
processes

Article

Model Prediction and Optimization of Waste Lube
Oil Treated with Natural Clay

Haitham Osman

Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61421,
Saudi Arabia; haman@kku.edu.sa

Received: 19 August 2019; Accepted: 2 October 2019; Published: 11 October 2019
����������
�������

Abstract: In this work, used lube oil was treated using natural acid-free clay. Clay was added
at different amounts (5, 10, and 20 g) to 100 mL of waste engine oil at various temperatures (250,
350, 400, and 450 ◦C) and mixed at a speed of 800 rpm for 30 min. After settling and separation,
the treated oil was diluted with kerosene before being examined using a Ultraviolet–visible (UV)
spectrophotometer. In order to achieve cost-effective recycling, this process is modeled using the
response surface method (RSM). Five regression models (linear, quadratic, Two Factor Interactions
(2FI), cubic, and reduced-order quadratic model) were developed, then tested, and examined by
calculating the statistical performance indicators (R2, R2

adj, Akaike’s Information Criterion corrected
(AICc), Bayesian Information Criterion (BIC), and Root Mean Square Error (RMSE)). The results
obtained reveal that the modified quadratic model outperforms the rest of the models in terms of
the low value of RMSE, the lowest AICc, lowest BIC, and the highest R2 and R2

adj. The developed
modified quadratic model is optimized successfully to predict optimum operation conditions. Results
show that optimum operation conditions are at the minimum area under the curve for UV absorption
at 223.358; this can be achieved with a process temperature of 266.246 ◦C and clay quantity of 5.331 g.
This model agreed with experimental data regardless of the effectiveness of red clay in the therapy of
lube oil.

Keywords: lube oil treatment; UV-VIS spectrophotometer; response surface method;
ANOVA statistical test; process optimization

1. Introduction

Lubricants generated by the crude oil refining sector denote approximately 1.2% of annual
petroleum consumption. At a worldwide level, this value corresponds to more than 40 million tonnes
of base oil [1]. Refining of crude oil produces about 67% of base lube oil while recycling of used oil
can produce up to 95% of base oil. These lubricating oils mainly consist of complicated mixtures of
isoalkanes with slightly longer branches, and with monocycloalkanes and monoaramatics having
several short branches on the ring [2]. The chemical structure of the lubricating oil differs considerably
depending on the kinds and percentages of additives; these are also dependent on the applications of
the oil [3].

During application, lubricating oils tend to degrade leading to the deterioration of various
important features, such as rheological and film-forming properties. Rheological properties are
considered to be among the most important degradable properties [4]. Waste lubricant oil disposal
causes serious environmental damage [5]. Unburned lubricating oil was found to have a high
contribution to particulate emissions [6]. Therefore, waste engine oil has gained significant attention
from researchers for a long time, which has resulted in various methods for the treatment and recovery
of base oil being developed. Over the years, the removal of waste lubricating oil contaminants using
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solvents has been studied [7–11]; the use of clay as a bleaching agent, especially bentonite, has been
mentioned in the literature [12].

Traditional treatment with clay-acid utilizes concentrated sulfuric acid to remove asphalt
compounds and generates highly toxic acid products. Waste oils are originally handled with natural
polymers to remove carbonic elements in the regeneration technique using acid-free clays. The oil is
then subjected to vacuum distillation and clay treatment in an appropriate amount to accomplish the
necessary product coloration [13,14]. In addition to the high expense due to the amount of clay needed,
the recovered oils obtained through this process still have relatively high metal percentages [15].
The use of activated carbon has also been reported in the literature and the results showed a highly
effective waste engine oil treatment by polycyclic aromatic hydrocarbon (PAH) removal [16]. Process
optimization and oil property improvement achieved through acid modification of clays is now
generating a renewed interest by researchers in recycling waste engine oil [17,18].

In this paper, the quality of the obtained oil after clay treatment at various conditions is assessed
using UV spectrophotometer. The variation in light intensity due to absorption is determined by the
amount of absorbance, according to the Beer–Lambert relationship. The Beer–Lambert relationship
says that there is a logarithmic dependency between the transmission of light through a substance
and the product of the substance’s absorption coefficient and the distance the light passes or travels
through the material i.e., the length of the route “l.”

