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1 SynBioWeaver Implementation

1.1 Overview

SynBioWeaver is a framework written in Python 2.7 that allows a synthetic biology system to be built in an
aspect-oriented manner. To achieve this, SynBioWeaver provides classes to model genetic parts. Via a point
cut system, the genetic circuit can be advised by influencing the execution flow. Furthermore, parts can be
enriched with type advice to include additional properties, such as modelling rules. SynBioWeaver is able to
combine all these advice into a finished design, which includes an ordered list of parts representing the genetic
circuit. All classes are in the synbioweaver.core Python module.
All the code and examples are downloadable as the module synbioweaver from GitHub and have online docu-
mentation at the following urls:

• https://github.com/ucl-cssb/synbioweaver

• http://synbioweaver.readthedocs.org

1.2 Simple Example: RBS and Terminator Design Rules

To give an initial flavour for the framework, the following code listing shows a simple example. It defines a
standard genetic circuit: a promoter, followed by an RBS, followed by a coding region for GFP, followed by a
terminator. However, in this example the core-concern of expressing GFP under a Promoter has been separated
from the cross-cutting concern of always surrounding a coding region with an RBS and a terminator.

Listing 1: SynBioWeaver Example: Design Rules
1 from synbioweaver import *
2
3 declareNewMolecule('GFP')
4
5 class CodingGFP(Circuit):
6 def mainCircuit(self):
7 self.addPart(Promoter)
8 self.addPart(CodingRegion(GFP))
9

10 class DesignRules(Aspect):
11 def mainAspect(self):
12 anyCodingRegion = PartSignature('*. CodingRegion+')
13
14 beforeCodingRegion = PointCut(anyCodingRegion ,PointCut.BEFORE)
15 afterCodingRegion = PointCut(anyCodingRegion ,PointCut.AFTER)
16
17 self.addAdvice(beforeCodingRegion ,self.insertRBS)
18 self.addAdvice(afterCodingRegion ,self.insertTerminator)
19
20 def insertRBS(self ,context):
21 self.addPart(RBS)
22
23 def insertTerminator(self ,context):
24 self.addPart(Terminator)
25
26 compiledDesign = Weaver(CodingGFP ,DesignRules).output ()
27 print compiledDesign

In the following sections, the classes used in the example will be described in detail. This includes Part and
Circuit types, point cuts and advice, and the weaver. These relate to the two most high priority requirements:

• Circuits can be modelled as a list of parts. Parts are objects with meaningful types

• A weaver allows circuit design to be advised by design aspects

Some additional concepts are not described further, but can be found in the documentation, which also includes
tutorials and examples.
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namespace: Circuit / Aspect
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BBa_B0030 HybridPromoter

RNACodingRegion

Figure S1: UML class diagram shows the built in part types in synbioweaver.core in solid boxes. Users can
define new, more concrete part types, as shows by the BioBrick RBS part (dashed box).

1.3 Circuitry Architecture

1.3.1 Parts

Parts follow a rich inheritance hierarchy, with abstract parts of types such as “RBS” at the top, which could be
subclassed into a concrete part such as “BBa_B0030”1. Figure S1 shows all part types in synbioweaver.core.
Parts could have been made to differ via object attributes rather than type, however, since Python allows new
types to be created quickly and dynamically we believe that it is conceptually clearer to represent each distinct
part type (in biology) by a distinct type in the framework.

1.3.2 Molecules

Some parts, such as regulated promoters or coding regions are connected to molecules. These can be proteins
such as GFP, transcription factors or other chemical agents interacting with the system. Unlike parts, molecules
are always only used as types in SynBioWeaver, never objects. This is because they represent a class of Molecule
rather than a concrete, physical molecule. In other words, if a promoter is regulated by a certain protein, it is
regulated by all proteins of the type, not just by a single instance. All molecules are of subtype Molecule.

1.3.3 Dynamically creating Part and Molecule types

Two convenience functions, declareNewPart() and declareNewMolecule() are provided by SynBioWeaver.
As seen in the example, they export the string name of the new type to the namespace. More information can
be found in the documentation.

Listing 2: SynBioWeaver example of new Part and Molecule type declaration
1 # Protein is a subtype of Molecule

2 declareNewMolecule( 'GFP ',Protein)
3
4 # GFP is now a new type in this namespace

5 declareNewPart( ' GFPcoding ',CodingSite ,GFP)
6
7 # a new part type has been created, getCodingFor returns a list of coding molecules

8 assert(GFPcoding().getCodingFor()[0] == GFP)

1.3.4 Circuits

A circuit is an ordered collection of parts. Circuits are given an addPart() method, and a mandatory
mainCircuit() method, at which the circuit’s execution begins. This design decision makes the circuit more

1A BioBrick part from the Registry of Standard Biological Parts, in the RBS category. http://parts.igem.org/Part:BBa_B0030
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Figure S2: UML class diagram of classes involved in the Point Cut mechanism

like a dynamic programmatic construct, rather than a specified list. Indeed, all normal Python code can be
used, such as loops and method calls to construct the genetic circuit with addPart() calls. The Circuit class is
instantiated by the weaver, which then calls its mainCircuit() method. Whenever the circuit calls addPart(),
the method is passed on back to the weaver, which decides if any point cuts are relevant. Thus each call to
addPart() is an SynBioWeaver join point.

