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Abstract: Excitable biological cells, such as cardiac muscle cells, can exhibit complex patterns of
oscillations such as spiking and bursting. Moreover, it is well known that an enhancement in calcium
currents may yield certain kind of cardiac arrhythmia, so-called early afterdepolarisations (EADs).
The presence of EADs strongly correlates with the onset of dangerous cardiac arrhythmia. In this
paper we study mathematically and numerically the dynamics of a cardiac muscle cell with respect
to the calcium current by investigating a simplistic system of differential equations. For the study
of this phenomena, we use bifurcation theory, numerical bifurcation analysis, geometric singular
perturbation theory and computational methods to investigate a nonlinear multiple time scales
system. It will turn out that EADs related to an enhanced calcium current are canard–induced and
that we have to combine these theories to derive a better understanding of the dynamics behind
EADs. Moreover, a suitable time scale separation argument determines the important and sensitive
system parameters which are related to the occurrence of EADs.
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1. Introduction

The aim of this manuscript is the mathematical and numerical investigation of a four dimensional
version of the model introduced in [1] with respect to an enhancement in the calcium current,
which is already used to study early afterdepolarisations (EADs)—a special type of cardiac
arrhythmia—induced by a reduced potassium current. We will show reasons for the occurrence of
EADs via an enhancement in the calcium current, using numerical bifurcation analysis and geometric
singular perturbation theory (GSPT). One main advantage of the GSPT, which is an analytic technique
for multi-scale problems that combines asymptotic theory with dynamical techniques, is the study
of a reduced model, i.e., a subsystem. This approach is very useful and shows some mechanisms
yielding EADs. Moreover, this ansatz is very valuable to identify the sensitive parameters of the
system. Nevertheless, it turns out that not all details can be explained using GSPT. Thus, a combination
of both theories—bifurcation theory and geometric singular perturbation theory—is needed. We will
explain our approach for this simplified model, but of course we can use this ansatz also for more
complex models, cf. [2,3].

In general, EADs are additional small amplitude spikes during the plateau or the repolarisation
phase of the action potential (AP), i.e., pathological voltage oscillations during one of these phases.
They are caused by ion channel diseases, oxidative stress or drugs and are often associated with
deficiencies in potassium currents or enhancements in calcium currents [4]. Furthermore, the presence
of EADs strongly correlates with the onset of dangerous cardiac arrhythmias, including torsades de
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pointes (TdP), which is a specific type of abnormal heart rhythm that can lead to sudden cardiac
death, see [5–10]. Furthermore, EADs are so-called mixed-mode oscillations (MMOs) [11], i.e., complex
oscillatory waveforms that naturally occur in physiologically relevant dynamical processes. MMOs
correspond to the switching between small amplitude oscillations and relaxation oscillations.

In this paper, we will use the geometric singular perturbation theory [11,12] and bifurcation
analysis [13] to investigate reasons for the appearing of EADs. Here, we are focused on EADs related
to an enhancement in the calcium currents, see [14,15]. The main novelty is the combination of these
theories to study EADs and mainly the use of the needed time scale separation argument to derive
the parameter sensitivity of the considered system. Moreover, we will show that the mathematical
approach which is used for instance in [1] is limited to the study of EADs related to an inhibited
potassium current. We will see that the considered system exhibits up to four different time scales
depending on the different system parameters.

The paper is organised as follows. We start with a brief introduction into the topic of cardiac
APs and arrhythmia, i.e., afterdepolarisations, see Section 1.1. Then, in Section 1.2 we will go on
with the mathematical modelling of cardiac APs using a Hodgkin-Huxley type formalism. For our
mathematical and numerical analysis of the dynamics of our model, we will use the GSPT and
bifurcation analysis. Therefore, in Section 2.1 we will give a brief introduction into the topic of GSPT.
This theory we will utilise in Section 2.2 and it turns out that EADs related to an enhanced calcium
current are canard–induced MMOs. Nevertheless, in Section 2.3 we will show that the study of the
reduced system does not show all details of the occurrence of EADs. Therefore, we are also using
numerical bifurcation analysis. The desired bifurcation diagram we will derive utilising the MATLAB
toolboxes MATCONT and CL_MATCONT [16–18], which are numerical continuation packages for the
interactive bifurcation analysis of dynamical systems. Finally, in Section 3 we will discuss our results.