A = −logT = log
I0

I
= a·c·b (1)

where A is the absorbance, T is the transmission defined as I/I0, I is the incident luminance, Io is
the transmitted luminous intensity, a is the absorbing type absorbance, c is the absorbing type
concentration (g/L), and b is the trajectory length of the luminous. The chemicals dissolved in oil can
be characterized by the transmission of certain wavelengths to a compound and by the measurement
of light intensity [19].

In the process industry, if high efficiency is to be achieved, the most advanced process control
system needs precise models. Most chemical processes are nonlinear in nature, making the development
of precise models difficult [20,21]. Different factors, ranging from model nonlinearity to dimensionality
and the data sampling method to internal parameters are considerably influenced when examining the
accuracy of the modeling technique [22].

The scope of this paper is to develop a prediction model for (Ultraviolet–visible) (UV-VIS)
spectrophotometer data for the lube oil treatment process, which can play an important role in
optimizing process operating conditions. A model capable of predicting experimental behavior
correctly has been pursued earnestly by various researchers over the years.

In many engineering aspects, such models can dramatically decrease time and operating costs.
The need for modeling the used lube recycling process using red clay under various operating
conditions emerged from the above mentioned reasons. The response surface models are among the
most recognized modeling techniques that are used widely [22–27]. Extensive surveys and reviews of
various modeling techniques and their applications are provided by [28–31].

2. Methodology

2.1. Experimental Methods

Fresh SAE (Society of Automotive Engineers) 20W-50 oil was introduced into an automotive
engine, which was then operated for 3500 km. The used oil was subsequently collected for treatment
and evaluation. Three liters were filtered and left for 48 h after and all settled particles were removed.
Then the natural red clay was washed with distilled water, dried, and then crushed and sieved with
a 200 µm mesh. Different quantities of clay (5, 10, and 20 g) was added to 100 mL of the waste engine
oil. Each set of flasks containing oil-clay mixture was then subjected to specific temperatures: 100, 250,
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350, and 450 ◦C with a constant mixing speed of 800 rpm for 3 h according to the method reported
in [32]. The mixtures were then left to cool naturally to room temperature and to allow the clay to
settle. Simple decantation was used to obtain most of the oil before the use of filtration. Samples
from the treated oil (4 mL) were then diluted using kerosene (1 L) before being tested using a UV
spectrophotometer. Kerosene was chosen because it is more suitable to mass spectrometric analysis as
reported in [33]. The UV results are shown in Figure 1; the complexity of the graph emerged to show
an effective way to optimize the operating conditions, which gave the best treatment.

Summary of UV spectrophotometer results is presented in Table 1. A range of wavelengths from
200 to 350 nm was defined and the area under the curve was noted for all the twelve tested samples.

Table 1. Absorbance area under the curve of the different samples.

Sample Temperature ◦C Concentration g/100 mL Abs. Area Under Curve from 200–300 nm

S1 250 5 224.66
S2 250 10 224.08
S3 250 20 225.21
S4 350 5 226.89
S5 350 10 227.51
S6 350 20 229.4
S7 400 5 228.39
S8 400 10 228.32
S9 400 20 235.62

S10 450 5 237.52
S11 450 10 239.38
S12 450 20 238.56

2.2. Modeling Techniques

Multiple regression models were used in this study based on the response surface method: (a)
linnear model, (b) 2 FI model, (c) quadratic model, (d) cubic model, (e) reduced term quadratic model.

Response Surface Methodology (RSM)

The response surface methodology came from the original work [23]. Their cooperation began
when solving the issue of determining optimum operating conditions for a particular chemical process.
The methodology of the response surface is used in many practical applications where the goal is to
identify the levels of design factors or variables that optimize a response. Despite its simplicity and
efficiency, RSM provides efficient and accurate solutions. It has therefore been applied effectively to
many engineering aspects [34–37].

Before implementing the RSM methodology, it is first essential to select an experimental design to
define which runs should be conducted in the studied experimental range [38].

For this purpose, there are some experimental matrices. Experimental designs can be used for
first-order models (e.g., factorial designs) if there is no curvature in the data set [38]. However, in order
to approximate a response function to experimental data which cannot be characterized by linear
functions, experimental designs for quadratic response surfaces, such as three-level factorial models,
Box–Behnken, central composite, and Doehlert designs should be used [39].

