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Abstract: The maximum sensitivity function as the conventional robustness index is often used
to test the robustness and cannot be used to tune the controller parameters directly. To reduce
analytical difficulties in dealing with the maximum sensitivity function and improve the control
performance of the proportional-integral-derivative controller, the relative delay margin as a good
alternative is proposed to offer a simple robust analysis for the proportional-integral-derivative
controller and the first-order plus dead-time systems. The relationship between the parameters
of the proportional-integral-derivative controller and the new pair, e.g., the phase margin and the
corresponding gain crossover frequency, is derived. Based on this work, the stability regions of the
proportional-integral-derivative controller parameters, the proportional gain and the integral gain with
a given derivative gain, are obtained in a simple way. The tuning of the proportional-integral-derivative
controller with constraints on the relative delay margin is simplified into an optimal disturbance
rejection problem and the tuning procedure is summarized. For convenience, the recommended
parameters are also offered. Simulation results demonstrate that the proposed methodology has better
tracking and disturbance rejection performance than other comparative design methodologies of the
proportional-integral/proportional-integral-derivative controller. For example, the integrated absolute
errors of the proposed proportional-integral-derivative controller for the tracking performance and
disturbance rejection performance are less than 91.3% and 91.7% of the integrated absolute errors of
other comparative controllers in Example 3, respectively. The proposed methodology shows great
potential in industrial applications. Besides, the proposed method can be applied to the design of
the proportional-integral-derivative controller with filtered derivative which is recommended for
practical applications to weaken the adverse influence of the high-frequency measurement noise.

Keywords: proportional-integral-derivative controller; relative delay margin; stability regions;
desired robustness-constrained optimization

1. Introduction

The proportional-integral (PI)/proportional-integral-derivative (PID) controller plays a non-
substitutable role and is widely used in industrial processes currently even though the advanced
control theory has developed flourishingly [1]. These advanced control strategies, such as active
disturbance rejection control [2], model predictive control [3], and slide model control [4], obtain the
satisfactory control performance in simulations while they are rarely applied to practical applications.

The PI/PID controller is a simple feedback structure of the form “present-past-future”, which does
not depend on the precise mathematical models of the dynamical systems [5]. How to obtain the
desired parameters of the PI/PID controller has been the concern of many researchers for a long

Processes 2019, 7, 713; doi:10.3390/pr7100713 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://dx.doi.org/10.3390/pr7100713
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/7/10/713?type=check_update&version=3


Processes 2019, 7, 713 2 of 31

time [6]. Specifically, the research of the PI/PID controller tuning rules can date back to the work by
Ziegler and Nicholas in 1942 [7]. The Ziegler and Nicholas (Z-N) method, lacking of the robustness
constraint, needs the information of the gain margin and the associated frequency which is obtained
by experiments on the process with some empirical rules [8]. A dual-point tuning method for the
PI/PID controller is proposed by Åström and Hägglund which needs the gain margin (gm) and the
phase margin (ϕm) [9]. To better balance the control performance and robustness, the gain and phase
margins are often set as 6 ≤ gm ≤ 12 dB and 30◦ ≤ ϕm ≤ 60◦ [10], and these margins have been widely
used. However, the constraints are often used to test the robustness and cannot be used to design the
controller directly. The maximum sensitivity function, Ms, is developed to be a good single robustness
measure, and the integral gain is also found to be a good performance index for the disturbance
rejection [11]. Many tuning rules are summarized in the handbook for different processes [12],
such as Ms-constrained integral gain optimization (MIGO) [13] and Skogestad internal model control
(SIMC) [6]. Recently, the generalized frequency method is proposed for a two-degree-of-freedom PID
controller [14]. The tuning rules based on the desired closed-loop response [15], the linear quadratic
regulator (LQR) [16] and the probabilistic robustness (PR) [17] are also developed for the PI/PID
controller. Some new PID controller synthesis approaches are reported recently [18–21]. In [18], a PID
controller is designed based on the optimal H2 minimization framework for integrating and double
integrating time delay processes. Lu et al. designed a PID controller based on self-adaptive state-space
predictive functional control to enhance the ability in rejecting model mismatches and disturbance [19].
In [20], a robust gain-scheduled PID controller design for a linear-parameter-varying (LPV) system with
parametric uncertainty is discussed. An internal model control (IMC)-PID controller is designed for
the pole-zero shifted process with the shifting constant in [21]. A new tuning rule of PID controller is
designed for first-order plus dead-time (FOPDT) systems where the relationships between the integral
time/the derivative time and the time constant of FOPDT systems are built [22]. The influence of the
sampling time on the discrete PID controllers is analyzed in [23] and the discrete implementation of a
continuous controller is also discussed. A method of tuning the parameters of the continuous controller
is presented, which is optimal according to the integral of time-weighted absolute error criterion
in [24]. Some optimization algorithms, such as genetic algorithm (GA) [25], extremum seeking (ES) [26],
particle swarm optimization (PSO) [27], fruit fly optimization [28], and Kronecker summation [29] are
also proposed to optimize parameters of the PI/PID controller and these algorithms can ensure the
satisfactory control performance with some performance indexes. Note that these tuning methods
of the PI/PID controller have some limitations, some of them needs trials and errors, and some of
them optimize parameters based on some performance indexes. In addition, a theory on the PID
controller is proofed about the global stability and asymptotic regulation of the closed-loop control
systems in [5] and a robust PID design based on quantitative feedback theory and convex-concave
optimization is discussed in [30]. The theoretical studies such as the stabilizing PID controllers for
time delay systems [31] and the PID design for the nonlinear system [32] are also reported recently.

The PID controller plays a non-substitutable role in process control, for example, the feedback
controller in the coordinated control system (CCS), the most critical loop of a power plant is the PID
controller to enhance the tracking speed and disturbance rejection ability [33]. Even though the PID
controller roles as an important part in feedback control loops, how to design the suitable values of
PI/PID parameters with a systematic procedure still is an open question. The relative delay margin (Rdm)
has been proposed to optimize disturbance rejection performance of the PI controller [34]. However,
how to design the PID controller with the relative delay margin has not been reported, to the authors’
knowledge. To design the optimized PID controller with better disturbance rejection performance and
desired robustness, the relative delay margin is proposed for the PID controller design. To obtain the
explicit expressions of the proportional gain (kp) and the integral gain (ki), and the theoretical ranges of
these two parameters, the relationship between the parameters of the proportional-integral-derivative
controller and the new pair, e.g., the phase margin and the corresponding gain crossover frequency,
is derived. Besides, the stability regions of the proportional gain (kp) and the integral gain (ki) are also
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analyzed with constraints on the relative delay margin. Then an optimal disturbance rejection problem
which is the tuning processes of the PID parameters is formulated and solved. Based on the above
work, the tuning method for the PID controller is proposed to obtain satisfactory control performance
with the desired robustness constraint.

The following interesting outcomes, as the main contributions of the paper, are derived in an
innovative way:

(1) The PID tuning formula is analytically derived in terms of the relative delay margin for
FOPDT systems.

(2) The stability regions for kp and ki based on a given derivative gain (kd) and the process model
are analyzed.

(3) The desired delay robustness-constrained optimization (DRO) for the PID controller is formulated
and a set of recommended parameters is offered for the ease of use.

(4) Illustrative examples are carried out and results verify the superiority of the proposed DRO
design for the PID controller.

The rest of this paper is organized as follows: the problem is formulated in Section 2. The basic
control structure, and the research purpose to minimize the integral of the error with the fixed kd and
the delay margin constraint are introduced in this section. In Section 3, the PID tuning formula is
derived in terms of the numerator and denominator of relative delay margin. Besides, a theorem about
the ranges of kp and ki is given and the proof is also offered. Then the tuning method based on DRO is
developed and solved analytically for the PID controller in Section 4. A set of recommended parameters
is also offered for tuning parameters easily and conveniently in Section 4. In Section 5, simulations
illustrate the superiority of the DRO tuning for the PID controller and the implementation of the
derivative for practical applications is also discussed. Finally, Section 6 offers concluding remarks.

2. Problem Formulation

2.1. The Basic Control Structure

To better design the PID controller for a FOPDT model, the basic control structure is depicted
as shown in Figure 1, where Gp(s), Gc(s), F(s), and H(s) are the FOPDT model, the PID controller,
a set-point prefilter, and a feedback controller on the feedback path, respectively. The control structure
is a typical two degrees of freedom (2-DOF) PID control system [8].
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Figure 1. The structure of a two degrees of freedom proportional-integral-derivative (PID) system.