1.1. Biological and Mathematical Background

An AP is a temporary, characteristic variance in the membrane potential of an excitable biological
cell, e.g., neuron or cardiac muscle cell, from its resting potential. The molecular mechanism of an
AP is based on the interaction of voltage-sensitive ion channels. The reason for the formation and
the special properties of the AP is established in the properties of different groups of ion channels in
the plasma membrane. An initial stimulus activates the ion channels as soon as a certain threshold
potential is reached. Then, these ion channels break open and/or up such that this interaction allows
an ion current flow, which changes the membrane potential. A normal AP is always uniform and
the cardiac muscle cell AP is typically divided into four phases, i.e., the resting phase, the upstroke
phase, the (long) plateau phase and the repolarisation phase, see for more details [15]. The resting
phase is designated by high potassium (K+) currents. After the initial stimulus the sodium (Na+)
conductance increases rapidly and the Na+ current flux into the cardiac muscle cell until a spike
potential is achieved. Then, the Na+ current inactivates rapidly followed by the activation of L-type
calcium (Ca2+) current. The Ca2+ current is more slowly than the Na+ current and plays a key role in
maintaining the long plateau phase, which is characteristic for the cardiac muscle cell. While the Ca2+

conductance increases the K+ conductance decreases. The plateau phase is followed by a repolarisation
phase, where the intrinsic K+ ion channels are activated and this is connected with the reduction of
the Ca2+ conductance. Finally, the K+ current increases until the resting phase is reached. If there are
depolarising variations of the membrane voltage, then we are speaking about afterdepolarisations.
These afterdepolarisations are divided into EADs and delayed afterdepolarisations (DADs). This
division depends on the timing obtaining of the AP. EADs occur either in the plateau or in the
repolarisation phase of the AP and are benefited by an elongation of the AP, while DADs occur
after the repolarisation phase is completed. EADs are resulting for example from a reduction of the
repolarising K+ currents. Triggers for this are congenital disorders of the ion channels or the ingestion
of some medicament. The elongation of the AP can generate afterpolarisations by reactivation L-type
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Ca2+ influx. Also chronic cardiac insufficiency may appear with an elongation of the AP by a reduction
of the repolarising K+ currents.

1.2. The Mathematical Model

The history of the modelling of APs of excitable biological cells as neurons and cardiac muscle cells
starts with the famous and pioneering Hodgkin-Huxley model in 1952 [19]. In this paper, the authors
established a mathematical approach that can be used to model an AP of excitable biological cells,
i.e., one uses a Hodgkin-Huxley (type) formalism for the description of APs as systems of ordinary
differential equations. The first model of a cardiac cell is the Noble model [20] of a generic Purkinje cell.
In 1991, Luo and Rudy published an ionic model for cardiac action potential in guinea pig ventricular
cells. Moreover, the Ten Tusscher-Noble-Noble-Panfilov model [21] from 2004 describes a model for
human ventricular tissue, cf. also [2]. Such conductance-based models are based on an equivalent
circuit representation of a cell membrane. These models represent a minimal biophysical interpretation
for an excitable biological cell in which current flow across the membrane is due to charging of the
membrane capacitance and movement of ions across ion channels. Ion channels are selective for
particular ionic species, such as calcium (Ca2+) or potassium (K+), giving rise to currents ICa2+ or IK+ ,
respectively. Our simplistic model reads as follows:

dV
dt

=− IK+ + ICa2+

Cm
, (1)

with the membrane capacity Cm = 1 µF
m2 and ion currents

IK+ := GK+ · x · (V − EK+) and ICa2+ := GCa2+ · d · f · (V − ECa2+), (2)

where the different gating variables d, f and x are satisfying the differential equation

dy
dt

=
y∞(V)− y

τy
(3)

and y represents the gating variables d, f and x, while

y∞ := y∞(V) =
1

1 + exp
(V−VTy

ky

) (4)

with VTy ∈ R, ky ∈ R\ {0} denotes the equilibrium of the corresponding gating variable and τy is the
corresponding relaxation time constant for each of d, f and x. The gating variables d, f and x ∈ [0, 1]
are important for the activation (opening) and inactivation (closing) of the ion channels and therefore
for the ion current interaction, see [15]. Moreover, the Nernst potentials of these ion currents are
denoted by ECa2+ and EK+ , while the corresponding conductance are represented by GCa2+ = 0.025 mS

cm2

and GK+ = 0.05 mS
cm2 , respectively. Furthermore, the relaxation time constants are given by τf = 80 ms

and τx = 300 ms. We have to remark that in [1] it is assumed that the gating variable d is equal to its
steady state. Please note that if τd tends to zero, we have the situation as in [1], since

τd
dd
dt

= (d∞ − d) ⇒ 0 = (d∞ − d),

as τd → 0. In this paper, we will use the relaxation time constant of d, i.e., τd, as further non-zero
parameter. Moreover, the choice τd = 0.1 ms yields the same trajectory as in [1], but also smaller
values of τd are conceivable. In Figure 1 some examples of EADs are presented with τd = 0.1 ms
and GCa2+ ∈

{
0.029 mS

cm2 ; 0.03 mS
cm2 ; 0.031 mS

cm2 ; 0.035 mS
cm2

}
(from left to right). Please compare Figure 6a in

[15] with the second trajectory in Figure 1. Here, we see that the four dimensional system behaves
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very similar to the three dimensional system, provided τd is small enough and the other system
parameters are the same. Moreover, we want to highlight that in [1] the authors basically studied the
influence of τx → ∞, while in [15] the influence of mainly GCa2+ and GK+ is investigated. In this paper,
we are focused on the influence of more system parameter and the identification of their importance.
Therefore, we will consider in the following τd = 20 ms. This will help to understand the complex
dynamics of the considered system.
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Figure 1. Trajectories (1) with different GCa2+ values.