In this study, a three-level full factorial design is applied, the minimum number of experiments
required for this design can be calculated by the expression N = 3k, where N is the number of
experiments and k is the independent variable. Other designs, such as the Box–Behnken and central
composite design (CCD) are used more frequently for more than two factors because the full factorial
design needs more experimental runs than can normally be accommodated in practice [39].
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RSM is a higher-order polynomial that determines a best-fit polynomial of desired order developed
after applying an ANalysis Of VAriance ANOVA test to express the value of the variable Y (lube oil
absorbance, in this case) as a function of the independent variables (X1 and X2) as follows [27]:

Y = βo +
2∑

i=1

βiXi +
2∑

i=1

βiiX2
i +

2∑
j=1

2∑
i< j=1

βiiXiX j (2)

where β0, βi, and β ii, are the regression intercept constants and the notations X1 = A and X2 = B are the
independent variables, as shown in Table 2.

Table 2. Experimental design variables used for modeling the absorbance of treated lube oil.

Independent Variables Xn
Coded Levels

−1 0 1

X1: Temperature (◦C) A 250 362.5 450
X2: Concentration (g/L) B 5 11.66 20

2.3. Model Validation and Evaluation

R2 and error analyses were performed between the experimental and predicted data in the four
models to evaluate the goodness of the model fitting and prediction accuracy of the constructed models.
Many approaches for validation are stated in the literature are used for error analyses, some are listed
in [40].

In this paper, promising techniques that used the error as performance indices to measure the
model accuracy are introduced. There are a number of different measures of model accuracy. The first
two are the root mean square error (RMSE) and the R2 values.

In general, the larger the values of R2 and R2
adj, and the smaller the value of RMSE, the better

the fit. It is more appropriate to look at R2
adj in situations where the number of design variables is

large because R2 always increases as the number of terms in the model increases, while R2
adj actually

decreases if unnecessary terms are added to the model. Different techniques for statistical analysis
i.e., ANOVA test can be used to check an RSM model’s fitness, thus identifying the main effects of the
design variables. The major statistical parameters used for evaluating model fitness are the F statistic,
R, adjusted R2, and the root mean square error (RMSE) [27,41].

These parameters are not totally independent of each other and are calculated by:

2.3.1. Root Mean Square Error (RMSE)

In general terms, the lower the RMSE value, the better the fit. It could be calculated as:

RMSE =

√
SSE

n− p− 1
(3)

where p is the number of non-constant terms in the RSM model, SSE is the sum square error, and SST
is the total sum square. The calculations for SSE and SST are:

SSE =
n∑

i=1

( f i− f ′)2 (4)

SST =
n∑

i=1

(
f i− f

)2
(5)
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where fi is the measured function value at the i-th design point, fi is the calculated function value from
the I design point of the polynomial and f is the mean value of fi.

2.3.2. R2, R2
adj, and R2

pred

In situations where the number of design variables is large, it is more appropriate to look at R2
adj

because R2 always increases as the number of terms in the model increases:

R2 = 1−
SSE
SST

(6)

In fact, R2
adj reduces if the model is added to unnecessary terms:

R2
adj = 1− (1−R)

n− 1
n− p− 1

(7)

R2
pred is a measure of the percentage of variation described by the model in new data:

R2
pred = 1−

PRESS
SST

(8)

where Predicted Residual Error Sum of Squares PRESS is a measure of how each point in the design fit
the mode:

PRESS =
n∑

i=1

(e−i) (9)

e–i is a deletion residual computed by fitting a model without the i-th run then trying to predict
the i-th observation with the resulting model.

The adjusted R-squared and the predicted R-squared should be within 0.20 of each other.

2.3.3. AIC and BIC

AIC stands for Akaike’s information criterion for a small design. It is commonly used for validity
measurement within a cohort of nonlinear models and is often used for model selection. It is calculated
as follows:

AIC = 2p − 2ln(L) (10)

where p = number of parameters and ln(L) = maximum log-likelihood of the estimated model. The latter,
in the case of a nonlinear fit with normally distributed errors [42]. This is calculated by:

ln(L) = 0.5

−N

ln2π+ 1− lnN + ln
n∑

i=1

x2
i


 (11)

where x1, . . . , xn are the residuals from the nonlinear least-square fit and N = their number
For small sample sizes, AIC tends to choose models that have too many terms. The AIC corrected

(AICc) is used to overcome these issues by increasing the penalty on additional terms for smaller designs.