1.3.5 Circuit as Composites

As seen in the Part inheritance diagram (Figure S1), circuits are themselves parts. This means they can be
used as composites, which reflects the idea of composite parts from the Registry of Standard Biological Parts.
If a circuit is used as a composite, its mainCircuit() method is called when it is added via addPart().

1.4 Point Cuts

A point cut in SynBioWeaver has to be able to select join points in the genetic circuit execution flow, i.e. calls
to addPart(). Inspired by AspectJ, point cuts should be able to precisely select a single join point, or be able
to select whole groups of join points based on features such as type name or type hierarchy. A SynBioWeaver
PointCut object consists of an expression to select certain parts - the parameter to the addPart() call, and
an operator to declare whether the advice should be inserted before or after the part is added, or whether the
advice should replace the part. All classes involved in the point cut mechanism are shown in Figure S2.

1.4.1 Part Signature

A part signature is a single string that can match a part or group of parts. It consists of three elements. Firstly,
it can specify a namespace of a Part, i.e. the circuit or aspect which has added it. Secondly, it can specify the
part type. Thirdly, it can optionally specify a molecule the part should be connected to. Elements are matched
by typename. A + at the end of each element specifies that all subclasses should be matched, * at the end of an
element acts as a string wildcard, i.e. all types whose names begin with the characters preceding the wildcard
will be matched. Each element can be inverted using a ! at the beginning. 1 shows examples of valid and
invalid signatures. Strings are validated and split using regular expressions, and the overall PartSignature
object is implemented using classes for each element, so that matching a signature becomes the conjunction of
matching the three elements.
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Part Signatures Matched Parts

SimpleCircuit.BBa_B0030 Parts added in SimpleCircuit of type
BBa_B0030.

Simple*.NegativePromoter+(TeTR) Parts of type NegativePromoter (including sub
types) added in Aspects or Circuits whose
typename begins with “Simple”, which have a
moleculeConnection of type TeTR

!SimpleAspect.*(Protein+) Any Part with a connection to a Protein added
by an Aspect or Circuit whose name is not
“SimpleAspect”

*.*(!TetR) Any Part from any Circuit or Aspect whose
moleculeConnection is not TeTR

*.Promoter+() Any Part of (sub)type Promoter, whose
moleculeConnection is None.

Table 1: Examples of Part Signatures

1.4.2 Point Cut Expressions

Often, a single part signature will be sufficient to define a point cut, but sometimes more control is needed.
SynBioWeaver allows part signatures to be building blocks of more complex expressions, which represent an
Abstract Syntax Tree (AST) of part signatures. Part signatures can be combined using boolean-or and boolean-
and. A signature can also be concatenated to another signature, so that we can define join points based on a
number of preceding parts. Lastly, a signature can be inverted.
PointCutExpressionOr, PointCutExpressionAnd and PointCutExpressionConcatenate nodes can be cre-
ated using overloaded operators |, & and %, respectively. Inversion has no overloaded operator, but is created
using a PointCutExpressionNot node. An example of a point cut expression and its corresponding AST can
be seen in Figure S3.

Figure S3: An AST of a point cut expression: ( (PartSelector(‘SomeCircuit.RBSGFPcomp’) |
(PartSelector(‘*.RBS’) % PartSelector(‘*.CodingSite+.(GFP)) & PointCutExpressionNot(PartSelector(‘SomeAspect.*’))

1.5 Aspects and Advice

Advice is the code that should be inserted at join points matched by point cuts. For SynBioWeaver, this means
that advice should also be able to use addPart(). An advice is bundled into an aspect. Each aspect is a subclass
of the abstract Aspect class, and must implement a mainAspect() method, in which all advice is declared, using
addAdvice(). This takes three parameters: a point cut, a method of the aspect that is to be called at the
appropriate join point, and an optional precedence parameter. Advice methods belong to the corresponding
aspect, and thus can access aspect attributes via self. They also receive a PointCutContext parameter that
can access the matched part and “advice stack” information.
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Figure S4: Five point cut / advice pairs of different operators and precedence match the same part. The low
precedence before and after advice will not be executed, because of the medium precedence replace advice.

1.5.1 Advice precedence

If more than one point cut matches a join point, order of advice execution is undefined unless precedence is
explicitly set via the third parameter to addAdvice(). precedence is an integer between Advice.
MINPRECEDENCE and Advice.MAXPRECEDENCE. By default, every advice is set to minimal precedence. If two
advices have the same precedence, execution order is also undefined. For two advices sharing a before point
cut, the higher precedence advice will execute before the lower precedence advice. Thus, if both advices add
a part, the part from the high precedence advice will be first in the resulting circuit. Similarly, for two advices
sharing an after point cut, the higher precedence advice will execute after the low precedence advice. These
precedence rules are similar to precedence in AspectJ. For two advices sharing a replace point cut, the higher
precedence advice will execute, whereas all lower advices will be ignored. This includes lower precedence before
and after advices. However, after advices with similar or higher precedence will still be executed. Figure S4
exemplifies the precedence rules.

1.6 Type Advice

Apart from normal advice, which changes the execution flow, it is also possible to modify the Molecule and Part
types using type advice. For example, one aspect could add sequence information to a whole range of parts;
another could add modelling rules to parts based on features selected by a PartSignature. As a demonstration,
below is a simple example to add a method to Promoter types to print if they are regulated or not.