2. Investigation of EADs Using GSPT and Bifurcation Analysis

In this section, will study and analyse system (1). To this aim we will use the geometric singular
perturbation theory, numerical bifurcation analysis and computational mathematics.

2.1. Brief Introduction into the GSPT

Here, we give a brief overview on the topic of GSPT. In general, a slow-fast system is of the form
ε

dx
dτ

= F(x, y, p, ε),

dy
dτ

= G(x, y, p, ε),
(5)

where 0 ≤ ε � 1, x ∈ Rm, y ∈ Rn, p ∈ Rr with m, n ≥ 1 and r ≥ 0. We denote by x and y the state
space variables and by p the system parameters, while the small parameter ε represents the ratio of
time scales. Moreover, the functions F : Rm ×Rn ×Rr ×R → Rm and G : Rm ×Rn ×Rr ×R → Rn

are assumed to be sufficiently smooth, typically C∞. The space variables x are called fast variables,
while the space variables y are called slow variables. Moreover, τ denotes the slow time scale and the
fast time scale t is given by t = τ/ε. If we rescale the system (5) in time—switching from the slow time
scale to the fast one—we arrive at 

dx
dt

= F(x, y, p, ε),

dy
dt

= εG(x, y, p, ε).
(6)

In general, solutions of slow-fast systems frequently exhibit slow and fast epochs characterised by
the speed at which the solution advances. If ε tends to zero, the trajectories of (5) converge during the
slow epochs to the solution of the slow flow/slow subsystem or reduced system 0 = F(x, y, p, 0),

dy
dτ

= G(x, y, p, 0),
(7)
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while during fast epochs the trajectories of (6) converge to the fast subsystem or layer problem
dx
dt

= F(x, y, p, 0),

dy
dt

= 0.
(8)

The fast subsystem describes the evolution of the fast variables x ∈ Rm for fixed y ∈ Rn,
while the slow subsystem describes the evolution of the slow variables y ∈ Rn. The phase
space of the slow flow (reduced problem) is the critical manifold C0, which is defined by C0 :=
{(x, y) ∈ Rm ×Rn : F(x, y, p, 0) = 0} . A subset S ⊂ C0 is called normally hyperbolic if the m × m
matrix (DxF) of the first partial derivatives with respect to the fast variables x, i.e., the Jacobian of F
with respect to x, has no eigenvalues with zero real part for all (x, y) ∈ S. Moreover, we call a normally
hyperbolic subset Sa ⊂ C0 attracting if all eigenvalues of (DxF) have negative real parts, while we call
a normally hyperbolic subset Sr ⊂ C0 repelling if all eigenvalues of (DxF) have positive real parts.
If S ⊂ C0 is normally hyperbolic and neither attracting nor repelling, it is of saddle type. Usually, the
interesting dynamics are localised around these non-hyperbolic regions. There may be isolated points
in C0, i.e., folded singularities, satisfying (DyF)G(x, y, p, 0) = 0 ∈ Rm and rk(DxF)(x, y, p, 0) = m− 1,
where the trajectories of the slow flow switch from incoming to outgoing. Away from fold points the
implicit function theorem implies that C0 is locally the graph of a function h(y) = x. Then, the reduced
system (7) can be expressed as ẏ = G(h(y), y, p, 0), where ẏ = dy/dτ. However, it is more convenient
to write the slow flow in terms of the fast variables x and we can keep the differential-algebraic
equations structure of (7). To this aim we determine the total (time) derivative of F(x, y, p, 0) = 0.
This yields (DxF)ẋ + (DyF)ẏ = 0 and we can write the slow flow (7) as the restriction to C0 of the
vector field {

ẋ = −(DxF)−1(DyF)G(x, y, p, 0),

ẏ = G(x, y, p, 0).
(9)

