data and a set of membership functions from the HBMFA module and provides estimated
risk index values. The estimated risk index values are further inputs to the Analyzer Module (AM)
module. The analyzer module uses the mean square error (MSE) [11] for performance evaluation. The
mean square error indicates the error between estimated risk index values and the referenced index
values. The comparator stores the value of MSE and control goes to the HBMFA module. The next
MFs are allocated to a fuzzy logic model, and again the MSE value is computed for that MFs set.
This process continues until we find the best set in the available membership functions set. Similarly,
the next MFs set is applied to similar historical data, and the performance of the proposed model is
evaluated using mean square error. This process is repeated a specific number of times and, in this
way, the best membership functions set is obtained. This membership functions set is then further
used for the next dataset.

The Kalman filter has been used in this model to predict the underground risk index. A Kalman
filter takes the output values of the SHFL model as inputs and calculates the predicted underground
risk index values. The prediction is essential to assist the manager with taking action in advance.
The Kalman filter addresses the common issue of trying to predict the state x” Rn of a discrete time.
The Kalman filter uses the below formulas (Equations (2)–(4)) for prediction.

KG =
EEST

EEST + EMEA
(2)

ESTt = ESTt−1 + KG [MAE − ESTt−1] (3)

ESTt = (1 − KG) [ESTt−1], (4)

where KG, ESTt, ESTt−1, MAE, EMAE, and EEST represent the Kalman gain, current estimate, previous
estimate, measurement, error in measurement, and error in estimation, respectively. Kalman gain has
two inputs, namely error in the estimated data and error in the actual data. The following diagram
shows how the Kalman filter works [25,52]. The structure diagram for the Kalman filter is shown in
Figure 6.
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The rules are made in the modules of the SHFL model based on their roles. Each module returns
a partial result, and these partial results are combined in the corresponding module to provide a final
system output. Hence, for each partial module, the rules are defined. Equation (5) determines the
required rules for the complete fuzzy system.

Number of Rules = Mn1 + Mn2 + Mn3 . . . . . . . . . . . . . . . . . . Mnk, (5)

where n indicates the number of variables in a fuzzy logic, and m represents the number of
membership functions.

The rule base consists of the number of if–then rules in the Mamani fuzzy logic model. If–then
rules are used for capturing the indefinite models of reasoning. These rules play an important role
in deciding between environments of uncertainty and imprecision. In the SHFL model two methods,
namely average rules-based (ARB) and max rules-based (MRB) mechanisms for defining rules in the
fuzzy logic modules, have been suggested according to the weights assigned to MFs in Table 1. For ease,
we have defined five MFs for all input/output variables. For example, the linguistic terms very low
risk (VLR), low risk (LR), medium risk (MR), high risk (HR) and very high risk (VHR) are assigned to
MFs for a variable in fuzzy logic.

Table 1. Membership labels along with assigned weights.

Labels VLR LR MR HR VHR

MFw 1 2 3 4 5

ARB and MRB rules are illustrated in Equations (6) and (7), respectively.

ARB = (MFw1+ MFw2, . . . . . . , MFwn)/n (6)

MRB = max(MFw1, MFw1, . . . . . . , MFwn), (7)

where MFw represents the membership function weight and n signifies the total number of MFs.
ARB and MRB rules can be calculated using the weights assigned to corresponding MFs that are

illustrated in Table 1. In Table 2 the specification of rules has been carried out using the ARB rules
method, and in Table 3 both ARB and MRB methods rules are applied. In this study, we have used
only the ARB rules mechanism for fuzzy logic in middle-level fuzzy logic; while for top-layer fuzzy
logic both ARB and MRB rules mechanisms are used. We can use both rule schemes alternatively
depending on the system need. Equation (1) can be used to specify rules through the ARB method.
After calculating the mean value, if the output is a fraction then the ceiling value is considered.
Following are some examples of MRB rules specification mechanisms.

MRB = (VLR + LR)/2 = (1.0 + 2.0)/2.0 = 1.50 = 2 = LR
MRB = (VLR + HR)/2 = (1.0 + 4.0)/2.0 = 2.50 = 3 = MR
MRB = (LR + MR)/2 = (2.0 + 3.0)/2.0 = 2.50 = 3 = MR
MRB = (MR + HR)/2 = (3.0 + 4.0)/2 = 3.50 = 4 = HR

Table 2 shows the rules determined using the MRB method; in this table each cell indicates a risk
index. These rules are defined for fuzzy logic in the middle-level layer.