Listing 3: A simple example of using type advice

1 from synbioweaver import ∗
2
3
4 class TwoPromoters(Circuit):
5 def mainCircuit(self):
6 self.addPart(Promoter)
7 self.createMolecule(Protein)
8 self.addPart(NegativePromoter(Protein))
9
10 class PromoterTypeAdvice(Aspect):
11 def mainAspect(self):
12 # define three signatures

13 nonRegulatedPromoterSignature = PartSignature( ' ∗.Promoter+() ')
14 regulatedPromoterSignature = PartSignature( ' ∗.Promoter+(Molecule+) ')
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15 anyPromoterSignature = PartSignature( ' ∗.Promoter+ ')
16
17 # add Boolean Attribute "isRegulated" to two different types of Promoters

18 self.addTypeAdvice(nonRegulatedPromoterSignature ,False,"isRegulated")
19 self.addTypeAdvice(regulatedPromoterSignature ,True,"isRegulated")
20 self.addTypeAdvice(MoleculeSignature( ' ∗.∗ '),4,"valueNumber")
21 self.addTypeAdvice(MoleculeSignature( ' ∗.∗ '),self.printNumber ,"printValue")
22
23 # add a type advice method

24 self.addTypeAdvice(anyPromoterSignature ,self.printIsRegulated ,"printIsRegulated")
25
26 def printNumber(self,mol):
27 print "molecule value is "+str(mol.valueNumber)
28
29 def printIsRegulated(self,part):
30 if part.isRegulated == False:
31 print str(part)+" is not regulated by a Molecule."
32 else:
33 print str(part)+" is regulated by a Molecule."
34
35 compiledDesign = Weaver(TwoPromoters ,PromoterTypeAdvice).output()
36 for part in compiledDesign.partList:
37 part.printIsRegulated()

38
39 for molecule in compiledDesign.moleculeList:
40 molecule.printValue()

This give the output:
Promoter is not regulated by a Molecule.
NegativePromoter(regulatedBy = Protein) is regulated by a Molecule.
molecule value is 4

1.7 Weaving

The Weaver object represents the SynBioWeaver “compiler”, taking a single Circuit class (which can use other
circuits as composites) and a number of Aspect classes. Advice from aspects is automatically woven into the
part based execution flow, at join points matched by point cuts, resulting in a single sorted list of parts. Figure
S5 shows a sequence diagram demonstrating weaving a single before advice into a circuit.
Schematically, this is how the Weaver works:

• Call each aspect’s mainAdvice() method and construct a list of advice, including type advice and advice
defining additional output targets for the weaver.

• Sort before, replace and after advice lists according to precedence.

• Begin circuit construction by calling the Circuit mainCircuit() method.

• At some point, mainCircuit() will call the Weaver’s addPart() method. At this point, advice might be
inserted, which itself may call addPart(). Thus, this process is recursive. addPart() proceeds as follows:

– Initialise the part and add any type advice.
– If any before or replace advice have matching point cuts, run these.
– Unless replaced, append the part to the list of parts.
– Run any remaining after advice that have matching point cuts and appropriate precedence.

• After the outermost addPart() call and mainCircuit() has returned, create a WeaverOutput object to
hold the results, including the list of parts and a list of involved molecules.
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Figure S5: The Weaver “compiles” an aspect and a circuit. In this example, a before point cut from the aspect
is satisfied and triggered, leading to a single part being inserted into the circuit.

2 A switchable oscillating system based on the repressilator combined
with an AND gate

In this example, we demonstrate how to build an oscillating GFP output from component part designs. We
consider the following concerns:

• Oscillation (using abstract, non-determined transcription factors)

• Terminator and RBS Design Rules (as seen in 1.2 on page 2)

• Two output versions: Just via coding GFP, or alternatively, coding GFP dependent an external inducer
(that is, an additional on-switch)

A concern for the instantiation of abstract molecules is also included in the example in the package.

2.1 Defining the concerns

First, here is a possible implementation of the two GFP coding concerns:

Listing 4: Repressilator Example: GFP Coding
1 # GFP circuit definitions
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2 declareNewMolecule( 'exIn ')
3 declareNewMolecule( 'GFP ')
4 declareNewPart( 'cGFP ', CodingRegion , moleculesAfter=[GFP] )
5
6 class CodingGFP(Circuit):
7 # constitutively code gfp

8 def mainCircuit(self):
9 declareNewPart( ' Pconst ',ConstitutivePromoter)
10 self.addPart(Pconst)
11 self.addPart(cGFP)
12
13 class InduceGFP(Circuit):
14 # code GFP dependent on an external inducer

15
16 def getSignal(self):
17 return exIn
18
19 def getOutputName():
20 return cGFP
21
22 def mainCircuit(self):
23 self.createMolecule(exIn)
24 declareNewPart( 'Pin ', PositivePromoter , [exIn] )
25 self.addPart(Pin)
26 self.addPart(cGFP)

Next, we define a composite circuit that can create oscillating behaviour. It consists of three promoter and
coding region pairs, where each coded protein represses the promoter for the next coding region2.