This vector field blows up if F is singular and the slow flow is not defined on F, i.e., the set of
folded singularities, before desingularisation. Therefore, we consider the desingularised reduced
system, which is given by 

dx
dτ1

= (DyF)G(x, y, p, 0),

dy
dτ1

= −(DxF)G(x, y, p, 0)
(10)

restricted to C0, where we rescaled the time by τ = −(DxF) · τ1. Moreover, ordinary singularities
satisfy G(x, y, p, 0) = 0 ∈ Rn are equilibria of the desingularised reduced system (10), the reduced
system (9) and can be equilibria of the original system (5). Against it folded singularities are in
general no equilibria of the reduced system (9) and of the original system (5). Notice that in the
reduced system (9) folded singularities are special points, since both sides of the first equation vanish
simultaneously. This means that there is potentially a cancellation of a simple zero, i.e., ẋ is finite
and non-zero at a folded singularity. This allows trajectories to cross the fold in finite time. Such
solutions are called singular canards and their persistence under small perturbations gives rise to
complex dynamics. If n ≥ 2, the Jacobian of (10) evaluated at the folded singularities has (n− 2)
zero eigenvalues and two remaining eigenvalues λ1,2. Moreover, the folded singularities are classified
as follows
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folded saddle, if λ1,2 ∈ R and λ1λ2 < 0,

folded saddle-node, if λ1,2 ∈ R and λ1λ2 = 0,

folded node, if λ1,2 ∈ R and λ1λ2 > 0,

folded focus, if λ1,2 ∈ C.

(11)

Here, we have to highlight that folded saddles, folded nodes and folded foci are also known
as canard points, see [22]. Even more, for sufficiently small values of the perturbation parameter ε

it is possible to calculate the maximal number of small oscillations of a MMO pattern, see [23,24].
For instance, if λ1 and λ2 are the eigenvalues of the linearisation of the desingularised system at a
folded node and µ = λ1/λ2 with |λ1| < |λ2|, then the maximal number of small oscillations in the
MMO (in a neighbourhood of the folded node) is given by

smax :=
⌊

µ + 1
2µ

⌋
, (12)

i.e., the greatest integer less than or equal to (µ + 1)/2µ, provided
√

ε� µ.

2.2. The Study of EADs as MMOs

After this short introduction into the topic of GSPT, we will go on with the investigation of the
dynamics of our multiple time scale problem. To this aim we first have to derive a suitable model to
be able to apply this theory. To determine the different time scales we use a certain type of time scale
separation argument, cf. [25]. Thus, we introduce a new (dimensionless) time variable τ satisfying
t := kt · τ, where kt is a reference time. Choosing kt = τf and rewriting (1)–(3), we get:

ε · V̇ = −ḠK+x(V − EK+)− ḠCa2+d · f (V − ECa2+) := F1(V, d, f , x),

ε · ḋ = (d∞ − d) := F2(V, d, f , x)

ḟ = ( f∞(V)− f ) := G1(V, d, f , x),

ẋ = δ(x∞(V)− x) := δG2(V, d, f , x),

(13)

where we divided the first equation by G := max {GK+ , GCa2+} and defined ḠK+ := GK+/G and
ḠCa2+ := GCa2+/G to derive the dimensionless singular perturbation parameters εV := Cm/(τf · G),
εd := τd/τf and δ := τf /τx. Using the setting from above we have that ε ≡ εd ≡ εV with 0 ≤ ε < δ� 1,
which implies that the system exhibits three different time scales, where d and V are the fastest variables
and x the slowest one. First of all, we have to notice that there are several system parameters, which
have a huge influence on the time scale separation and the time scales, i.e., τd, τf , τx, GCa2+ , GK+ and
Cm, cf. (13). Our next step is to derive the critical manifold C0. This yields

C0 :=
{
(V, f ) : d = d∞(V), x = − ḠCa2+

ḠK+
· d · f · (V − ECa2+)

(V − EK+)

}
. (14)

We want to highlight that the critical manifold C0 is the same in both cases (V and d are of the
same time scale, or V is the fast variable and d ≡ d∞ in the 3D system). Since the critical manifold C0 is

the same in both cases and d = d∞ implying that
dd∞

dτ
=

∂d∞

∂V
dV
dτ

one can show that the desingularised
slow flow of (13) restricted to C0 is also the same as the one of the three dimensional system with
d ≡ d∞. Moreover, for ε→ 0 we have the following slow subsystem:

0 =F1(V, d∞, f , x),
d f
dτ

= G1(V, d∞, f , x),
dx
dτ

= δG1(V, d∞, f , x), (15)
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and similarly the fast subsystem

dV
dτfast

=F1(V, d, f , x),
dd

dτfast
= F2(V, d, f , x),

d f
dτfast

= 0,
dx

dτfast
= 0. (16)

From (10), using ḋ∞ =
∂d∞

∂V
V̇ we can derive immediately the desingularised slow flow:


dV
dτ1

=

(
∂F1

∂ f

)
G1(V, d∞, f , x) + δ

(
∂F1

∂x

)
G2(V, d∞, f , x),

d f
dτ1

= −
(

∂F1

∂V

)
G1(V, d∞, f , x),

(17)

restricted to C0, where τ = −
(

∂F
∂V

)
τ1. Remember that system (17) is the desingularised version of

−
(

∂F1

∂V

)
dV
dτ1

=

(
∂F1

∂ f

)
G1(V, d∞, f , x) + δ

(
∂F1

∂x

)
G2(V, d∞, f , x),

d f
dτ1

=G1(V, d∞, f , x),
(18)

restricted to C0. An ordinary singularity of (17) is given if G1 = G2 = 0, while a fold point z• =

(V•, d∞(V•), f•, x•)T ∈ F is a folded singularity of (17) if

∂F1

∂ f
(z•) · G1(z•) + δ

∂F1

∂x
(z•) · G2(z•) = 0 and

∂F1

∂V
(z•) = 0.