Defining rules using MRB and ARB methods are determined in Table 3 for the top-level SHFL
model. After applying the formula, the fraction part is eliminated using a ceiling function in the
MRB method.
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Table 2. Rule determination using the MRB method.

P2

P1 VLR LR MR HR VHR

VLR VLR VLR LR MR M
LR VLR LR MR MR H
MR LR MR MR HR VH
HR MR MR HR VHR VH
VH MR HR VHR VHR VHR

Table 3. Example cases for illustration of rules specification using ARB and MRB schemes.

Cases
Input Output

M1 M2 M3 G MRB ARB

1
VLR VLR VLR VHR VH LR

1 1 1 5 5 (1 + 1 + 1 + 5)/4 = 2

2
HR HR HR VR VH HR

4 4 4 5 5 (4 + 4 + 4 + 5)/4 = 4.25 = 5

3
- - MR VHR VHR HR

3 5 5 (3 + 5)/2 = 4

Experimental Requirements

All the implementation of the suggested work is done in Matlab R2015aSP1 (Version 8.5.1);
in particular, a fuzzy logic toolbox has been used for SHFL implementation.

For simplicity and better representation, five MFs are defined for each variable in each fuzzy logic
method. Fuzzy logic methods with membership function, rules editor, and input/output variables are
given below in detail. Figure 7 represents the inference system of the Mamdani fuzzy logic model for
water supply risk index. The inputs are P1 and P2, and M1 is the output.
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Figure 8 illustrates the input and output MFs for water supply fuzzy logic. This fuzzy logic has
two inputs, P1 and P2, and output M1. Five MFs have been defined for each variable to better represent
the characteristics of each variable.Processes 2018, 6, x FOR PEER REVIEW  11 of 22 
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A total of 25 rules are defined for WPRF fuzzy logic. The ARB rules scheme has been applied to
specify rules for WSPR fuzzy logic, as given in Table 2. Figure 9 presents the fuzzy rules editor of the
fuzzy logic toolbox for rules determination using the ARB method for the WPRF method. The labels of
the input variables and the output variable are represented as a list for the user to choose and combine
using the logical operators ‘and’ and ‘or’.

The same number of rules and the same mechanism as in Table 2 are determined for every fuzzy
logic method in the middle layer.

In the same way, the rules for every fuzzy logic type in the middle-level layer are defined using
the ARB method. The same numbers of membership functions (5), with the same linguistic terms as for
WPRF fuzzy logic, are defined for each input/output variable. Output risk values are then further
used as inputs to the top-level layer. The fuzzy logic in a top level gets the middle-layer fuzzy logic
output values. The Mamdani fuzzy inference for top-level fuzzy logic is shown in Figure 10.
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There are four inputs (M, M2, M3 and G) to the top-level layer fuzzy logic and the output is the
underground risk index; hence, for each input variable five MFs are defined with the same linguistic
terms and different scale. The input and output membership functions are shown in Figure 11.Processes 2018, 6, x FOR PEER REVIEW  13 of 22 
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(underground risk index) in the top-level fuzzy logic method.

For rule specification in the top level layer fuzzy logic to calculate the final risk index, both ARB

and MRB rules specification methods have been applied. The complete rule set (775 rules) of Table 2
derived through the ARB method is specified using the rule editor for top-level fuzzy logic, as shown
in Figure 12.
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The rule viewer for specifying rules through an ARB rules specification scheme is shown in
Figure 13, where the inputs are M1, M2, M3 and G, and the resulting values are the final risk index
values of the proposed SHFL model.
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The rule viewer for specifying rules through max-based rules schemes is shown in Figure 15,
where the inputs are M1, M2, M3 and G and the output is the top-level risk index.
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4. Results

For analyzing the proposed risk index assessment and prediction model, the generation of the
data is carried out using some exponential functions. The data that are generated using the exponential
function are increasing in for 1000 values from 0 to 10. In this model eight inputs are considered for the
experiment. Hence the generated data are given to the SHFL model as inputs. The proposed model is
evaluated on this data. The functions used to generate the data are given below.