The process model is expressed as,

Gp(s) =
K

Ts + 1
e−Ls, (1)

where K, T, and L are the process gain, the time constant, and the delay time, respectively. Note that K,
T, and L all have positive values for a stable process. The reason to study the FOPDT model is that the
FOPDT model can reflect most dynamics of the real process and it can be used to approximate most of
the industrial process [35]. Therefore, the proposed design method is deduced based on the FOPDT
model in this paper. Note that it is not suitable for typical second order models which is discussed in
Appendix A.
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The output of the 2-DOF PID controller is expressed as,

u(t) = kp

[
(br− y) +

1
Ti

∫ t

0
(r− y)dt + Td

d(cr− y)
dt

]
, (2)

where kp, Ti, and Td are the proportional gain, the integral time, and the derivative time, respectively.
Besides, r, y, and d are the reference, process output and input disturbance, respectively. When the
set-point weighting factors (b and c) and H(s) are set as 1, the typical 2-DOF PID controller becomes
the conventional 1-DOF PID controller. By applying Laplace transform, the control law in Equation (2)
has a set-point prefilter depicted by

F(s) =
cTiTds2 + bTis + 1
TiTds2 + Tis + 1

, (3)

and a feedback controller depicted by

Gc(s) = kp

(
1 +

1
Tis

+ Tds
)
. (4)

The output y is decided by Y(s) = Gry(s)R(s) + Gdy(s)D(s), where Y(s), R(s), D(s), Gry(s) and
Gdy(s) are the Laplace transforms of the output, the reference, the input disturbance, the transfer
function from r to y and the transfer function from d to y, respectively. Besides, Gry(s) and Gdy(s) are
depicted by

Gry(s) =
F(s)Gc(s)Gp(s)

1 + Gc(s)H(s)Gp(s)
, (5)

and

Gdy(s) =
Gp(s)

1 + Gc(s)H(s)Gp(s)
. (6)

We can know that the prefilter F(s), or the set-point weighting factors (b and c) only influence
the tracking performance. The disturbance rejection performance is only influenced by the feedback
controller Gc(s) without considering the mutual effects coming from residues. We have a view that the
feedback controller Gc(s) is tuned mainly for a desired disturbance rejection. The set-point weighting
factors (b and c) are adjusted to obtain a desired tracking performance and further adjusted to enhance
the disturbance rejection performance slightly [36]. Note that H(s), the feedback controller on the
feedback path, is set to one in this paper.

2.2. Problem Formulation

The purpose of the PID tuning is to obtain the minimum performance criterion, such as the
integral squared error (ISE), the integrated absolute error (IAE) and the integral of time-weighted
absolute error (ITAE) criteria, with the certain robustness constraint. This can be addressed in the
following form: {

Min performance criterion (ISE/IAE/ITAE),
Subject to robustness constraint (Ms).

Even though ISE, IAE, and ITAE can be used as the performance criterions, the performance
criterion, the integral of the error (IE), is recommended [11,34]. It is further revealed that,

IE =

∫
∞

0
[r(t) − y(t)]dt =

Ti
kp

=
1
ki

, (7)

which is for a stable closed-loop system with zero initial error and a unit step input disturbance [37].
Note that the IE criterion is chosen as the performance criterion considering that the smaller IE can



Processes 2019, 7, 713 5 of 31

result in a larger ki and IE has a quantitative relationship with ki. In addition, a larger ki can result in
a stronger disturbance rejection ability. This idea of minimizing the value of IE is similar with that
in [11] where the non-convex optimization problem is solved by the graphical method. Besides, IE can
be seen as an approximation of IAE if the system has a slight oscillation. Note that the value of IE can
be far from that of IAE for some special processes if the system has a serious oscillation or an inverse
response, for example, for a process with one right half plane zero.

The maximum sensitivity function is often selected as the robustness index, and it is defined as,

Ms = max
ω

∣∣∣S(iω)∣∣∣ = max
ω

∣∣∣∣∣∣ 1
1 + Gc(iω)Gp(iω)

∣∣∣∣∣∣. (8)

Its physical meaning is the reciprocal of the shortest distance from the critical point to the Nyquist
curve and the reasonable range of Ms is 1.2~2.0. Some attempt for the tuning purpose is made by fitting
it as a high-order polynomial in terms of parameters [38] or reducing it to a contour of numerous ellipses
in the complex plane [11]. For controller synthesis, Ms constraint is often used to verify the robustness
of the closed-loop system with designed parameters and cannot be used to optimize PID controller
parameters systematically and directly [30,39]. Note that the optimization of Ms-constrained for the
PID controller is feasible and reasonable for modern computers. To design the PID controller simply
and directly, a new index called the delay margin, is chosen to represent the robustness index [40],
which represents the maximum allowable delay variation and can be used to tune parameters directly.
It is defined as,

Rdm =
ϕm

ωgcL
, (9)

where ϕm, ωgc, and L are the phase margin, the corresponding gain crossover frequency, and the delay
time of the FOPDT model, respectively. The motivations to choose Rdm as the desired robustness
measure are summarized as follows [34]:

(1) The maximum sensitivity function, Ms, is defined in the closed-loop form and this results in some
difficulties in analysis. Besides, Ms is the maximum value of the sensitivity function over the
whole frequency range. On the contrary, the delay margin is an open-loop measure with the
information in a single point.

(2) As is well known, there is a fundamental limit on ωgc for the processes with time delay, i.e.,
ωgcL < 1 [8]. Note that the qualitative inequality is extended for a quantitative purpose.

(3) The delay margin is dimensionless and can reflect the influence of the time delay on the variation
in the delay time. Besides, the delay margin can be used to optimize parameters of the PID
controller directly and easily as shown in next section. However, Ms is often used to test the
robustness of the closed-loop system with designed parameters.

Note that the delay margin Rdm as a single measure of the desired robustness may have some
limitations. The delay margin Rdm may not always ensure the good robustness of the closed-loop
system when it is applied to test the robustness of the closed-loop system. Fortunately, the delay margin
as an open-loop measure can be used to design the PID controller directly, and the PID controller
based on the delay margin can ensure the desired robustness with a reasonable Rdm and a reasonable
design procedure.

Above all, the problem formulation can be reorganized as:{
Min IE criterion with the fixed kd,
Subject to the delay margin.

.

This means that the purpose of this research is to find the optimized parameters of the PID
controller with the delay margin to enhance the disturbance rejection ability of the closed-loop system
by a reasonable design procedure. In this research, the delay margin, as a desired robustness constant,
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is proposed to design the optimized PID controller with the larger ki. Besides, the stability regions of
kp and ki with the delay margin are another concern considering that stability regions are necessary
parts for a new design method.

Based on the problem formulation, the stability regions and the PID tuning with constraints on
relative delay margin will be analyzed in the following section.

3. Stability Regions Based on the Relative Delay Margin

The tuning formula of the PID controller with the relative delay margin Rdm is deduced in this
section. Then stability regions of PID parameters are obtained in terms of the new pair (ϕm and ωgcL).
Note that the following deductions based on the regular variables are carried out. To simplify the
analysis, the deductions with time scaling and dimensionless variables, as used in [41], are also given
in Appendix B.