AICc = AIC +
2p(p = 1)
n− p− 1

(12)

where n = sample size and p = number of parameters.
Bayesian information criterion (BIC)
BIC is an alternate to AICc that performs better for larger designs. It is calculated by:

BIC = p ln (n) − 2 ln (L) (13)



Processes 2019, 7, 729 6 of 14

where p is the number of parameters, n = sample size, and L = maximum likelihood of the
estimated model.

2.3.4. Modeling Statistics

To compare predictive model terms several statistical indices can be used but are not limited to:

RMSE: Square root of the residual mean square. Consider this to be an estimate of the standard
deviation associated with the experiment.

Mean: Overall average of all the response data.
C.V.: (coefficient of variation) the standard deviation expressed as a percentage of the mean. It can

be calculated by dividing the standard deviation by the mean and multiplying by 100.
PRESS: (predicted residual error sum of squares) A measure of how the model fits each design point.

Adequate accuracy: this is the ratio of signal to noise. It compares the range of predicted values
at the design points with the average error of prediction. Ratios larger than 4 indicate adequate
discrimination in the model.

3. Results and Discussion

The UV absorbance values for the treated oil (S1–S12) differ substantially over a broad spectrum
of wavelengths, a comparative absorbance assessment is shown in Figure 1. This is due to the presence
of very complex mixtures of paraffinic, naphthenic, and aromatic hydrocarbon molecules in addition
to waste material [9]. As the kerosene is introduced to dilute samples, the viscosity of oil samples
becomes less. Consequently, the sample oil becomes optically more transparent. The UV spectrometer
data is modeled to optimize the process operation parameters

The model prediction is created using Design Expert 10 on Windows 7 with i5 8 Gigabite (GB) of
Read Access Memory (RAM) to assess the computational effectiveness and precision of the models
developed; the above performance evaluation features are recognized as excellent indices. The large
values of R2

adj and R2, as well as small values of RMSE, indicate good fitting for the models.

Processes 2019, 7, x FOR PEER REVIEW 6 of 14 

 

Adequate accuracy: this is the ratio of signal to noise. It compares the range of predicted values 
at the design points with the average error of prediction. Ratios larger than 4 indicate adequate 
discrimination in the model. 

3. Results and Discussion 

The UV absorbance values for the treated oil (S1–S12) differ substantially over a broad spectrum 
of wavelengths, a comparative absorbance assessment is shown in Figure 1. This is due to the 
presence of very complex mixtures of paraffinic, naphthenic, and aromatic hydrocarbon molecules 
in addition to waste material [9]. As the kerosene is introduced to dilute samples, the viscosity of oil 
samples becomes less. Consequently, the sample oil becomes optically more transparent. The UV 
spectrometer data is modeled to optimize the process operation parameters 

The model prediction is created using Design Expert 10 on Windows 7 with i5 8 Gigabite (GB) 
of Read Access Memory (RAM) to assess the computational effectiveness and precision of the models 
developed; the above performance evaluation features are recognized as excellent indices. The large 
values of R2adj and R2, as well as small values of RMSE, indicate good fitting for the models. 

 
Figure 1. The absorbance of treated oil. 

3.1. Modeling Experimental Data Using RSM 

Five models were compared together: linear model, quadratic model, cubic model, and Two 
Factor Interactions Model (2FI model). 

3.1.1. Linear Model 

When applying the developed model using the previously defined data, the following pre-
model has been obtained and the final equation in terms of actual factors is as follows: 

Figure 1. The absorbance of treated oil.



Processes 2019, 7, 729 7 of 14

3.1. Modeling Experimental Data Using RSM

Five models were compared together: linear model, quadratic model, cubic model, and Two
Factor Interactions Model (2FI model).

3.1.1. Linear Model

When applying the developed model using the previously defined data, the following pre-model
has been obtained and the final equation in terms of actual factors is as follows:

Absorption area under the curve = +204.98717 + 0.063973 × Temperature +0.19579 × Concentration

Regression coefficients and statistical analysis for the predicted response surface model are shown
in Table 3.