This yields explicit expressions for f• and x• depending on V•, i.e.,

x• = −
ḠCa2+

ḠK+
d∞(V•) f•

(V• − ECa2+)

(V• − EK+)

and

f• =
1

1− δ
f∞(V•) +

δ

1− δ

ḠK+(V• − EK+)

ḠCa2+(V• − ECa2+)

x∞(V•)
d∞(V•)

.

At this stage we see that the shape of the critical manifold is not depending on δ or the choice
of τf and τx, but the location of the folded singularities and their stability. Moreover, notice that the
Jacobian of (17) has at least one zero eigenvalue. Furthermore, varying the ratio τf /τx changes the
desingularised slow flow (17). Notice that for δ→ 0 we have an one dimensional slow flow, where f is
determined by the critical manifold and x is constant. Therefore, it does not make sense to consider
both limits ε → 0 and δ → 0 simultaneously. However, varying δ may compensate the effect of an
enhanced calcium current, cf. [15]. Moreover, the critical manifold C0 as well as the desingularised
slow flow are depending on ḠK+ and ḠCa2+ , cf. (14) and (17). Hence, varying ḠK+ and/or ḠCa2+ has an
influence on (14) and (17). Furthermore, τd and Cm have only an influence on the time scale separation
argument and after passing to the singular limit ε→ 0 our discussion is independent on τd and Cm.

In the following, we consider GCa2+ = 0.032 mS
cm2 . Computing the critical manifold C0 (14) together

with two fold lines L± = {(V, d, f , x) ∈ C0 : F1V(V, d, f , x) = 0, F1VV(V, d, f , x) 6= 0} , the folded node
(V, f , x) ≈ (−24.7923, 0.5804, 0.7027) with eigenvalues λ1 ≈ −0.1974 and λ2 ≈ −1.7305, an ordinary
singularity (V, f , x) ≈ (−30.2250, 0.7666, 0.8760) and the singular orbit, we gain Figure 2. Notice that
for τf and τx satisfying the ratio δ = τf /τx ≡ 4/15 the folded node will be the same—similarly if
GCa2+/GK+ = 16/25. The critical manifold is divided into two attracting sheets S±a and one repelling
sheet Sr, where Sr lies between the two fold lines L±. The fold lines are nondegenerate since ∂F1/∂ f 6= 0
or ∂F1/∂x 6= 0 or both is satisfied. Moreover, we have an ordinary singularity on Sr. Notice that spiking,
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bursting and plateauing are only possible provided that the ordinary singularity is unstable, i.e. the
ordinary singularity lies on the repelling manifold Sr, cf. [26]. The singular or relaxation orbit consists
of four distinct segments, i.e., two slow orbit ΓS and two fast orbit ΓF segments. Notice that in general,
singular periodic orbits which are filtered into the folded node on L+ are singular representations of
MMOs. The aim of GSPT is now to combine information from the reduced and layer problems in order
to understand the dynamics of the cell model (1), particularly the oscillatory behaviour. Thus, we
use the reduced and the layer flows to construct singular periodic orbits, which—according to GSPT
[26,27]—will perturb to nearby periodic orbits of the full system (1) for sufficiently small perturbations.
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and two fast orbit ΓF (green line) segments, the fold lines L±, the folded node and the ordinary
singularity. In general, singular periodic orbits which are filtered into the folded node on L+ are
singular representations of mixed-mode oscillations (MMOs).

The singular orbit is constructed as follows. From lower fold line L− there is a rapid evolution
ΓF described by (16) towards the upper attracting manifold S+

a . Once the trajectory reaches S+
a the

reduced flow ΓS takes over until the trajectory reaches the upper fold line L+. Then, at the fold line
the reduced flow is singular and there is a finite time blow-up of the solution. The layer problem (16)
becomes the appropriate descriptor and there is a fast down-jump to the lower attracting manifold.
Here, the reduced system (15) describes the slow motions along the critical manifold until the trajectory
once again hits the fold line. The GSPT guarantees that this singular orbit will persist as a nearby
periodic relaxation oscillation corresponding to a spiking solution of (1). A folded node occurs in
generic slow-fast systems with two (or more) slow variables [22,24,27]. Moreover, a folded node allows
for an entire sector of trajectories to pass from the upper attracting branch S+

a of the critical manifold
to the repelling branch Sr and to follow that repelling branch for an O(1) time on the slow time scale.
Notice that solutions of the reduced problem (18) passing through a canard point from an attracting
manifold S+

a to a repelling manifold Sr are called singular canards. The sector of canard solutions
(the singular funnel, cf. Figure 3) is bounded by the fold line L+ and by the strong canard γS, which is
the unique trajectory tangential to the strong eigendirection of the folded node, cf. [26]. Two singular
canards are related to the eigendirections of the folded node, i.e., the weak and strong canards. They
correspond to the smallest and largest (in absolute value) eigenvalues respectively.
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There are two major requirements that the singularly perturbed system has to satisfy to guarantee
the existence of canard-induced MMOs, see [28] and cf. also [23], i.e.,