Based on the transfer function of the process model in Equation (1) and the feedback controller in
Equation (4), the loop transfer function becomes,

Gl(iω) =
(
kp +

ki
iω

+ kdiω
)( K

1 + iTω
e−iωL

)
. (10)

Equation (10) can be expanded in a rectangular form,

Gl(iω) = XR + iYI, (11)

where

XR = Kkp
cos(Lω) − Tω sin(Lω)

T2ω2 + 1
−K

(
ki − kdω

2
)sin(Lω) + Tω cos(Lω)

ω(T2ω2 + 1)
, (12)

and

YI = −Kkp
sin(Lω) + Tω cos(Lω)

T2ω2 + 1
−K

(
ki − kdω

2
)cos(Lω) − Tω sin(Lω)

ω(T2ω2 + 1)
. (13)

Note that the real and imaginary parts are both linear combinations of kp, ki, and kd. The Nyquist
plot of the loop transfer function should pass through the selected point, which is denoted as,

xo = − cos(ϕm) − i sin(ϕm), (14)

and the corresponding gain crossover frequency is ωgc.
By equaling Equation (11) and Equation (14), we can obtain, Kkp

L(L cos(a)−Ta sin(a))
T2a2+L2 −K

(
kiL2
− kda2

)L sin(a)+Ta cos(a)
a(T2a2+L2)

= − cos(ϕm) (15.1)

−Kkp
L(L sin(a)+Ta cos(a))

T2a2+L2 −K
(
kiL2
− kda2

)L cos(a)−Ta sin(a)
a(T2a2+L2)

= − sin(ϕm) (15.2)
, (15)

where a dimensionless parameter is used as a = ωL to simplify the formula derivation.
By a simple transformation (we can obtain functions by Equation (15.1) ×

cos(a)−Equation (15.2) × sin(a) and Equation (15.1) × sin(a)+Equation (15.2) × cos(a), and then
solve the obtained linear functions), the controller parameters can be obtained as follows, kpK = T

L a sin(ϕm + a) − cos(ϕm + a)
K
(
kiL2
− kda2

)
= aL sin(ϕm + a) + Ta2 cos(ϕm + a)

. (16)
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When the value of kd in Equation (16) is obtained by Z-N stability criteria as the recommendation
in [42], the integral time of the PID controller is,

kp

kiL
=

Ti
L

=
Ta sin(ϕm + a) − L cos(ϕm + a)

aL sin(ϕm + a) + Ta2 cos(ϕm + a) + kdKa2 . (17)

Obviously, Equations (16) and (17) offer an elegant and simple tuning formula, which will be
applied to the PID tuning directly in next section.

From Equation (16), the expression of ki can be obtained as follows,

ki =
aL sin(ϕm + a) + Ta2 cos(ϕm + a)

KL2 +
kda2

L2 , (18)

where ki is determined by three parts from Equation (18). ki is mainly determined by a2 cos(ϕm + a)
for lag-dominant processes (large T/L) and mainly determined by aL sin(ϕm + a) for delay-dominant
processes (small T/L) with a given kd.

In order to obtain the stability regions of PID parameters kp and ki with a given kd, a brief but
somewhat less rigorous method will be given to determine the upper boundary of stability region in
the situation of ϕm = 0 based on the work in [34].

The following lemmas will be used for the analysis of the stability regions of kp and ki [34,43]:

Lemma 1. The inequity ki > 0 is a necessary condition of the stability of the closed-loop system.

Lemma 2. The available range of kd is
[
−

T
K ,∞

)
, otherwise the closed-loop system is unstable.

Lemma 3. The inequities ϕm ≥ 0 and a ≥ 0 are necessary conditions of the stability of the closed-loop system.

Theorem 1. The range of kp for the given FOPDT plant in Equation (1) can be stabilized with a PID controller
is given by

−
1
K
< kp <

1
K

[T
L

a1 sin(a1) − cos(a1)
]
, (19)

where a1 is the root of the following equation,

tan(a1) = −
T

T + L
a1, (20)

and a1 is in the interval of
(
π
2 ,π

)
.

For a given kp locating in the range of Equation (20) and a given kd determined by Z-N method,
the range of ki guaranteeing the stability of the closed-loop system is given by

0 < ki < max
{
α

KL

[
sin(α) +

T
L
α cos(α)

]
+

kdα
2

L2

}
, (21)

where the maximum value of α is the root of the following equation,

kpK −
T
L
α sin(α) + cos(α) = 0, (22)

and α is in the interval of (0, a1).
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Proof. The lower boundary of the stability region of ki is 0, which can be obtained by a = 0 and also
can be obtained from Lemma 1. Let ϕm = 0, and the upper boundary of controller parameters can be
obtained by the following expression, kpK = T

L a sin(a) − cos(a)
K
(
kiL2
− kda2

)
= aL sin(a) + Ta2 cos(a)

. (23)

Let z = Lω, and we can obtain the derivative of kp as follows,

dkp

dz
=

1
K

[
sin(z) +

T sin(z)
L

+
Tz cos(z)

L

]
. (24)

Firstly, we can know that
dkp
dz ≥ 0 when z ∈

[
0, π

2

]
, because that we have sin(z) ≥ 0, cos(z) ≥ 0 and

z ≥ 0.
Secondly, we can obtain the following expression,

d2kp

dz2 =
1
K

[
cos(z) +

2T cos(z)
L

−
Tz sin(z)

L

]
, (25)

where z ∈
(
π
2 , a1

]
and a1 is the solution of the tan(a1) = − T

T+L a1. As we know that cos(z) < 0 and

z sin(z) > 0 when
(
π
2 , a1

]
is the subaggregate of

(
π
2 ,π

)
, and

d2kp

dz2 ≤ 0 is always tenable. This means that
dkp
dz is a monotone decreasing function. What is more,

dkp
dz

∣∣∣∣
z=a1

= 0 is tenable when a1 is the solution

of tan(a1) = − T
T+L a1. Therefore,

dkp
dz ≥ 0 is always tenable when z ∈ [0, a1]. The lower and upper

boundaries of kp are obtained when z = 0 and z = a1, respectively. Therefore, stability region of kp can
be obtained,

−
1
K
< kp <

1
K

[T
L

a1 sin(a1) − cos(a1)
]
. (26)

For a given kp in the range of Equation (26) and a given kd in the stability region as depicted in
Lemma 2, the corresponding α by solving,

kpK −
T
L
α sin(α) + cos(α) = 0. (27)

However, the monotonicity of the expression of ki, which is shown by

ki =
α

KL

[
sin(α) +

T
L
α cos(α)

]
+

kdα
2

L2 , (28)

is changeable, and the upper boundary of ki can be easily obtained by going through the achievable
range of α, whose maximum value is determined by

kpK −
T
L
α sin(α) + cos(α) = 0, (29)

and minimum value is determined by Lemma 1. Therefore, we have,

0 ≤ ki < max
{
α

KL

[
sin(α) +

T
L
α cos(α)

]
+

kdα
2

L2

}
, (30)

where the maximum value of α is the root of Equation (27) and α is in the interval of (0, a1). 2

Remark 1. The analytical derivations for the stability regions of kp and ki do not need the input reference signal.
The Theorem 1 and other conclusions are applicable to arbitrary input reference signals.
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Finally, an example of a lag-dominated process is used to show stability regions with different kd,
which is depicted as,

Gp(s) =
1

15s + 1
e−s. (31)

The stability regions of kp and ki with different kd are shown in Figure 2. In addition, the maximum
value of ki (kimax) and the corresponding α (α∗) with the different kd are also shown in Figure 3.
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Figure 3. The value of kimax and α∗ with different kd.

From Figures 2 and 3, we can know that the trends of kp and ki when kd locates in the range of[
−

T
K ,∞

)
. Besides, the maximum value of ki has a positive correlation relationship with that of kd and

α∗ also has a similar relationship with kd.

4. PID Tuning with Constraints on Relative Delay Margin

The loop transfer function with the process model in Equation (1) and the feedback controller in
Equation (4) can be obtained,

GL(s̃) =
[

T
L a sin(ϕm + a) − cos(ϕm + a)+

a sin(ϕm+a)+ T
L a2 cos(ϕm+a)
s̃ +

kda2

Ls̃ +
kdK

L s̃
]

1
1+ T

L s̃
e−s̃, (32)

where s̃ = Ls. The robustness indices, Ms and gm, are determined by ϕm, a, and kd when the process
is given. The value of kd can be obtained by Z–N method and can be adjusted based on the control
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requirements. To better measure the lag/delay ratio for the process model, a normalized time delay is
defined as [34],

τ =
L

T + L
, (33)

where the range of τ is [0, 1). A small τ means a lag-dominant process and a large τ means a
delay-dominant process. The tuning of the PID controller with the purpose of obtaining the optimal
disturbance rejection ability is analyzed as follows.