Table 3. Linear model regression coefficients statistical analysis.

Factor Coefficient
Estimate Df Standard

Error
95% CI

Low
95% CI
High F-Value P-Value

MODEL 18.81 0.0006 significant
Intercept 229.83 1 0.81 227.98 231.67 – —

A-Temperature 6.40 1 1.08 3.96 8.83 35.28 0.0002
B-Concentration 1.47 1 0.96 −0.70 3.64 2.35 0.1597

It was observed that the calculated F-value of 18.81 from Table 3 indicates that the model is
significant (as it is desirable to have the biggest value). However, to specify that model terms are
significant, the P-value should be less than 0.05. Only the A-temperature is regarded as a significant
model term in this situation.

The model was verified using the statistical test ANOVA in which Table 4 was acquired.

Table 4. Analysis of statistical variance.

RMSE 2.76 R2 0.8070

Mean 230.46 R2
adj dj 0.7641

C.V.% 1.20 R2
pred 0.6808

PRESS 113.33 Adeq Precision 11.402
BIC 62.42

AICc 63.96

The 0.6808 “R2
pred” is, to be exact, in significant agreement with the 0.7641 “R2

adj;” the difference
is less than 0.2. The “Adeq Precision” measures the ratio of signal to noise. It is desirable to have
a ratio higher than 4; 11.402 shows an appropriate signal ratio in this situation. However, the search
emerges for another better model with insignificant terms.

3.1.2. The Quadratic Model

The final equation model in terms of coded factors is presented in the following quadratic form:

Abs. area under the curve = +227.03 + 6.76 × A + 1.35 × B + 0.55 × AB + 4.19 × A2 + 0.55 + B2

As can be seen from Table 5, only two terms of temperature and temperature2 are significant in
this quadratic model (p-value less than 0.05).
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Table 5. Quadratic model regression coefficients statistical analysis.

Factor Coefficient
Estimate Df Standard

Error
95% CI

Low
95% CI
High F-Value P-Value

MODEL 15.73 0.0022
Intercept 227.03 1 1.41 223.57 230.49 69.24

A-Temperature 6.76 1 0.81 4.77 8.75 3.37 0.0002
B-Concentration 1.35 1 0.73 −0.45 3.14 0.33 0.1161

AB 0.55 1 0.96 −1.80 2.90 9.86 0.5868
A2 4.19 1 1.33 0.93 7.45 0.15 0.0200
B2 0.55 1 1.44 -2.97 4.06 15.73 0.7163

Table 6 displays the 0.6980 “R2
pred” insensible agreement with the 0.8700 “R2

adj”. On the other
hand, “Adeq Precision” measures the signal-to-noise ratio where it is desirable to have a ratio greater
than 4. The 11.195 model ratio stated an appropriate signal as the difference is lower than 0.2, which is
lower than the pre-model. In addition, the F value of 15.73 is also less than the prior one. This model
may be enhanced.

Table 6. Analysis of statistical variance.

RMSE 2.05 R2 0.9291

Mean 230.46 R2
adj 0.8700

C.V.% 0.89 R2
pred 0.6980

Adeq Precision 11.195
BIC 57.85

AICc 71.74

Only the temperature conditions of the linear model are important to have a p-value which is less
than 0.05.

3.1.3. 2-Factor Interactions Model (2FI)

The 2-factor interactions model can be written in the final equation in terms of coded factors
without the square terms as follows:

Abs. area under the curve = +229.82 + 6.46 × A + 1.40 × B + 0.55 × AB

Values of “P-value” less than 0.05 in Table 7 show that the terms of the model are significant.
In this situation, A is only a significant term. Furthermore, values higher than 0.1 imply that the terms
of the model are not significant. The 11.43 model F-value means that the model is significant. There is
only a 0.29% possibility that such a big F-value could happen because of noise.

Table 7. The 2-factor interactions model regression coefficients statistical analysis.