Figures 16 and 17 illustrate the simulated data generated through the above functions;
these generated data ae further used as input to the SHFL model.
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The outputs risk index values of fuzzy logic in the top-level layer are the final risk index values
of the SHFL model, where inputs to the top-level fuzzy logic are M1, M2, M3 and G. In the top-level
layer the rules are defined using both MRB and ARB. Figure 18 indicates the top-level layer fuzzy logic
underground risk index values using the ARB method for defining rules, along with Kalman filter
predicted underground risk index results. Figure 19 illustrates the underground risk index results of
top-level fuzzy logic using the MRB rules determining method along with the Kalman filter predicted
results for underground risk index.Processes 2018, 6, x FOR PEER REVIEW  17 of 22 
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Discussion

The number of underground facilities is growing day by day, so underground risk assessment is
very important. Underground risk assessment is a very complicated process because a lot of parameters
need to be taken into account. Eight variables are used as inputs to assess the underground risk index.
In this case, to apply the conventional fuzzy logic (CFL) is not a suitable choice because it is unable to
handle a lot of parameters. Therefore, the SHFL model has been proposed to overcome the problems
faced by the CFL method.

The SHFL model based on hierarchical fuzzy logic shrinks the number of rules in the rule base.
As mentioned earlier, five MFs are determined for each variable, and the number of input variables
is eight. By putting the number of variables and the MFs in Equation (1) for the SHFL model and in
Equation (2) for CFL as below:

Number of rules for SHFL model = ∑L
i=1 f × mni= ∑2

i=1 f × mni = 4 × 52 + 1 × 54 = 100 + 625 = 725, (8)

Number of rules CFL model = mn = 58 = 390625. (9)

By using the SHFL model, the rules can be reduced significantly. It is essential to reduce the rules
in the rule base because the justification and designing of thousands of rules is extremely difficult.
Usually, the massive volume of rules causes rule overfitting.

While designing the SHFL model, the number levels have also been considerably reduced because
more levels in a hierarchical model complicate the rule-designing process and it becomes challenging
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for experts to map rules efficiently at all levels. In the proposed work we have also kept this in
consideration to reduce the rules as well as to minimize the number of levels in the SHFL model.

The SHFL model also minimizes the number of factors in the mathematical formulas of the
fuzzy inference system. The main problem faced by the CFL model is that a higher number of
factors are required to specify a rule, fuzzification, defuzzification, and different operations as new
parameters arrive in the model. A vast number of variables increase the computational complexity
and processing time.

Defining rules is also a tedious task in Mamdani fuzzy logic that requires experts to specify or
design rules. Hence, in the SHFL model, we have introduced two rule specification mechanisms,
called ARB and MRB methods, to assist the manager with designing rules for a system.

The fuzzy membership function determination is something of a trial and error exercise; it takes a
lot of time and expertise to determine the proper MFs distribution. To achieve adequate membership
functions, a HBMFA scheme has been introduced. This module assists the manager with determining
an appropriate set of MFs to improve the accuracy of the system. Suitable membership function
determination has a direct impact on system accuracy.

Nowadays, prediction is frequently used in many fields [26,27,52], hence in the proposed work
we have also taken into account the underground risk index prediction. Underground risk index
prediction is also essential to assist the caretaker with taking safety measures before an accident or
failure happens.

5. Conclusions

In this work, we have focused on the construction of a model based on the hierarchical fuzzy
model and the Kalman filter. The purpose of this study was to design a system for underground
risk assessment and prediction. For this purpose, a model has been designed that is based on the
hierarchical fuzzy logic method and Kalman filter. This hierarchical fuzzy system model is designed for
rule reduction as new variables arrive in the model. The proposed SHFL model is simple in structure
and requires fewer rules to implement a full-structure fuzzy logic model. Rule designing is also a matter
of high importance and requires experts and time to design accurate rules for a system. To specify
rules in the SHFL model, we have offered two rule schemes, namely average rules-based (ARB) and
max rules-based (MRB) rules; the selection of any scheme from them for any fuzzy logic depends
on the system needs. Membership function determination is a challenging task and has a major
impact on system performance. In the proposed work we have used a heuristic-based membership
function determination scheme to get a suitable membership functions set. To test the proposed risk
index assessment and prediction model, we have also generated data through exponential functions.
The Kalman filter has also been applied to predict the risk index; risk index prediction is also essential
to take preemptive measures.
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