As the analysis in Section 2.2, the PID tuning with constraints on the relative delay margin can be
formulated as,  max aL sin(ϕm+a)+Ta2 cos(ϕm+a)

KL2 +
kda2

L2 ,
s.t. Rdm =

ϕm
a = rdm and a given kd,

where the objective function is a scaled integral gain in terms of ϕm, a, and kd. rdm is the representative
of a desired robustness level and kd is the desired value of the derivative gain. To solve the objective
function, the derivative function with respect to a is obtained as follows,

d
da

[
aL sin(a(rdm + 1)) + Ta2 cos(a(rdm + 1))

KL2 +
kda2

L2

]
= 0, (34)

which can be further transformed to an algebraic equation,

1
K [sin(a(rdm + 1)) + a cos(a(rdm + 1))(rdm + 1)

+
2Ta cos(a(rdm+1))

L −
Ta2 sin(a(rdm+1))(rdm+1)

L

]
+

2kda
L = 0

(35)

where a is in the range of (0, a1), and Equation (35) can be solved numerically. Note that the deductions
with time scaling and dimensionless variables about the PID tuning with constraints on relative delay
margin are also offered in Appendix B for interested readers.

For a given process, PID controller parameters are determined by Equations (16) and (35) when kd
is determined by

kd = kg
T
K

, (36)

where kg is the coefficient of T/K and the recommended range of kg is [0.1, 0.5]. The reason choosing the
given derivative gain in Equation (36) can been seen at the end of Section 3.1 in [42]: “The stabilizing
sets of kp and ki in this case will also lie on the right side of the marginal stable boundary curve in
(kp, ki) plane with increasing ω as detJ = −K2ω, which is ∀ω > 0. There are various methods such
as Ziegler–Nichols (Z–N) stability criteria, Integral of Square Error (ISE), Integral of Time Square
Error (ITSE), Integral of Absolute Error (IAE), etc., by which one can choose the derivative gain kd.”
Z–N stability criteria is chosen in this paper for convenience. Note that Equation (36) can avoid a
large calculation load to obtain kd even though it may not be the best choice. How to choose kd more
reasonably should be researched in the later work. The influence on a, ki, and some conventional
indices such as ϕm, gm, and Ms with different kg and rdm can be seen in the Supplementary Materials.

Now, we can summarize the design procedure based on the discussion above as follows:

(1) The approximate FOPDT model (K, T, and L) is obtained by various approximation methods.
(2) The derivative gain kd can be given by Equation (36) and a desired robustness level rdm is also

given. a can be obtained by solving Equation (35).
(3) kp and ki are calculated by Equation (16). Adjust the prefilter parameters (b and c) manually to

obtain the satisfactory tracking performance.

The design procedure described above is named as DRO. Based on numerous simulations,
the recommended parameters in terms of τ are listed in Table 1. Note that the control goal of the
recommended parameters is to achieve a strong disturbance rejection ability and good tracking
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performance with good robustness. The parameters of the prefilter, b and c, need to be manually
tuned to improve the tracking performance. kg needs to be manually tuned to enhance the disturbance
rejection ability. Rdm can be obtained by the definition in Equation (9) with different ranges of τ.
We can obtain that Rdm is equal to 1.8868, 1.9091, 1.9825, and 1.8852 for τ ≤ 0.05, 0.05 ≤ τ < 0.1,
0.1 ≤ τ < 0.3, and τ ≥ 0.3, respectively. Note that the recommended values of Rdm all locate in the range
of [1.7, 2.1] which is the reasonable range based on many simulation results. Besides, the parameters of
DRO-PID (the PID controller designed by DRO) in Section 5 are all obtained based on the recommended
parameters in Table 1.

Table 1. The recommended parameters of PID controller for delay robustness-constrained optimization
(DRO) tuning.

Parameters τ ≤ 0.05 0.05 ≤ τ < 0.1 0.1 ≤ τ < 0.3 τ ≥ 0.3

ϕm 1.00 1.05 1.13 1.15
a 0.53 0.55 0.57 0.61
b 0.6 0.6 0.6 0.6
c 1 1 1 1

kg 0.3 0.2 0.2 0.2

Remark 2. Parameters of the PID controller which need to be tuned are kg, b, and c based on the tuning
procedure with a desired Rdm or the pair of

{
ϕm, a

}
. kp and ki can be calculated by Equation (16) and are not

adjusted manually. Different kg, b, or c can result in different performance levels and how to adjust them may
need the practice experience. To reduce the time spent and improve the control performance, the recommended
parameters in Table 1 are suggested to calculate PID parameters quickly for interested readers. In fact, parameters
of the proposed DRO-PID in the following illustrative examples are all obtained based on the recommended
parameters in Table 1. Besides, how to choose b and c is discussed in Appendix C.

5. Illustrative Examples

In this section, three illustrative examples are carried out to verify the efficacy of the proposed
DRO-PID design, which is compared to other classic PID tuning methods [6,36] and DRO for the PI
controller [34]. The IAE and the total variation of the control signal (TV) are used to measure the
control performance. Their definitions are depicted as follows,

IAE =

∫
∞

0

∣∣∣r(t) − y(t)
∣∣∣dt, (37)

and

TV =
n−1∑
i=1

∣∣∣u(i + 1) − u(i)
∣∣∣. (38)

Note that indices of the tracking performance are the settling time (Ts), IAEsp, and TVsp. Indices
of the disturbance rejection are IAEud and TVud. Ms is also used to measure the robustness of the
closed-loop system. Besides, all following simulations use the “fixed-step” solver with the sampling
time equating to 0.01 s.

5.1. Example 1

Consider a fourth-order process whose transfer function depicted as,

Gp(s) =
1

(s + 1)4
. (39)
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The approximate FOPDT is obtained for the DRO tuning,

G̃p(s) =
1

2.1s + 1
e−1.9s, (40)

where the value of τ is 0.475. Based on Table 1, the value of Rdm is set as 1.8852 for the process in
Equation (39) considering that the approximate FOPDT has τ ≥ 0.3. Note that the approximate FOPDT
in Equation (40) is obtained based on the getfopdt function in [44].

Parameters of DRO-PID are obtained based on the model in Equation (40). Parameters of
comparative controllers, such as the PI controller tuned by DRO (DRO-PI) [34], the PID controller
tuned by SIMC (SIMC-PID) [6], and the PID controller tuned in [37] (Panagopoulos-PID) are also listed
in Table 2. Note that parameters of DRO-PI, SIMC-PID, and Panagopoulos-PID are not tuned by the
authors of this paper but are tuned by the authors in [6,34,37], respectively.

Table 2. Parameters of different controllers for Example 1.

Controllers Parameters of Different Controllers

DRO-PID b = 0.6, c = 1 *, kp = 0.8503, ki = 0.3179, kd = 0.4200.
DRO-PI b = 0.6 *, kp = 0.54, ki = 0.2596. [34]

SIMC-PID b = 1, c = 1 *, kp = 0.5, ki = 0.3333, kd = 0.5. [6]
Panagopoulos-PID T f = 0.27 *, kp = 1.14, ki = 0.5112, kd = 1.14. [37]

* The prefilters are F(s) = bTis+1
Tis+1 and F(s) = 1

T f s+1 for DRO-PI and Panagopoulos-PID, respectively. SIMC-PID has

the same prefilter with DRO-PID as depicted in Equation (3).

Output responses and the corresponding control signals are shown in Figures 4 and 5 respectively.
Note that the step set-point and input disturbance are added to the system at 5 and 40 s, respectively.
Ts, IAEsp, and TVsp are recorded from 5 to 40 s. IAEud and TVud are recorded from 40 to 80 s as listed
in Table 3. Ms is also recorded in Table 3. Besides, the Nyquist diagram of the open-loop system with
different controllers is also shown in Figure 6 where the unit circle centered at the origin and the circle
centered at the (−1, 0) with the radius 1/Ms are also given.
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Table 3. The indices of Example 1 with different controllers.

Controllers Ts/s IAEsp TVsp IAEud TVud Ms

DRO-PID 8.24 4.26 1.29 3.15 1.11 1.45
DRO-PI 12.83 4.96 1.23 4.10 1.18 1.58

SIMC-PID 22.38 5.39 1.71 4.22 1.36 1.48
Panagopoulos-PID 16.38 4.36 2.29 2.43 1.24 1.40
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From Figure 4, DRO-PID has the smallest overshoot even though it has a slower response speed
than SIMC-PID and Panagopoulos-PID. Besides, DRO-PID has the smallest Ts as listed in Table 3. IAEsp

also verifies that DRO-PID has the best tracking performance, which is about 80% of that of SIMC-PID.
Panagopoulos-PID has serious oscillations even though it has the smallest IAEud. The disturbance
output of DRO-PID has no oscillation. DRO-PID still has good robustness and Ms locates in the
expected range of 1.2~2.0. From Figure 6, it can be seen that DRO-PID has better robustness than
DRO-PI and SIMC-PID in the view of Ms even though the phase margin of DRO-PID is the smallest
(ϕm = 63.9◦). The TV of DRO-PID is smaller than that of SIMC-PID and Panagopoulos-PID as shown
in Figure 5 and Table 3, which means DRO-PID can reduce the wear of actuators and is benefitting
from the long running time. Therefore, DRO-PID has an advantage in obtaining approving tracking
and disturbance rejection performance with the reasonable robustness constraint.