Factor Coefficient
Estimate Df Standard

Error
95% CI

Low
95% CI
High F-Value P-Value

MODEL 11.43 0.0029
Intercept 229.82 1 0.86 227.84 231.79 0.0029

A-Temperature 6.46 1 1.14 3.83 9.09 32.05 0.0005
B-Concentration 1.40 1 1.02 −0.95 3.75 1.88 0.2073

AB 0.55 1 1.36 −2.58 3.69 0.16 0.6955

The “R2
pred” of 0.5631 in Table 8 is in reasonable agreement with the “R2

adj” of 0.7399; i.e.,
the difference is less than 0.2. “Adeq Precision” measures the signal to noise ratio. A ratio greater than
4 is desirable. The ratio of 9.396 indicates an adequate signal.
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Table 8. Analysis of statistical variance.

RMSE 2.90 R2 0.8109

Mean 230.46 R2
adj 0.7399

C.V.% 1.26 R2
pred 0.5631

PRESS 155.09 Adeq Precision 9.396
BIC 64.66

AICc 68.43

3.1.4. Cubic Model

Similarly, the cubic model can be written in the final equation in terms of coded factors as follows:

Abs. area under the curve = +227.76 + 3.37 × A + 2.45 × B + 0.48 × AB + 3.42 × A2 +

0.63 × B2
− 1.95 × A2B − 0.66 × AB2 + 4.07 × A3 + 0.000 × B3

The statistical parameters for the cubic model are summarized in Table 9, showing that the
parameters are estimated inadequately due to a p-value > 0.05. It is clearly noted that the p-value for
all cubic terms is more than 0.05 from the table, which shows that the model is insignificant, whereas
values greater than 0.1 have no significance.

Table 9. Cubic model regression coefficients statistical analysis.

Factor Coefficient
Estimate Df Standard

Error
95% CI

Low
95% CI
High F-Value P-Value

MODEL 8.86 0.0499
Intercept 227.76 1 1.69 222.38 233.15

A-Temperature 3.37 1 4.52 −11.03 17.77 27.94 0.5105
B-Concentration 2.45 1 1.26 −1.55 6.46 2.73 0.1460

AB 0.48 1 1.06 −2.88 3.83 1.10 0.6831
A2 3.42 1 1.56 −1.55 8.39 1.21 0.1164
B2 0.63 1 1.56 −4.33 5.59 1.07 0.7135

A2B −1.95 1 1.72 −7.42 3.52 2.64 0.3385
AB2 −0.66 1 2.08 −7.28 5.96 3.99 0.7724
A3 4.07 1 4.43 −10.02 18.15 24.59 0.4260

A negative “R2
pred” in Table 10 indicates that the fit is worse than just fitting a horizontal line.

This is a major drawback of the model and forces it to be rejected.

Table 10. Analysis of statistical variance.

RMSE 2.19 R2 0.9594

Mean 230.46 R2
adj 0.8510

C.V.% 0.95 R2
pred −0.1212

PRESS 398.01 Adeq Precision 8.261
BIC 58.62

AICc 144.26

3.1.5. Modified Quadratic Model

The model can be written in the final equation in terms of coded factors as follows:

Abs. area under the curve = +227.43 + 6.70 × A + 1.47 × B + 4.19 × A2

Tables 11 and 12 summarize the statistical parameters for the modified quadratic model, showing
that the parameters are properly estimated as the calculated p-values < 0.05. For all response surface
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design models, high coefficients for determination (R2 > 0.90) revealed that variation in responses could
not be attributed to random errors but to the effects. On the other hand, for the cubic model, the value
of R2

adj (−0.1212) indicates the insignificance of the explanatory variables. Moreover, the difference
between R2 and R2

adj, which is greater than 0.2, indicates unreasonable agreement as reported in the
literature [25,38]. These statistical indicators are supplemented by scatterplots in Figure 2.

Table 11. Modified quadratic model regression coefficients and statistical analysis.

Factor Coefficient
Estimate Df Standard

Error
95% CI

Low
95% CI
High F-Value P-Value

MODEL 32.20 0.0001
Intercept 227.43 1 0.88 225.41 229.45

A-Temperature 6.70 1 0.72 5.03 8.37 85.49 0.0001
B-Concentration 1.47 1 0.64 -6.583E-3 2.94 5.27 0.0508

A2 4.19 1 1.20 1.42 6.96 12.19 0.0082

Table 12. Analysis of statistical variance.