(a) The reduced flow (desingularised slow flow) has to possess a folded node.
(b) There is a singular periodic orbit formed by the slow and fast segments of the reduced and layer

problems (slow and fast subsystem) which starts with a fast fiber segment at the folded node.
This guarantees that the global return of such singular periodic orbit is within the singular funnel
of the folded node.

Figure 3. Singular funnel and strong canard on the (x, V)-plane.

Both conditions are satisfied in our situation. This implies that the MMOs are canard-induced
and we have canard-induced EADs. Moreover, if

√
ε� µ = λ1/λ2 ≈ 0.1141, then smax = 4, cf. (12).

Please also note that that system (13) exhibits several types of folded singularities mentioned in
(11) for different values of conductance GCa2+ . If we increase GCa2+ the folded node will travel on
the fold line L+ to the “right”, which means that the values of f and x at the folded node become
bigger. Moreover, the ordinary singularity will travel also towards the folded node until both point
collide. Then, the folded node becomes a folded saddle. If the folded node travels to the “left”, then
it will become a folded focus for smaller values of GCa2+ . Furthermore, we have a two dimensional
fast subsystem, but then this system exhibits only limit point bifurcations and no Andronov-Hopf
bifurcations. Hence, there are no Hopf-induced EADs induced by an enhanced calcium current. Thus,
we have shown that system (13) exhibits only canard-induced EADs via an enhanced calcium current.
Finally, we want to highlight also that system (13) exhibits Hopf-induced EADs provided we consider
a fixed singular perturbation parameter ε and δ → 0. In this case we have a three dimensional fast
subsystem with one bifurcation parameter x, but the occurring EADs are then related to a reduced
potassium current [1].

2.3. The Study of EADs Using Bifurcation Analysis

In Section 2.2 we established that EADs related to an enhanced calcium current are canard-induced.
Here, we did simultaneous the discussion for GCa2+ = 0.032 mS

cm2 and all Cm = τd · GK+ , provided
GCa2+ ≤ GK+ . In addition, from (12) we know that smax = 4 if

√
ε � 0.1141. Regarding our setting

for the relaxation time constant τd = 20 ms and the membrane capacity Cm = 1 µF
m2 we see that
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√
ε = 0.25 � 0.1141 and thus, smax = 4 is not satisfied. Moreover, for a setting like τd = 40 ms and

Cm = 2 µF
m2 one diverges more from the condition

√
ε� 0.1141, since

√
ε = 1/

√
2. However, the system

still exhibits MMOs or EADs but does not satisfy (12), since the condition
√

ε� µ is barely to fulfil.
Our next step is the study of system (1) using bifurcation analysis. In general, a bifurcation of a

dynamical system is a qualitative change in its dynamics produced by varying parameters. Since we
investigate the occurrence of EADs induced by an enhancement in the calcium current ICa2+ , we will
choose the conductance GCa2+ as bifurcation parameter to be able to simulate the decreasing or mainly
the increasing of the calcium current. Moreover, we will use our observation from above to analyse the
behaviour of system (1). First of all, determining the equilibrium curve of system (1), which is basically
the equilibria of this system for different values of GCa2+ , yields two stable branches and one unstable
branch for all parameter settings. Depending on the parameter setting the equilibrium curve loses or
wins stability via a sub- or supercritical Andronov-Hopf bifurcation, cf. also [15]. An Andronov-Hopf
bifurcation is characterised by a pair of purely imaginary eigenvalues, where the equilibrium changes
stability and a unique limit cycle bifurcates from it, i.e., it is the birth of a limit cycle. The distinction
into sub- or supercritical means that an unstable or stable limit cycle, respectively, bifurcates. For the
standard setting τd = 20 ms system (1)–(4) exhibits two supercritical Andronov-Hopf bifurcations
(black dots), cf. Figure 4.
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(a) 2D projection on the (GCa2+ , V)–plane. (b) 3D projection on the (GCa2+ , f , V)–space.

Figure 4. Bifurcation diagram for (1)–(4) with τd = 20 ms.