Listing 5: Repressilator Example: Abstract Repressilator Circuit

1 class AbstractRepressilatorComposite(Circuit):
2 def getSignal(self):
3 return A
4
5 def mainCircuit(self):
6 declareNewMolecule( 'A ')
7 declareNewMolecule( 'B ')
8 declareNewMolecule( 'C ')
9 self.createMolecule(A)
10 self.createMolecule(B)
11 self.createMolecule(C)
12
13 declareNewPart( 'p1 ', NegativePromoter , [C] )
14 declareNewPart( 'p2 ', NegativePromoter , [A] )
15 declareNewPart( 'p3 ', NegativePromoter , [B] )
16 declareNewPart( 'cA ', CodingRegion , moleculesAfter=[A] )
17 declareNewPart( 'cB ', CodingRegion , moleculesAfter=[B] )
18 declareNewPart( 'cC ', CodingRegion , moleculesAfter=[C] )
19 self.addPart( p1 )
20 self.addPart( cA )
21 self.addPart( p2 )
22 self.addPart( cB )
23 self.addPart( p3 )

2The design is based on Elowitz and Leibler (2000), with transcription factors made abstract. They will later be re-instantiated
using another aspect.
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24 self.addPart( cC )

Now, we design an aspect that can weave oscillation into either of the two coding circuits. This means, the
aspect needs to be able to change the promoter of the coding circuit to make coding dependent on oscillation.
If the promoter is not regulated, it must be replaced by one that is regulated by oscillation output. However,
if the promoter is already regulated, we need to insert an additional And-Gate to preserve the original input3.

Listing 6: Repressilator Example: Repressilation aspect

1 class Repressilation(Aspect):
2 # weave repressilator into a one−protein coding circuit
3 def mainAspect(self):
4 self.repressilatorComposite = AbstractRepressilatorComposite()

5
6 # promoter is unregulated (not from this aspect or the composite)

7 unregulatedPromoterReplace = PointCut(
8 PartSignature( '!AbstractRepressilatorComposite.Promoter+() ') &
9 PartSignature( '!Repressilation.Promoter+() '),PointCut.REPLACE)
10 self.addAdvice(unregulatedPromoterReplace , self.insertRegulatedBySignalPromoter ,

10)

11
12 # regulated case

13 regulatedCodingExpressionReplace = PointCut(
14 (PartSignature( ' InduceGFP.PositivePromoter+ ') &
15 PartSignature( '!AbstractRepressilatorComposite.Promoter+(Molecule+) ') &
16 PartSignature( '!Aspect+.Promoter+(Molecule+) ') &
17 PartSignature( '!AndGate.Promoter+(Molecule+) ')) % PartSignature( ' ∗.

CodingRegion+(Molecule+) '),
18 PointCut.REPLACE)
19 self.addAdvice(regulatedCodingExpressionReplace , self.insertBooleanAndSignal , 10)
20
21 # add repressilatior composite

22 promoterAndCodingRegion = PartSignature( ' Repressilation.Promoter+ ') %
PartSignature( ' ∗.RBS+ ') % PartSignature( ' ∗.CodingRegion+ ') % PartSignature( '
∗.Terminator+ ')

23 andGateRegion = PartSignature( ' Repressilation.AndGate ')
24 afterCircuit = PointCut(andGateRegion | promoterAndCodingRegion , PointCut.AFTER)
25 self.addAdvice(afterCircuit , self.insertComposite , 10)
26
27 def insertRegulatedBySignalPromoter(self,context):
28 signal = self.repressilatorComposite.getSignal()

29 context.within[0].createMolecule( signal )
30 declareNewPart( 'ppA ', PositivePromoter , [signal] )
31 self.addPart(ppA)
32 return True
33
34 def insertBooleanAndSignal(self,context):
35 originalpromoter = context.part.before[0]
36 originalsignal = context.part.before[0].getRegulatedBy()[0]
37 originaloutput = context.part.getCodingFor()[0]
38 andGate = AndGate()

39
40 # Creat first input for AND gate

41 context.within[0].createMolecule( exIn )

3The code of the And-Gate Circuit is not reproduced here but can be found in the complete code of the example. The design
is based on Wang et al. (2011).
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42 andGate.moleculeInputOne = exIn

43
44 if isinstance(originalpromoter ,PositivePromoter):
45 andGate.setInputOneRepressing = False

46 else:
47 andGate.setInputOneRepressing = True

48
49 # Create second input for AND gate

50 in2 = self.repressilatorComposite.getSignal()

51 context.within[0].createMolecule( in2 )
52 andGate.moleculeInputTwo = in2

53
54 andGate.setInputOneRepressing = True

55 andGate.moleculeOutput = originaloutput

56
57 self.addPart(andGate)
58 return True
59
60 def insertComposite(self,context):
61 context.within[0].createMolecule( A )
62 context.within[0].createMolecule( B )
63 context.within[0].createMolecule( C )
64 self.addPart(self.repressilatorComposite)
65 return True

3 Rule-based modelling as an output concern

3.1 Overview

To demonstrate how a rule-based model could be generated as an output concern from a genetic circuit, we
implemented an aspect that annotates the genetic parts in the system with appropriate reaction rules, which
can then be used in a stochastic simulation or to generate ODEs. The reaction rules were based on a Kappa
model of the Repressilator by Stewart and Wilson-Kanamori (2011) and include:

• Transcription Factor Binding and Un-Binding to Promoter parts

• RNAP binding to Promoter parts based on various configurations of transcription factors.