Processes 2019, 7, 713 14 of 31

Finally, the ramp reference signal is added to the closed system to test the control performance for
different input signals. The results are shown in Figures 7 and 8. The indexes are recorded in Table 4
(IAEsp and TVsp are recorded for the whole simulation). Note that the ramp set-point with a rate ±1/10
changes at 5 and 50 s, respectively. SIMC-PID and Panagopoulos-PID have larger overshoots (11.6%
and 10.1%) than that of DRO-PID and DRO-PI (0.03% and 1.0%) even though they have a faster tracking
speed. DRO-PID has the smallest Ts as listed in Table 4. Besides, IAEsp of DRO-PID is smaller than
that of DRO-PI and SIMC-PID, and is larger than that of Panagopoulos-PID. In general, DRO-PID can
obtain satisfactory control performance with a small overshoot, IAEsp and Ts for different input signals.
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Table 4. The indices of Example 1 with different controllers for the ramp input.

Controllers Ts/s IAEsp TVsp

DRO-PID 15.95 8.43 2.07
DRO-PI 15.95 9.49 2.16

SIMC-PID 26.47 8.66 2.80
Panagopoulos-PID 18.75 6.27 2.90
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5.2. Example 2

Consider a process which has one right half plane zero depicted as,

Gp(s) =
1− 2s

(s + 1)3 . (41)

The approximate FOPDT is obtained for DRO tuning,

G̃p(s) =
1

1.822s + 1
e−2.8s, (42)

where the value of τ is 0.606 and we have Rdm = 1.8852 for the process in Equation (41) considering
that its approximate FOPDT has τ ≥ 0.3 based on Table 1. Note that the approximate FOPDT in
Equation (42) is obtained based on the getfopdt function in [44]. Parameters of DRO-PID, DRO-PI,
SIMC-PID, and Panagopoulos-PID are listed in Table 5. Note that parameters of DRO-PI, SIMC-PID,
and Panagopoulos-PID are not tuned by the authors of this paper but are tuned by the authors
in [6,34,37], respectively.

Table 5. Parameters of different controllers for Example 2.

Controllers Parameters of Different Controllers

DRO-PID b = 0.6, c = 1 *, kp = 0.5779, ki = 0.2301, kd = 0.3644.
DRO-PI b = 1 *, kp = 0.3376, ki= 0.1858. [34]

SIMC-PID b = 1, c = 1 *, kp = 0.3, ki = 0.2, kd = 0.3. [6]
Panagopoulos-PID b = 0.6 *, kp = 0.542, ki = 0.2618, kd = 0.4282. [37]

* The prefilter is F(s) =
bTis+1
Tis+1 for both DRO-PI and Panagopoulos-PID. SIMC-PID has the same prefilter with

DRO-PID as depicted in Equation (3).

Output responses and the corresponding control signals of Example 2 are shown in
Figures 9 and 10, respectively. Note that the step set-point and input disturbance are added to
the system at 5 and 50 s, respectively. Ts, IAEsp, TVsp, IAEud, TVud, and Ms are all recorded in Table 6.
Besides, the Nyquist diagram of the open-loop system with different controllers is shown in Figure 11
where the unit circle centered at the origin and the circle centered at the (−1, 0) with the radius 1/Ms

are also given.
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smallest overshoot and settling time for the approximate FOPDT model in Equation (42). DRO-PID 
has good robustness and DRO-PID has a smaller sM  than that of DRO-PI and Panagopoulos-PID. 
Figures 9 and 10 are the responses with the process model in Equation (41) with these designed 
controllers.  

This example can illustrate that DRO-PID designed based on the FOPDT model is also suitable 
for these processes with one right half plane zero even though the IE index of DRO-PID has no 
advantage which is caused by the inverse response of the non-minimum phase plant. The IE index is 
applied to optimize the parameters of DRO-PID by minimizing IE and obtaining the maximum ik  
based on the approximate FOPDT model in this paper. The IAE index, the widely used measure, is 
applied to measure the performance of the closed-loop systems. Note that the design method for the 
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Table 6. The indices of Example 2 with different controllers.

Controllers Ts/s IAEsp TVsp IAEud TVud Ms

DRO-PID 8.49 5.48 1.06 5.63 1.78 2.01
DRO-PI 14.81 6.44 1.33 7.36 1.63 2.02

SIMC-PID 18.76 7.14 1.39 7.71 1.70 1.73
Panagopoulos-PID 14.41 6.16 1.43 6.15 2.02 2.00
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DRO-PID has the smallest overshoot (1.5%) while other three controllers have a large overshoot
that are all larger than 14% as shown in Figure 9. DRO-PID has the smallest Ts as listed in Table 6.
DRO-PID also has an obvious advantage in the disturbance rejection, and IAEud in Table 6 verifies
this point. Besides, the TVsp of DRO-PID is the smallest even though TVud of DRO-PID is larger than
DRO-PI and SIMC-PID. Even though values of Ms for DRO-PID, DRO-PI, and Panagopoulos-PID are
close to the upper boundary of the expected range, these controllers still can ensure a good robustness.
DRO-PID has a similar gain margin with that of DRO-PI and Panagopoulos-PID, and SIMC-PID has a
largest gain margin as shown in Figure 11. The phase margin of DRO-PID is the smallest (ϕm = 58.9◦).
Even though the robustness of DRO-PID has no advantage over the comparative controller, the control
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performance of DRO-PID has obvious advantages over other controllers as shown in Figure 9 and
Table 6.

Discussion: The IE indexes (for tracking performance) of DRO-PID, DRO-PI, SIMC-PID,
and Panagopoulos-PID are 5.35, 5.38, 5.00, and 4.65, respectively, as shown in Figure 9. All of them have
typical inverse responses caused by the right half plane zero. In fact, these four controllers are designed
based on the approximate FOPDT in Equation (42) and DRO-PID obtains the minimum IE index based
on the model in Equation (42) as shown in the Supplementary Materials. The Supplementary Materials
contains the responses of the approximate FOPDT model in Equation (42) with the fixed parameters in
Table 5. The relevant indexes are recorded and the Nyquist diagram of the open-loop system with
different controllers are also given in the Supplementary Materials. We can know that DRO-PID has
the best tracking and disturbance rejection performance with the smallest overshoot and settling time
for the approximate FOPDT model in Equation (42). DRO-PID has good robustness and DRO-PID has
a smaller Ms than that of DRO-PI and Panagopoulos-PID. Figures 9 and 10 are the responses with the
process model in Equation (41) with these designed controllers.

This example can illustrate that DRO-PID designed based on the FOPDT model is also suitable
for these processes with one right half plane zero even though the IE index of DRO-PID has no
advantage which is caused by the inverse response of the non-minimum phase plant. The IE index
is applied to optimize the parameters of DRO-PID by minimizing IE and obtaining the maximum
ki based on the approximate FOPDT model in this paper. The IAE index, the widely used measure,
is applied to measure the performance of the closed-loop systems. Note that the design method for
the non-minimum phase processes may be not be rigorous as discussed above where the IE indexes
(for tracking performance) of DRO-PID is not the smallest. However, the successful application of
the proposed DRO-PID designed for the non-minimum phase plant expands the controlled processes
which can be approximated into FOPDT models.

5.3. Example 3

Consider an IPTD process whose transfer function depicted as,

Gp(s) =
0.2
s

e−7.4s. (43)

The approximate FOPDT is obtained for DRO tuning,

G̃p(s) =
200

1000s + 1
e−7.4s, (44)

where the value of τ is 0.0073 and we have Rdm = 1.8868 for the process in Equation (43) considering
that its approximate FOPDT has τ ≤ 0.05. Note that the approximate method to obtain the FOPDT
in Equation (44) is introduced in [8] and the FOPDT system is used to design the controller in [34].
The parameters of DRO-PID, DRO-PI, SIMC-PID, and Panagopoulos-PID are listed in Table 7. Note
that the parameters of DRO-PI, SIMC-PID, and Panagopoulos-PID are not tuned by the authors of this
paper but are tuned by the authors in [6,34,37], respectively.