RMSE 1.84 R-Squared 0.9235

Mean 230.46 Adj R-Squared 0.8948
C.V.% 0.80 Pred R-Squared 0.8478
PRESS 54.02 Adeq Precision 15.352

BIC 53.793
AICc 57.56

The findings summarized in Table 13 demonstrate that the modified quadratic model is more
precise and can be used to model the used lube oil treated with the red clay process. This accuracy
is reflected by the low RMSE error value (1.84) and the high R2 and R2

adj ratios (0.9235 and 0.8948,
respectively), in addition to the smallest PRESS value (54.02), smallest AICc value (57.57), and the
smallest BIC value (53.79), which is compared to the corresponding values obtained by the linear, 2FI,
quadratic, and cubic models.

Table 13. Statistical comparison between the five models.

Model RMSE R2 R2
adj R2

pred AICc BIC F-Value Press

Linear 2.76 0.8070 0.7641 0.6808 63.96 62.42 18.81 113.33
2FI 2.90 0.8109 0.7399 0.5631 68.43 64.66 0.16 155.09

Quadratic 2.05 0.9291 0.8700 0.6980 71.4 57.85 5.00 107.20
Cubic 2.19 0.9594 0.8510 -0.1212 144.26 58.68 0.74 398.01

Modified
quadratic 1.84 0.9235 0.8948 0.8478 57.57 53.79 32.20 54.02

Although the linear model is suggested to model the understudied process, it presents the lowest
value of R2 and R2

adj ratios (0.8070 and 0.7641, respectively). The cubic and quadratic models, on the
other hand, have the highest values of AICc and BIC, whereas the 2FI has the lowest value of R2 and
R2

adj after the linear model.
In brief, the results indicate the supremacy of the quadratic model of reduced-order over the

other models in terms of the minimum RMSE and the highest R2 and R2
adj. This finding is in line

with that acquired by many scientists confirming that “choosing the best model should concentrate on
maximizing the R2

adj and the R2
pred” [34–37].

Other scientists are advising the use of AICc and BIC for nonlinear models because they perform
much better than R2 [42].
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Figure 2. Comparison between the models: predicted vs. actual, contour and 3D curves. (a) Linear
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The optimum operating conditions for maximizing production by minimizing the cost of treatment
occurs at the minimum absorption under the curve were predicted to be 223.358; this can be achieved
at a process temperature of 266.246 ◦C and 5.331 g clay. These optimum values can be viewed with
the contour plot and Three-dimensional 3D curves in Figure 3. Experiments were carried out under
these optimal conditions for validating the prediction optimum values. The resulting experimental
values of 223.8 is in close agreement with that acquired from the model of regression. Adsorption
rates improved with temperature owing to the diffusion of adsorbent molecules into the adsorbent;
in addition, solubility and adsorption are inversely linked as temperature impacts the adsorption
range [17,43].
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This study has revealed that effective oil treatment can be reproduced from natural free-acid clay
under optimized process conditions; it is recommended that different types of clays need to be tested,
optimized, and mixed to achieve better recycling.

4. Conclusions

This study presents an application of the RSM technique to optimize used the lube oil recycling
process treated with natural red clay. Statistical indexes have generated competitive results in
comparing the precision and accuracy of the presented models for the used lube oil treatment process.
Five different models were tested to find the best fit with the obtained experimental data. The models
are linear, 2FI, quadratic, modified quadratic, and cubic models.

Nine statistical indexes (RMSE, BIC, AICc, R2, R2
adj, R2

pred, P-value, PRESS, and F-value) were
calculated to evaluate model performance.

Obtained results showed that the minimum RMSE value is obtained by the modified quadratic
model, whereas the maximum calculated value for R2 index is for cubic. However, this model had a low
F-value, the highest PRESS, AIC, and BIC making it the least favorable model among the tested ones.

In addition, results show the supremacy of the modified quadratic model in terms of low value of
error RMSE (1.84) high values of R2 and R2

adj with ratios (0.9235 and 0.8948, respectively), the lowest
AICc (57.57), lowest BIC (53.79), comparing to the linear, 2FI, quadratic, and cubic models.

Optimization of the model has provided insightful observation into the process operation
conditions for the used lube treatment process, revealing that the optimum operating conditions to
maximize production with the minimum cost of treatment happens at minimum absorption under
the curve of 223.358; this can be achieved with a temperature of 266.246 ◦C and a clay amount of
5.331 g. This model can also be used for online state estimation and advanced controlling of the oil
recycling process.
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