• RNAP Progression (Transcription) from Promoter parts downstream until Terminator parts resulting in
an mRNA part chain

• Ribosome binding to mRNA RBS part

• Ribosome translation of the Protein Coding Region

• Protein Degradation

• mRNA Degradation

3.2 Defining the Concerns

The Repressilator was encoded in the circuit with parts named after their appropriate counterparts in the Parts
Registry.
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Listing 7: Extract from the PYSBmodel aspect

1 # transcription factor used in the repressilator system

2 declareNewMolecule( 'LacI ')
3 declareNewMolecule( 'TetR ')
4 declareNewMolecule( 'lCl ')
5
6 declareNewPart( ' BBaB0011 ',Terminator)
7 declareNewPart( ' BBaB0034 ',RBS)
8 declareNewPart( ' BBaC0012 ',CodingRegion ,moleculesAfter=[LacI])
9 declareNewPart( ' BBaC0040 ',CodingRegion ,moleculesAfter=[TetR])
10 declareNewPart( ' BBaC0051 ',CodingRegion ,moleculesAfter=[lCl])
11 declareNewPart( ' BBaR0010 ',NegativePromoter ,moleculesBefore=[LacI])
12 declareNewPart( ' BBaR0040 ',NegativePromoter ,moleculesBefore=[TetR])
13 declareNewPart( ' BBaR0051 ',NegativePromoter ,moleculesBefore=[lCl])
14
15
16 declareNewMolecule( 'GFP ')
17
18 class Repressilator(Circuit):
19 def mainCircuit(self):
20 self.createMolecule(LacI)
21 self.addPart(BBaR0010)
22 self.addPart(BBaC0040)
23 self.addPart(BBaR0040)
24 self.addPart(BBaC0051)
25 self.addPart(BBaR0051)
26 self.addPart(BBaC0012)

The rule-based modelling concern is implemented using a parameterized aspect, so that all of the parameters
used in the model can be easily customized. The default values used in the example follow the model by Stewart
and Wilson-Kanamori (2011).

Listing 8: Repressilator Circuit Specification

1 class PYSBmodel(Aspect):
2 observableProteins = []

3
4 def __init__(self,rnapCount = 700,ribosomeCount = 18000,operonCount = 1,
5 rnapBindingHigh = 0.0007,rnapBindingLow=7e−07,
6 transcriptionRate = 10,transcriptionFactorBinding = 0.01,

7 transcriptionFactorUnbinding = 0.09,transcriptionFactorUnbindingSole

=2.24,

8 transcriptionFactorFactorDegradation=0.00115,rbsBinding = 0.000166,

9 translationInitiationRate=0.167,translationRate=10,ribosomeFalloff =

0.01,

10 rnapFalloffRate=1,rnaDegradation=0.0058):

The rules and model are implemented in PySB, a python based rule-based modelling language (Lopez et al.,
2013). When the aspect is initialized, it creates a PySB model and annotates each part in the system with
specific type advice. For example, a PySB monomer for a part’s DNA piece and potential RNA piece are added
to the model. Additionally, the necessary reaction rules are added to the model, according to the parts in the
system. A Terminator’s rule is relatively straightforward:

Listing 9: PYSB rule for Transcription Termination

1 pysb.Rule( ' Transcription_Termination_ '+ part.pysbname,
2 self.DNA(binding = 1, partType = part.pysbname) +
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3 self.RNAP(dna = 1,rna = 2) +

4 self.RNA(downstream = 2)

5 >>

6 self.DNA(binding = None, partType = part.pysbname) +

7 self.RNAP(dna = None,rna = None) +

8 self.RNA(downstream = None),

9 self.TranscriptionRate)

On the other hand, the whole method to add rules for a Negative Promoter with two binding sites is quite long:

Listing 10: PYSB rule for Transcription Termination

1 def pysbPartRulesNegPromoter(self,part):
2 regulatorMol = part.getBeforeNodes(Molecule)[0]

3
4 # transcription factor binding

5 pysb.Rule( ' TF_Binding_to_ ' + part.pysbname + 'p2 ' + ' _noTF ',
6 self.DNA(binding = None,partType = part.pysbname + 'p3 ',upstream = 2) +
7 regulatorMol.pysbmonomer(dna = None) +

8 self.DNA(downstream = 2,binding = None,partType = part.pysbname + 'p2 ')
9 <>

10 self.DNA(binding = None,partType = part.pysbname + 'p3 ',upstream = 3) +
11 regulatorMol.pysbmonomer(dna = 1) +

12 self.DNA(downstream = 3,binding = 1,partType = part.pysbname + 'p2 '),
13 self.TranscriptionFactorBinding , self.TranscriptionFactorUnbindingSole)

14
15 pysb.Rule( ' TF_Binding_to_ ' + part.pysbname + 'p2 ' + '_TF ',
16 self.DNA(binding = 1,partType = part.pysbname + 'p3 ',upstream = 2) +
17 regulatorMol.pysbmonomer(dna = 1) +

18 self.DNA(downstream = 2,binding = None,partType = part.pysbname + 'p2 ') +
19 regulatorMol.pysbmonomer(dna = None)

20 <>

21 self.DNA(binding = 2,partType = part.pysbname + 'p3 ',upstream = 3) +
22 regulatorMol.pysbmonomer(dna = 2) +

23 self.DNA(downstream = 3,binding = 1,partType = part.pysbname + 'p2 ') +
24 regulatorMol.pysbmonomer(dna = 1),

25 self.TranscriptionFactorBinding ,self.TranscriptionFactorUnbinding)

26
27 pysb.Rule( ' TF_Binding_to_ ' + part.pysbname + 'p3 ' + ' _noTF ',
28 self.DNA(binding = None,partType = part.pysbname + 'p3 ',upstream = 2) +
29 regulatorMol.pysbmonomer(dna = None) +

30 self.DNA(downstream = 2,binding = None,partType = part.pysbname + 'p2 ')
31 <>

32 self.DNA(binding = 1,partType = part.pysbname + 'p3 ',upstream = 3) +
33 regulatorMol.pysbmonomer(dna = 1) +