From the first Andronov-Hopf bifurcation (GCa2+ ≈ 0.008253 mS
cm2 ) a stable limit cycle branch

bifurcates which becomes unstable via a limit point of cycle (GCa2+ ≈ 0.03134055 mS
cm2 ) before it wins

again stability via a period doubling bifurcation. There is also a second stable limit cycle branch
bifurcating from the second Andronov-Hopf bifurcation (GCa2+ ≈ 0.033268 mS

cm2 ) which becomes
unstable via a period doubling bifurcation (connection of both limit cycle branches), cf. also Figure 5b.
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(a)Zoom of the first two unstable limit cycle branches.
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(b)Zoom showing the start of a stable period doubling cascade.

Figure 5. Zoom of Figure 4a around the second supercritical Andronov-Hopf bifurcation.
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This unstable limit cycle branch has of course influence on the system (1) but it does not
yields automatically EADs, it also may correspond to an AP. Notice that the limit cycle branches
are determined via a continuation algorithm included in MATCONT. The region between the first
Andronov-Hopf bifurcation and the first limit point of cycle (GCa2+ ≈ 0.03134055 mS

cm2 ) indicates the
region, where no EADs occur, cf. [15]. EADs appear after the first limit point of cycle. In Figure 5a the
transient from AP to EADs via the limit point of cycle bifurcation is highlighted, while Figure 5b shows
the beginning of a stable period doubling cascade. In Figure 9 we see that this transient might be also
via a period doubling bifurcation. Moreover, in Figure 6 we illustrate the limit cycle branches in 3D.

(a)Zoom showing the first two limit cycle branches. (b)Zoom showing only one limit cycle branch bifurcating from
the second Andronov-Hopf bifurcation.

Figure 6. Zoom of Figure 4b around the second supercritical Andronov-Hopf bifurcation.

For a better understanding we included in Figure 7 also two trajectories, one represents a normal
AP, while the other shows an EAD.

Figure 7. Figure 6a from a different point of view including two trajectories, i.e., one example for a
normal action potential (AP) (GCa2+ = 0.031 mS

cm2 ) and one example for an EAD (GCa2+ = 0.032 mS
cm2 ).

Notice that we have a four dimensional phase space plus a further dimension for the parameter.
Therefore, we have a five dimensional object which we can only plot in 2D or 3D as a projection on a
2D plane or 3D space. This makes the visualisation slightly difficult and it becomes more difficult if
the dimension of the system increases. Nevertheless, one gets a good description of the behaviour of
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the considered system using the bifurcation theory. From the 2D and 3D projection in Figures 4–6 one
might get the impression that the limit cycle starting from the second Andronov-Hopf bifurcation is
not completed, but this limit cycle terminates at the unstable equilibrium branch, cf. the projection
on the (GCa2+ , x, V)–space in Figure 8a. In Figure 8b we show for comparison the corresponding
bifurcation diagram with τ̃f = 0.8 · τf and τ̃x = 0.8 · τx instead of with τf and τx, cf. Figure 5b. Here,
one sees that the behaviour is different compared to the standard setting, while in the discussion of the
GSPT this change has no influence. Thus, it is important to use both approaches for the investigation
of such phenomena.

(a)3D projection on the (GCa2+ , x, V)–space.
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(b)Zoom: Bifurcation diagram of system (1) with τd = 20 ms,
τ̃f = 0.8 · τf and τ̃x = 0.8 · τx .

Figure 8. In (a) a different point of view of Figure 6b is given to illustrate that the limit cycle branch
terminates at the unstable equilibrium branch, while in (b) the corresponding bifurcation diagram with
τ̃f = 0.8 · τf and τ̃x = 0.8 · τx is stated.

Finally, if we consider the bifurcation diagram of (1)–(3) with τd = 40 ms and Cm = 2 µF
m2 instead of

τd = 20 ms and Cm = 1 µF
m2 , we see again the importance to consider all these parameters, cf. Figure 9.
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Figure 9. Zoom of bifurcation diagram: Cm = 2 µF
m2 and τd = 40 ms.

In Figures 9 and 10a we see that the system (1) may exhibit different type of MMOs and critical
transient regions depending on the choice of the system parameters. Even more, it also shows that
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ε = 0.5 in combination with GCa2+ = 0.032 mS
cm2 does not yield MMOs, cf. Figure 9. The reason for this

is that the condition 0 < ε� 1 is not suitable satisfied. Notice that there is no explicit condition how
small ε has to be, only it has to be much smaller than 1. Nevertheless, Figure 9 shows the system
(1) exhibits MMOs, but for smaller values of GCa2+ . For a more suitable visualisation of Figure 9,
we present in Figure 10 two zooms of Figure 9. Notice that the system exhibits for this setting two
supercritical Andronov-Hopf bifurcations. From the supercritical Andronov-Hopf bifurcation shown
in Figure 10b a stable period doubling cascade bifurcates, which is a route to chaos, cf. [29].