Table 7. Parameters of different controllers for Example 3.

Controllers Parameters of Different Controllers

DRO-PID b = 0.6, c = 1 *, kp = 0.3716, ki = 0.0079, kd = 1.5.
DRO-PI b = 0.6 *, kp = 0.290, ki= 0.0075. [34]

SIMC-PID b = 1, c = 1 *, kp = 0.3378, ki = 0.0057, kd = 1.5. [6]
Panagopoulos-PID b = 1 *, kp = 0.293, ki = 0.0056, kd = 1.409. [37]

* The prefilter is F(s) =
bTis+1
Tis+1 for both DRO-PI and Panagopoulos-PID. SIMC-PID has the same prefilter with

DRO-PID as depicted in Equation (3).
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Output responses and the corresponding control signals of Example 3 are shown in
Figures 12 and 13, respectively. Note that the step set-point and input disturbance are added to
the system at 10 and 350 s, respectively. All indices are listed in Table 8 and the Nyquist diagram of the
open-loop system with different controllers is also shown in Figure 14 where the unit circle centered at
the origin and the circle centered at the (−1, 0) with the radius 1/Ms are also given.

Again, we can know that DRO-PID has the smallest overshoot (3%) while other three controllers
have a large overshoot (≥9%) as shown in Figure 12. DRO-PID has a smaller Ts than that of SIMC-PID
and Panagopoulos-PID even though the settling time of DRO-PID is larger than that of DRO-PI. IAEsp

in Table 8 shows the advantage of DRO-PID in the tracking performance. Besides, DRO-PID has an
obvious advantage in the disturbance rejection compared with other three controllers, and IAEud

in Table 8 also verifies this conclusion. However, the TVsp and TVud of DRO-PID has no obvious
advantage. All values of Ms locates in the expected range of 1.2~2.0 and can guarantee good robustness.
DRO-PID has similar robustness with SIMC-PID. They have a smaller Ms than DRO-PI. From Figure 14,
it can be seen that DRO-PID has a larger phase margin than SIMC-PID and Panagopoulos-PID.
Therefore, DRO-PID has the best control performance with good robustness as shown in Figure 12 and
Table 8.
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Generally, the proposed DRO-PID can obtain the better tracking and disturbance rejection
performance with the desired robustness contrasts based on the simulation results of Examples 1–3.
The main reason is that the DRO-PID is designed by minimizing the IE index as discussed in Section 4.
Therefore, the DRO-PID has a larger ki which can ensure the closed-loop system has a stronger
disturbance rejection ability. Then the tracking performance can be adjusted by the set-point prefilter.
With the tuning procedure and the set of the recommended parameters, the DRO-PID can obtain the
better control performance than other comparative PID controllers.

Table 8. The indices of Example 3 with different controllers.

Controllers Ts/s IAEsp TVsp IAEud TVud Ms

DRO-PID 117.49 23.04 0.83 128.06 1.58 1.58
DRO-PI 100.31 25.04 0.49 138.65 1.76 1.68

SIMC-PID 160.29 31.29 0.85 175.27 1.52 1.54
Panagopoulos-PID 175.71 35.88 0.38 184.39 1.57 1.47
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5.4. Discussion about the Implementation of the Derivative

Based on the simulation results of these three examples, the superiority of the proposed DRO-PID
is verified. Note that the ideal derivative is applied in above theoretical analysis and simulations.
However, the high-frequency measurement noise always exists in practical systems. The ideal
derivative can amplify the high-frequency noise greatly which can generate large variations of the
control signal. To weaken the adverse influence, a filtered derivative is used to replace the ideal
derivative for the practical applications and the PID controller with the filtered derivative can be
depicted by

Gc(s) = kp

(
1 +

1
Tis

+
Tds

1 + Tds/N

)
, (45)

where N is the filter coefficient and the values of N are 2–20 [8]. With the filtered derivative, the
variations of the control signal can be reduced reasonably. To explain this better, Example 1 depicted in
Equation (39) is taken an example and the high-frequency measurement noise is added to the system
output. The filter coefficient N is set as 20 and 2, and the parameters of DRO-PID are the same with
that in Table 2. Besides, the step set-point and input disturbance are added to the system at 5 and 40 s,
respectively. Note that the measurement noise is generated by MATLAB/SIMULINK “band-limited
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white noise” with power = 0.00001, sample time = 0.01 s, and seed = [23341]. The results of the
high-frequency attenuation ability can be seen in Figures 15 and 16.

1 
 

 

 

Figure 15. The output response for Example 1 with high-frequency measurement noise.
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It can be seen that the variations of the control signal was reduced greatly as shown in Figure 16
even though the filtered derivative has slight influence on the control performance. In addition, a smaller
N can result in a smaller fluctuation range and a strong reduction capability of the measurement noise.
However, the theoretical ranges of kp and ki with the filtered derivative in Theorem 1 may be different
considering that the DRO-PID is proposed and analyzed for the ideal derivative. This should be
discussed in future work. Even though DRO-PID is proposed and analyzed for the ideal derivative, the
satisfactory control performance still can be obtained with the filtered derivative and other unchanged
parameters. Therefore, the PID controller depicted in Equation (45) can also be designed by the
proposed method and is recommended for practical applications to weaken the influence of the
high-frequency measurement noise. What is more, how to choose a reasonable filter coefficient
depends on the balance between the reduction capability of the measurement noise and the control



Processes 2019, 7, 713 21 of 31

requirements. A smaller filter coefficient means a good reduction capability and the slight decrease in
control performance, and vice versa.

5.5. Discussion about the Relationship between Ms and Rdm

Based on deductions in Sections 3 and 4 and simulations in Section 5, the relationship between Ms

and Rdm are discussed in this subsection. As discussion in Section 2.2, Ms and Rdm are defined in the
closed-loop form and open loop form, respectively. To obtain the maximum value of the sensitivity
function, all frequency should be traversed over the whole frequency range, which relies on the
numerical calculation. The calculation of Rdm relies on the phase margin, the corresponding gain,
and the delay time of the FOPDT model. We cannot obtain the theoretical relation between Ms and
Rdm directly and this can be studied in detail in future work. However, the relationship between Ms

and Rdm can be presented based on illustrative examples by the numerical calculation.
Consider the lag-dominated process in Equation (31), the stable region of the PID controller (kp

and ki with kd = 0.2 T
K = 3.8), the parameter pair

{
kp, ki

}
with the same kd and Rdm = 1.40, and the

contour of Ms = 1.64 based on the method proposed in [11] are obtained as shown in Figure 17. It is
surprising to find that the region of kp and ki decided by the delay margin Rdm = 1.40 has a similar
region with that of Ms = 1.64. This means that Ms and Rdm can offer the similar parameter ranges.
In other words, it implies that the Rdm can represent a reasonable robustness region even though the
theoretical relation between Ms and Rdm cannot be given quantitatively.Processes 2019, 7, x FOR PEER REVIEW 23 of 33 
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Based on the tuning procedure in Section 4, the recommended ranges of kg and Rdm are [0.1, 0.5]
and [1.7, 2.1], respectively. Therefore, the simulation is carried out within these ranges. Figure 18
shows the distribution of Ms with different kg and Rdm for Examples 1 and 3, respectively. Obviously,
Ms of the closed-loop system locates in the reasonable range [1.2, 2.0] when parameters of PID controller
are tuned based on the proposed DRO tuning as discussed in Section 4. The simulation results verify
the effectiveness of the delay margin when it is used to design the PID controller directly as a desired
robustness measure.
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Generally, the proposed DRO tuning can ensure satisfactory robustness. Note that the theoretical
relation between the maximum sensitivity function Ms and the delay margin Rdm is not clear currently
and should be studied in detail in the later work.

Besides, the controlled plants of three examples presented in Sections 5.1–5.3 are a fourth-order
process, a process of one right half plane, and an IPTD process, respectively. The parameters of the
proposed PID controller are obtained based on the tuning procedure in Section 4 and the approximate
FOPDT models. The superiority of the proposed DRO tuning is verified to obtain satisfactory control
performance with good robustness. Besides, the superiority of the proposed DRO tuning for FOPDT
model is also verified as shown in the Supplementary Materials. These results illustrate that the
proposed DRO tuning has an advantage over other comparative tuning rules for not only FOPDT
processes but also other processes which can be approximated into FOPDT models.