34 self.DNA(downstream = 3,binding = None,partType = part.pysbname + 'p2 '),
35 self.TranscriptionFactorBinding ,self.TranscriptionFactorUnbindingSole)

36
37 pysb.Rule( ' TF_Binding_to_ ' + part.pysbname + 'p3 ' + '_TF ',
38 self.DNA(binding = None,partType = part.pysbname + 'p3 ',upstream = 2) +
39 regulatorMol.pysbmonomer(dna = 1) +

40 self.DNA(downstream = 2,binding = 1,partType = part.pysbname + 'p2 ') +
41 regulatorMol.pysbmonomer(dna = None)

42 <>

43 self.DNA(binding = 1,partType = part.pysbname + 'p3 ',upstream = 3) +
44 regulatorMol.pysbmonomer(dna = 2) +
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45 self.DNA(downstream =3,binding = 2,partType = part.pysbname + 'p2 ') +
46 regulatorMol.pysbmonomer(dna = 1),

47 self.TranscriptionFactorBinding ,self.TranscriptionFactorUnbinding)

48
49 # RNAP binding

50 pysb.Rule( ' RNAP_Binding_To_ ' + part.pysbname+ ' _no_TF ',
51 self.DNA(binding = None,partType = part.pysbname + 'p3 ',upstream = 2,

downstream = 1) +

52 self.DNA(binding = None,partType = part.pysbname + 'p4 ',upstream = 1) +
53 self.RNAP(dna = None,rna = None) +

54 self.DNA(binding = None,partType = part.pysbname + 'p2 ',downstream = 2)
55 >>

56 self.DNA(binding = None,partType = part.pysbname + 'p3 ',upstream = 3,
downstream = 1) +

57 self.DNA(binding = 2,partType = part.pysbname + 'p4 ',upstream = 1) +
58 self.RNAP(dna = 2,rna = None) +

59 self.DNA(binding = None,partType = part.pysbname + 'p2 ',downstream = 3),
60 self.RNAPBindingHigh)

61
62 pysb.Rule( ' RNAP_Binding_To_ ' + part.pysbname+ ' _TF_on_p2 ',
63 self.DNA(binding = None,partType = part.pysbname + 'p3 ',upstream = 2,

downstream = 1) +

64 self.DNA(binding = None,partType = part.pysbname + 'p4 ',upstream = 1) +
65 self.RNAP(dna = None,rna = None) +

66 self.DNA(binding = 3,partType = part.pysbname + 'p2 ',downstream = 2) +
67 regulatorMol.pysbmonomer(dna = 3)

68 >>

69 self.DNA(binding = None,partType = part.pysbname + 'p3 ',upstream = 3,
downstream = 1) +

70 self.DNA(binding = 2,partType = part.pysbname + 'p4 ',upstream = 1) +
71 self.RNAP(dna = 2,rna = None) +

72 self.DNA(binding = 4,partType = part.pysbname + 'p2 ',downstream = 3) +
73 regulatorMol.pysbmonomer(dna = 4),

74 self.RNAPBindingLow)

75
76 pysb.Rule( ' RNAP_Binding_To_ ' + part.pysbname+ ' _TF_on_p3 ',
77 self.DNA(binding = 3,partType = part.pysbname + 'p3 ',upstream = 2,

downstream = 1) +

78 self.DNA(binding = None,partType = part.pysbname + 'p4 ',upstream = 1) +
79 self.RNAP(dna = None,rna = None) +

80 self.DNA(binding = None,partType = part.pysbname + 'p2 ',downstream = 2) +
81 regulatorMol.pysbmonomer(dna = 3)

82 >>

83 self.DNA(binding = 4,partType = part.pysbname + 'p3 ',upstream = 3,
downstream = 1) +

84 self.DNA(binding = 2,partType = part.pysbname + 'p4 ',upstream = 1) +
85 self.RNAP(dna = 2,rna = None) +

86 self.DNA(binding = None,partType = part.pysbname + 'p2 ',downstream = 3) +
87 regulatorMol.pysbmonomer(dna = 4),

88 self.RNAPBindingLow)

89
90 pysb.Rule( ' RNAP_Binding_To_ ' + part.pysbname+ ' _TF_on_p2_and_p3 ',
91 self.DNA(binding = 3,partType = part.pysbname + 'p3 ',upstream = 2,

downstream = 1) +

92 self.DNA(binding = None,partType = part.pysbname + 'p4 ',upstream = 1) +
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93 self.RNAP(dna = None,rna = None) +

94 self.DNA(binding = 4,partType = part.pysbname + 'p2 ',downstream = 2) +
95 regulatorMol.pysbmonomer(dna = 3) +

96 regulatorMol.pysbmonomer(dna = 4)

97 >>

98 self.DNA(binding = 4,partType = part.pysbname + 'p3 ',upstream = 3,
downstream = 1) +

99 self.DNA(binding = 2,partType = part.pysbname + 'p4 ',upstream = 1) +
100 self.RNAP(dna = 2,rna = None) +

101 self.DNA(binding = 5,partType = part.pysbname + 'p2 ',downstream = 3) +
102 regulatorMol.pysbmonomer(dna = 4) +

103 regulatorMol.pysbmonomer(dna = 5),

104 self.RNAPBindingLow)

105
106 # Transcription

107 pysb.Rule( ' Transcription_Initiation_Of_ '+part.pysbname,
108 self.DNA(binding = 1,partType = part.pysbname + 'p4 ',downstream = 2) +
109 self.RNAP(dna = 1,rna = None) +

110 self.DNA(upstream = 2,binding = None)

111 >>

112 self.DNA(binding = None,partType = part.pysbname + 'p4 ',downstream = 3) +
113 self.RNAP(dna = 1,rna = 2) +

114 self.DNA(upstream = 3,binding = 1) +

115 self.RNA(binding = None,upstream = None,downstream = 2,partType = part.

pysbname),

116 self.TranscriptionRate)

PySB was chosen because of its availability for Python and because it can create ODEs from the model or act
as a translator to other established rule-based modelling languages such as Kappa or BNG.