0.03046 0.0305 0.03054 0.03058 0.03062

bifurcation parameter G
Ca

-75

-70

-65

-60

-55

-50

-45

-40

v
o

lt
a
g

e
 V

 (
m

V
)

0.03059 0.030595 0.0306 0.030605 0.03061 0.030615 0.03062 0.030625

bifurcation parameter G
Ca

-75

-70

-65

-60

-55

-50

-45

v
o

lt
a
g

e
 V

 (
m

V
)

(a) Zoom Figure 9 (black box). (b) Zoom Figure 9 (gray box).

Figure 10. Zooms of Figure 9 showing a critical transition region and a region around the supercritical
Andronov-Hopf bifurcation.

Furthermore, we have shown that the GSPT gives information about the nature of the oscillatory
behaviour and even more, one can use the GSPT to determine the important system parameters
yielding these oscillations. However, we saw that it is not sufficient to consider only one parameter
to analyse the complete dynamics of a dynamical system. Here, we have seen the high relevance
for the investigation of MMOs in combination with bifurcation analysis to derive a more detailed
understanding of EADs, which one can use to prevent them. In [15] some approaches to control the
effect of an enhanced calcium current are established and for this aim a further system parameter is
highly interesting, e.g., increasing of τd may smooth out this effect yielding EADs. Moreover, these
observations, i.e., the system exhibits several time scales and MMOs as in Figure 1, motivate the
investigation of system (13) in the sense of the geometric singular perturbation theory.

3. Discussion

In this paper we studied the occurrence of EADs in system (1) related to an enhancement in the
calcium current. More precisely, we investigated the sensitivity of the system related to parameter
changes. To this aim we used bifurcation theory, numerical bifurcation analysis and GSPT. Moreover,
because of the fact that EADs may appear via an enhancement in the calcium current we used the
conductance of the calcium current as bifurcation parameter to study the behaviour of system (1)
under the influence of an enhanced calcium current. Furthermore, a time scale separation argument
motivates to consider further important parameters, cf. (13). Under the assumption that stress,
drugs or any diseases have no influence on the steady states of the gating variables, i.e., d∞, f∞ and
x∞, we discussed the behaviour of (13) with respect to changes in τd, τf , τx, Cm, GCa2+ and GK+ .
Summarising we have shown that system (1) exhibits MMOs or EADs. These MMOs may appear as
Hopf-induced MMOs via a reduction of the potassium current or as canard-induced MMOs related to
the calcium dynamics of the system. Thus, we pointed out that system (13) may exhibits Hopf-induced
EADs only if τx → ∞, which may yield plateau or pseudo-plateau bursting, cf. [30,31]. Furthermore,
if ε = Cm/(kt · G) = τd/kt → 0, where kt is the chosen reference time and G the maximum of the
conductances, system (13) may exhibits canard-induced EADs also depending on the choice of GCa2+

and GK+ . Moreover, this shows that EADs may occur via a combination of an enhanced calcium
current and a reduced potassium current, cf. [15]. The bifurcation theory in combination with the GSPT
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and the canard theory [11,32] provides a strategy for the investigation of the complex dynamics of
dynamical systems. This strategy yields simultaneously the parameter dependence for the occurrence
of complex oscillatory behaviour of the studied system as well as the nature of these oscillations.
Further, our approach shows also that the reduction of the system complexity is associated with the
loose of information. In addition, if the singular limit is not satisfied, then the GSPT breaks down.
However, the GSPT provides a powerful approach to study simpler subsystems and to combine the
results of the studies, which yields a better understanding of the original system. This one can use for
a specifically targeted examination of the processes, e.g., with the bifurcation theory. The bifurcation
theory shows the behaviour of the system nicely with respect to one system parameter. This is
also possible for several bifurcation parameters, cf. [15], but it becomes more complicated and time
consuming. Moreover, the visualisation becomes more difficult if the phase space and/or the parameter
space of the system increase. Therefore, one has to be more careful regarding the interpretation of
the result.

Finally, we want to remark that for every new gating variable we have one more system parameter
with influence on the appearing of EADs. Even more for each new ion current depending on a specific
conductance, there is a further system parameter playing a huge role. Moreover, the investigation of
such system using GSPT, yielding on the one hand the important system parameters, as we saw here,
on the other hand we have to study ’only’ subsystem of a reduced dimension, which is easier to handle.
This approach we can use of course to investigate higher dimensional model CmV̇ = −Iion + Istim,
as in [33] or in [2]. High dimensional system are not only more challenging to study, in fact one has
more possibilities to control oscillatory dynamics in such systems. Therefore, it is highly interesting
and important to study high dimensional systems in theory as well as in applications. To this aim the
GSPT and the bifurcation theory are important components. The numerical efforts will be higher but
this will be a acceptable price which is to pay. Finally, we want to emphasise that the future project is
the extension from the cellular level to the tissue level, cf. e.g., [21,34–37].
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