6. Conclusions

This paper proposed the relative delay margin for the proportional-integral-derivative
controller design. The relative delay margin can measure the desired robustness of the system
and can be used to tune the proportional-integral-derivative parameters directly. Firstly, the
proportional-integral-derivative tuning formula was analytically derived in terms of the numerator and
denominator of relative delay margin. Based on the proportional-integral-derivative tuning formula,
stability regions of the proportional-integral-derivative parameters kp and ki with a given kd were
determined in a simple way. A theorem about the ranges of kp and ki was given and the proof was also
offered. Then the delay robustness-constrained optimization for the proportional-integral-derivative
controller was formulated and the tuning method was also summarized as discussed in Section 4.
A set of recommended parameters was also offered for tuning parameters easily and conveniently. The
simulations were carried out for a fourth-order process, a process with one right half plane zero, and an
integral process where the proposed proportional-integral-derivative controller are designed based on
the recommended parameters. Besides, the comparative controllers (Skogestad internal model control,
proportional-integral-derivative controller tuned by Panagopoulos, and PI controller tuned by delay
robustness-constrained optimization) are designed by the authors in the relevant literature. Based on
the simulation results, the proposed proportional-integral-derivative controller tuned by the delay
robustness-constrained optimization can enhance the tracking performance and disturbance rejection
performance simultaneously with the desired robustness constraints. For example, the integrated
absolute errors of the proposed proportional-integral-derivative controller for the tracking performance
and disturbance rejection performance are less than 91.3% and 91.7% of the integrated absolute errors
of other comparative controllers in Example 3, respectively. This shows great potential in industrial
applications. Besides, the proportional-integral-derivative controller with filtered derivative designed
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by the proposed method is recommended for practical applications to weaken the adverse influence of
the high-frequency measurement noise.

The main contributions of this paper can be summarized as:

(1) The PID tuning formula is analytically derived in terms of the relative delay margin for first order
plus dead-time systems.

(2) A theorem about the ranges of kp and ki is given and the proof is also offered.
(3) The design method based on the delay robustness-constrained optimization for the

proportional-integral-derivative controller is given and a set of recommended parameters is
offered for the ease of use.

(4) Illustrative examples are carried out and results verify the superiority of the proposed
proportional-integral-derivative controller design method.

The value of kd decided by kd = kg
T
K may be a limitation of this paper and more optimized

approaches of the choice of kd should be studied in detail to improve the control performance in later
work. Besides, the theoretical relation between Ms and Rdm also should be another interesting topic in
future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/10/713/s1,
Figure S1: The distribution of ki with different kg and rdm (left: τ = 0.05; right: τ = 0.3). Table S1: The indices of
the approximate FOPDT model in Equation (44) with different controllers.
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Nomenclature

The symbols used in this paper are listed in this section.

gm The gain margin
Ms The maximum sensitivity function
ωgc The gain crossover frequency
ki The integral gain of the PID controller
Gp(s) The transfer function of the controlled plant
F(s) The set-point prefilter
K The process gain
L The delay time
Td The derivative time of the PID controller
y The process output
c The set-point weighting factor
Y(s) The Laplace transforms of the output
D(s) The Laplace transforms of the input disturbance
Gdy(s) The transfer function from the input disturbance to the output
Gl(s) The open loop transfer function
s The Laplacian operator
τ The normalized time delay
TV The total variation of control signal
G̃p(s) The approximate FOPDT model
ϕm The phase margin
Rdm The relative delay margin
kp The proportional gain of the PID controller

http://www.mdpi.com/2227-9717/7/10/713/s1
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kd The derivative gain of the PID controller
Gc(s) The transfer function of the PID controller
H(s) The feedback controller on the feedback path
T The time constant
Ti The integral time of the PID controller
r The reference signal
d The input disturbance
b The set-point weighting factor
R(s) The Laplace transforms of the reference
Gry(s) The transfer function from the reference to the output
IE The integral of the error
a The dimensionless parameter, a = ωL
s̃ s̃ = Ls
IAE The integrated absolute error
Ts The settling time
N The filter coefficient and

Appendix A

In this section, the reason that the proposed design method is not suitable for typical second order
models is discussed.

Consider a typical second order plant,

Gp(s) =
K

T1s2 + T2s + 1
e−Ls. (A1)

The loop transfer function becomes Equation (A2) based on the plant in Equation (A1) and the
PID controller,

Gl(iω) =
(
kp +

ki
iω

+ kdiω
)(

K
1 + iT2ω− T1ω2 e−iωL

)
. (A2)

Equation (A2) can be expanded in a rectangular form,

Gl(iω) = XR + iYI, (A3)

where

XR = Kkp

(
1− T1ω2

)
cos(Lω) − T2ω sin(Lω)

T2
2ω

2 + (1− T1ω2)2 −K
(
ki − kdω

2
) (1− T1ω2

)
sin(Lω) + T2ω cos(Lω)

ω
(
T2

2ω
2 + (1− T1ω2)2) , (A4)

and

YI = −Kkp

(
1− T1ω2

)
sin(Lω) + T2ω cos(Lω)

T2
2ω

2 + (1− T1ω2)2 −K
(
ki − kdω

2
) (1− T1ω2

)
cos(Lω) − T2ω sin(Lω)

ω
(
T2

2ω
2 + (1− T1ω2)2) . (A5)

Note that the real and imaginary parts are both linear combinations of kp, ki and kd. The Nyquist
plot of the loop transfer function will pass through the selected point, which is denoted as,

xo = − cos(ϕm) − i sin(ϕm), (A6)

and the corresponding gain crossover frequency is ωgc.
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By equaling Equation (A3) and Equation (A6), we can obtain,
KkpL2 (L2

−T1a2) cos(a)−T2aL sin(a)

T2
2a2L2+(L2−T1a2)2 − L

(
kiL2
− kda2

) (L2
−T1a2) sin(a)+T2aL cos(a)

a
(
T2

2a2L2+(L2−T1a2)2) = − cos(ϕm) (A7.1)

−KkpL2 L((L2
−T1a2) sin(a)+T2aL cos(a))
T2

2a2L2+(L2−T1a2)2 −KL
(
kiL2
− kda2

) (L2
−T1a2) cos(a)−T2aL sin(a)

a
(
T2

2a2L2+(L2−T1a2)2) = − sin(ϕm) (A7.2)
, (A7)

where a dimensionless parameter is used as a = ωL to simplify the formula derivation.
By a simple transformation (we can obtain functions by Equation (A7.1) ×

cos(a)−Equation (A7.2) × sin(a) and Equation (A7.1) × sin(a)+Equation (A7.2) × cos(a), and
then solve the obtained linear functions), the controller parameters can be obtained as follows, kpK = T2

L a sin(ϕm + a) −
(
1− T1a2

L2

)
cos(ϕm + a)

K
(
kiL2
− kda2

)
= aL

(
1− T1a2

L2

)
sin(ϕm + a) + Ta2 cos(ϕm + a)

. (A8)

From Equation (A8), the expression of ki can be obtained as follows,

ki =
aL

(
1− T1a2

L2

)
sin(ϕm + a) + Ta2 cos(ϕm + a)

KL2 +
kda2

L2 . (A9)

We can obtain the derivative of kp in respect to a as follows,

dkp

da
=

1
KL2

[
(T2L + 2T1)a cos(a) +

(
T2L + L2

− T1a2
)

sin(a)
]
. (A10)

Then we can obtain the following expression

d2kp

da2 =
1

KL2

[(
2T2L + 2T1 + L2

− T1a2
)

cos(z) − a(T2L + 4T1) sin(a)
]
. (A11)

Based on the Equations (A10) and (A11), we can know that the sign of
dkp
da depends on the value of

T2, T1, and L, which means that the different second order plants may have different results about the

sign of
dkp
da . Therefore, the upper limit of ki cannot be obtain based on the analytical derivations.

Appendix B

In this part, the deductions about the stability regions with time scaling and dimensionless
variables, as used in [41], are given.