4 Generating reaction network models and adding context

To demonstrate weaving at the model level, we have implemented a number of aspects for reaction network
generation and contextual cross-cutting concerns. We chose to separate model generation from contextual
concerns to enable consistency when called from the WeaverOutput object.
The current model generation aspects are as follows:

• PromoterMapping - this is required to map coding regions to promoters

• MassActionKineticsProtein - assumes mass action kinetics including only protein level abstraction

• MassActionKineticsRNA - assumes mass action kinetics including both protein and mRNA level abstrac-
tion

• SheaAckersKineticsRNA - assumes Shea-Ackers equilibrium dynamics at the promoters and mass action
kinetics otherwise, including both protein and mRNA level abstraction

These aspects add the method getReactions to the WeaverOutput object. All downstream aspects that require
the reactions generated must check that this method exists using getattr(weaverOutput, "getReactions").
On the other hand, design contextual aspects call getReactions but add the method getContext. Examples
of these are

• LagLogisticGrowth

• PostTranslationalCoupling
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which are described in the next two sections. Downstream analysis aspects should always use the getContext
method over the getReactions method to ensure that the most up-to-date model is used. Examples of these
are

• PrintReactionNetwork

• WriteSBMLModel

This is one possible choice of constraining how aspects interact at the model level and there may be other
ways. One restriction of this approach is that only one model generation aspect, and one contextual aspect can
be called. In future developments of the framework it would be advantageous to allow multiple reaction and
contextual aspects.

5 Bayesian modelling and characterisation

5.1 Code for constitutive GFP and different bacterial growth contexts

In this example a simple model for the constitutive expression of GFP (core concern) is combined with the
environmental context (cross-cutting concern) of bacterial growth. This example also shows how SBML models
can be generated under different contexts.

Listing 11: Adding a bacterial growth cross-cutting concern

1 from synbioweaver.aspects.writeCudaFileODE import ∗
2 from synbioweaver.aspects.writeABCInputFileODE import ∗
3 from synbioweaver.aspects.writeCudaFileGillespie import ∗
4 from synbioweaver.aspects.writeABCInputFileGillespie import ∗
5
6 declareNewMolecule( 'GFP ')
7
8 class constGFP(Circuit):
9 def mainCircuit(self):
10 # constitutive promoter

11 self.addPart(ConstitutivePromoter)
12 self.addPart(CodingRegion(GFP))
13
14 print "####### circuit + exp growth"
15 compiledDesign1 = Weaver(constGFP, DesignRules , PromoterMapping ,

MassActionKineticsProtein , ExpGrowth , PrintReactionNetwork , WriteSBMLModel).output()

16 compiledDesign1.printReactionNetwork()

17 modelStr = compiledDesign1.writeSBMLModel()

18
19 # write an SBML model out

20 sbmlFile = open("constGFP_exp.sbml","w")
21 print >>sbmlFile , modelStr
22 sbmlFile.close()

23
24 print "####### circuit + logistic growth"
25 compiledDesign2 = Weaver(constGFP, DesignRules , PromoterMapping ,

MassActionKineticsProtein , LogisticGrowth , PrintReactionNetwork , WriteSBMLModel).

output()

26 compiledDesign2.printReactionNetwork()

27 modelStr = compiledDesign2.writeSBMLModel()

28
29 # write an SBML model out

30 sbmlFile = open("constGFP_log.sbml","w")
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31 print >>sbmlFile , modelStr
32 sbmlFile.close()

33
34 print "####### circuit + lag logistic growth"
35 compiledDesign3 = Weaver(constGFP, DesignRules , PromoterMapping ,

MassActionKineticsProtein , LagLogisticGrowth , PrintReactionNetwork , WriteSBMLModel).

output()

36 compiledDesign3.printReactionNetwork()

37 modelStr = compiledDesign3.writeSBMLModel()

38
39 # write an SBML model out

40 sbmlFile = open("constGFP_lag.sbml","w")
41 print >>sbmlFile , modelStr
42 sbmlFile.close()

5.2 Model for the core concern plus lag logistic growth

The model for the core concern is a basic birth death system generated using the MassActionKineticsProtein
aspect.

∅ −→ GFP p1

GFP −→ ∅ p2GFP

The contextual aspect LagLogisticGrowth models bacterial growth using a two population system (Yates and
Smotzer, 2007). N represents bacteria that divide and N ′ represent bacteria that do not divide and eventually
die. A transition between the two states is included to model bacteria that are initially non dividing but after
a delay they start dividing. After the cross-cutting concern is included the model becomes

N −→ N +GFP p1N

GFP −→ ∅ p2GFP

N −→ 2N p3(1−N/p4)N

N ′ −→ ∅ p5N
′

N ′ −→ N p6N
′

6 Post-translational coupling of a bistable switch and an oscillator

6.1 Code for the combined and coupled systems

The code for the combined system where proteins AraC and A are tagged is shown below.

Listing 12: Post-translational coupling of a bistable with and an oscillator. Coupling proteins AraC and A

1 declareNewMolecule( 'GFP ')
2 declareNewMolecule( 'LacI ')
3 declareNewMolecule( ' AraC_tag ')
4 declareNewMolecule( ' LacIn4 ')
5 declareNewMolecule( ' AraCn2 ')
6 declareNewMolecule( 'zero ')
7
8 declareNewPart("P1", HybridPromoter , [LacIn4, AraCn2], regulatorInfoMap={LacIn4:False,

AraCn2:True})
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9 declareNewPart("P2", HybridPromoter , [LacIn4, AraCn2], regulatorInfoMap={LacIn4:False,
AraCn2:True})

10 declareNewPart("P3", HybridPromoter , [LacIn4, AraCn2], regulatorInfoMap={LacIn4:False,
AraCn2:True})

11
12 declareNewMolecule( ' A_tag ')
13 declareNewMolecule( 'B ')
14 declareNewMolecule( 'An2 ')
15 declareNewMolecule( 'Bn2 ')
16 declareNewMolecule( 'In ')
17
18 declareNewPart( 'Pa ', NegativePromoter , [An2])
19 declareNewPart( 'Pb ', NegativePromoter , [Bn2])
20
21 class S(Circuit):
22 def mainCircuit(self):
23
24 self.createMolecule(GFP)
25 self.createMolecule(LacI)
26 self.createMolecule(AraC_tag)
27 self.createMolecule(LacIn4)
28 self.createMolecule(AraCn2)
29
30 self.addPart(P1)
31 self.addPart(CodingRegion(AraC_tag))
32
33 self.addPart(P2)
34 self.addPart(CodingRegion(LacI))
35
36 self.addPart(P3)
37 self.addPart(CodingRegion(GFP))
38
39 self.reactionFrom(LacI, LacI, LacI, LacI) >> self.reactionTo( LacIn4 )

40 self.reactionFrom(LacIn4) >> self.reactionTo( zero )

41 self.reactionFrom(AraC_tag , AraC_tag) >> self.reactionTo( AraCn2 )

42 self.reactionFrom(AraCn2) >> self.reactionTo( zero )

43
44 class T(Circuit):
45 def mainCircuit(self):
46
47 self.createMolecule(A_tag)
48 self.createMolecule(An2)
49 self.createMolecule(B)
50 self.createMolecule(Bn2)
51 self.createMolecule(In)
52
53 self.addPart(Pa)
54 self.addPart(CodingRegion(B))
55 self.addPart(Pb)
56 self.addPart(CodingRegion(A_tag))
57
58 self.reactionFrom(A_tag, A_tag) >> self.reactionTo( An2 )

59 self.reactionFrom(B, B) >> self.reactionTo( Bn2 )

60 self.reactionFrom(An2) >> self.reactionTo( zero )

61 self.reactionFrom(Bn2) >> self.reactionTo( zero )
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62
63 self.reactionFrom(zero) >> self.reactionTo( In )

64 self.reactionFrom(In,Bn2) >> self.reactionTo( In )

65
66 class toggleOsc(Circuit):
67 def mainCircuit(self):
68 self.addCircuit(S)

69 self.addCircuit(T)

70
71
72 compiledDesign = Weaver(toggleOsc , DesignRules , PromoterMapping , SheaAckersKineticsRNA ,

PostTranslationalCoupling , PrintReactionNetwork).output()

73 compiledDesign.printReactionNetwork()

The models, given below, are generated using the SheaAckersKineticsRNA aspect. The aspect
PostTranslationalCoupling identifies proteins with names ending in _tag and assigns them an enzymatic
degradation term.

6.2 Toggle switch model

The numbers of the the two proteins, A and B, are represented by A and B respectively and their mRNA
transcripts by mA and mB. We assume that both proteins form dimers. The number of inducer molecules is
represented by In.

∅ −→ mB p3p1/(1 + p1 + p2A2)

B −→ ∅ p7B

mB −→ ∅ p8mB

mB −→ B p9mB

∅ −→ mA p6p4/(1 + p4 + p5B2)

A −→ ∅ p10A

mA −→ ∅ p11mA

mA −→ A p12mA

2A −→ A2 p13A
2

A2 −→ ∅ p14A2

2B −→ B2 p15B
2

B2 −→ ∅ p16B2

∅ −→ In p17

In+B2 −→ In p18B2
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6.3 Stricker oscillator model

The numbers of the AraC, LacI and GFP proteins are represented by X,Y and G respectively and their mRNA
transcripts by mX,mY and mG.

∅ −→ mX p4(p1 + p3X2)/(1 + p1 + p2Y4 + p3X2)

X −→ ∅ p13X

mX −→ ∅ p14mX

mX −→ X p15mX

∅ −→ mY p8(p5 + p7X2)/(1 + p5 + p6Y4 + p7X2)

Y −→ ∅ p16Y

mY −→ ∅ p17mY

mY −→ X p18mY

∅ −→ mG p12(p9 + p11X2)/(1 + p9 + p10Y4 + p11X2)

G −→ ∅ p19G

mG −→ ∅ p20mG

mG −→ G p21mG

4Y −→ Y4 p22Y
4

Y4 −→ ∅ p23Y4

2X −→ X2 p24X
2

X2 −→ ∅ p25X2
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