Based on the process model in Equation (1) and the PID controller in Equation (4), the process
model with time scaling and the PID controller with dimensionless variables can be depicted as,

Gpo(so) =
1

so + 1
e−θso , (A12)

and

Gco(so) = kpo

(
1 +

1
Tioso

+ Tdoso

)
= kpo +

kio
so

+ kdoso, (A13)

where the operator “s” is replaced by so = Ts. Correspondingly, we have θ = L/T, kpo = Kkp,
Tio = Ti/T, Tdo = Td/T, kio = KTki, kdo = kdK/T, and ωo = ωT [41]. Note that the definition of the
delay margin in Equation (9) becomes,

Rdm =
ϕm

ωgcoθ
, (A14)
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which is equivalent to Equation (9). The loop transfer function with a rectangular form can be depicted
as,

Glo(iωo) = XR + iYI, (A15)

where

XR = kpo
cos(θωo) −ω sin(θωo)

ω2
o + 1

−

(
kio − kdoω

2
o

)sin(θωo) +ωo cos(θωo)

ωo
(
ω2

o + 1
) , (A16)

and

YI = −kpo
sin(θωo) +ωo cos(θωo)

ω2
o + 1

−

(
kio − kdoω

2
)cos(θωo) −ωo sin(θωo)

ωo
(
ω2

o + 1
) . (A17)

Note that the real and imaginary parts are both linear combinations of kpo, kio, and kdo. The Nyquist
plot of the loop transfer function should pass through the selected point, which is denoted as,

xo = − cos(ϕm) − i sin(ϕm), (A18)

and the corresponding gain crossover frequency is ωgco.
By equaling Equation (A15) and Equation (A18), we can obtain, kpo

θ(θ cos(a)−a sin(a))
a2+θ2 −

(
kioθ

2
− kdoa2

)
θ sin(a)+a cos(a)

a(a2+θ2)
= − cos(ϕm)

−kpo
θ(θ sin(a)+a cos(a))

a2+θ2 −

(
kioθ

2
− kdoa2

)
θ cos(a)−a sin(a)

a(a2+θ2)
= − sin(ϕm)

, (A19)

where a dimensionless parameter is used as a = ωoθ to simplify the formula derivation.
By a simple transformation, the controller parameters can be obtained as follows, kpo =

1
θa sin(ϕm + a) − cos(ϕm + a)(

kioθ
2
− kdoa2

)
= aθ sin(ϕm + a) + a2 cos(ϕm + a)

. (A20)

If kio is fixed, the integral time of the PID controller is,

kpo

kioθ
=

Tio
θ

=
a sin(ϕm + a) − θ cos(ϕm + a)

aθ sin(ϕm + a) + a2 cos(ϕm + a) + kdoa2 . (A21)

Obviously, Equations (A20) and (A21) offer an elegant and simple tuning formula, which will be
applied to the PID tuning directly in the next section.

From Equation (A20), the expression of kio can be obtained as follows,

kio =
aθ sin(ϕm + a) + a2 cos(ϕm + a)

θ2 +
kdoa2

θ2 . (A22)

where kio is determined by three parts from Equation (A22). kio is mainly determined by a2 cos(ϕm + a)
for lag-dominant processes (large θ) and mainly determined by aθ sin(ϕm + a) for delay-dominant
processes (small θ) with a given kdo.

Here, the Theorem A1 about stability regions are also given directly as follows.

Theorem A1. The range of kpo for the given FOPDT plant in Equation (A12) can be stabilized with a PID
controller is given by

− 1 < kpo < [θa1 sin(a1) − cos(a1)], (A23)

where a1 is the root of the following equation,

tan(a1) = −
1

1 + θ
a1, (A24)
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and a1 is in the interval of
(
π
2 ,π

)
.

For a given kpo locating in the range of Equation (A24) and a given kdo, the range of kio guaranteeing
the stability of the closed-loop system is given by

0 ≤ kio < max
{
α
θ

[
sin(α) +

1
θ
α cos(α)

]
+

kdoα
2

θ2

}
, (A25)

where the maximum value of α is the root of the following equation,

kpo −
1
θ
α sin(α) + cos(α) = 0, (A26)

and α is in the interval of (0, a1).
Note that the Theorem A1 is equivalent to the Theorem 1 and the Theorem 1 can be obtained

by the Theorem A1 when we substitute Kkp, KTki, kdK/T, and L/T for kpo, kio, kdo, and θ, respectively.
The proof is omitted here considering that the proof is similar with that of the Theorem 1.

Besides, the deductions about the PID tuning with constraints on relative delay margin is also
carried out based on the time scaling and dimensionless variables.

The loop transfer function with the process model in Equation (A12) and the feedback controller
in Equation (A13) can be obtained,

GLo(so) =
[

1
θa sin(ϕm + a) − cos(ϕm + a)+

a sin(ϕm+a)+ 1
θ a2 cos(ϕm+a)

so
+

kdoa2

θso
+

kdo
θ so

]
1

1+ 1
θ so

e−so . (A27)

To better measure the lag/delay ratio for the process model, a normalized time delay is defined
as [34],

τ =
θ

θ+ 1
, (A28)

where the range of τ is [0, 1). A small τ means a lag-dominant process and a large τ means a
delay-dominant process. The tuning of the PID controller with the purpose of obtaining the optimal
disturbance rejection ability is analyzed as follows.

As the analysis above and Section 2.2, the PID tuning with constraints on the relative delay margin
can be formulated as,  max aθ sin(ϕm+a)+a2 cos(ϕm+a)

θ2 +
kdoa2

θ2

s.t. Rdm =
ϕm
a = rdm and a given kd,

where the objective function is a scaled integral gain in terms of ϕm, a, and kdo. rdm is the representative
of a desired robustness level and kdo is the desired value of the derivative gain. To solve the objective
function, the derivative function with respect to a is obtained as follows,

d
da

[
aθ sin(a(rdm + 1)) + a2 cos(a(rdm + 1))

θ2 +
kdoa2

θ2

]
= 0, (A29)

which can be further transformed to an algebraic equation,

[sin(a(rdm + 1)) + a cos(a(rdm + 1))(rdm + 1)

+
2a cos(a(rdm+1))

θ −
a2 sin(a(rdm+1))(rdm+1)

θ

]
+

2kdoa
θ = 0

(A30)

where a is in the range of (0, a1), and Equation (A30) can be solved numerically.
Then we can summarize the design procedure based on the discussion above as follows:

(1) The approximate FOPDT model (K, T, and L) is obtained by various approximation methods and
θ in Equation (A12) can be obtained
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(2) kdo and a desired robustness level rdm are fixed. a can be obtained by solving Equation (A26).
(3) kpo and kio are calculated by Equation (A20). The values of kp, ki, and kd can be obtained. Adjust

the prefilter parameters (b and c) manually to obtain the satisfactory tracking performance.

Appendix C

The proposed design method focuses on the response to input disturbance by maximizing ki,
which is the primary concern. However, it is also important to have good response to the set-point.
The transfer function from the set-point to the output can be given by

Y(s)
R(s)

=
cTiTds2 + bTis + 1
TiTds2 + Tis + 1

Gc(s)Gp(s)

1 + Gc(s)Gp(s)
= Gry(s). (A31)

In order to have a small overshoot in set-point response, set-point weighting factors b and c should
be determined so that Msp = max

ω

∣∣∣Gry(iω)
∣∣∣ is close to one [11]. It follows from Equation (A31) that

Msp ≤Mp when 0 ≤ b ≤ 1 and 0 ≤ c ≤ 1 [8], where Mp is defined by

Mp = max
ω

∣∣∣P(iω)∣∣∣ = max
ω

∣∣∣∣∣∣ Gc(iω)Gp(iω)

1 + Gc(iω)Gp(iω)

∣∣∣∣∣∣. (A32)

Now the influence of different b and c on the tracking performance in frequency-domain is
analyzed by a simulation. Still consider Example 1, and the response of Gry(s) in frequency-domain
with different b and c can be obtained with unchanged other parameters as shown in Figure A1.
The maximum value of

∣∣∣Gry(iω)
∣∣∣ is larger than one when b > 1 or c > 1. When b = 1 and c = 1,

the response of Gry(s) is same with that of P(s) because F(s) = 1. Therefore, the recommended ranges
of b and c are both [0, 1] as depicted in [8].

Note that different b and c locating in the range [0, 1] can result in different tracking performance
as shown in Figures A2 and A3. The values of b and c have no influence on the disturbance rejection
performance but have obvious influence on the tracking performance. Note that b and c should be
adjusted manually for the proposed DRO-PID, and the recommended parameters in Table 1 can be
used directly which are obtained based on many simulation results.
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