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Abstract: The Microbiome Regression-based Kernel Association Test (MiRKAT) is widely used in
testing for the association between microbiome compositions and an outcome of interest. The MiRKAT
statistic is derived as a variance-component score test in a kernel machine regression-based
generalized linear mixed model. In this brief report, we show that the MiRKAT statistic is proportional
to the R2 (coefficient of determination) statistic in a similarity matrix regression, which characterizes
the fraction of variability in outcome similarity, explained by microbiome similarity (up to a constant).
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1. Introduction

Recent research has highlighted the vital role of the human microbiome in many diseases and
health conditions, including (but not limited to) obesity [1], diabetes [2], cancer [3], inflammatory
disorders [4], and bacterial vaginosis [5]. Advances in next-generation sequencing technologies and
high-throughput functional profiling technologies, including metagenomics, metatranscriptomics,
metaproteomics, and metabolomics, have made them powerful tools for surveying in related research
areas [6,7]. The field of microbiome studies, however, has not yet reached the maturity attained in other
established molecular-epidemiological fields, such as cancer biomarker discovery and genome-wide
association studies, to make the leap from “-omics” surveys to rational microbiome-based therapeutics.
One of the primary limitations to leveraging this large body of big microbiome and metagenomics
data is the computational and statistical challenges: high-dimensionality, count and compositional data
structure, sparsity (zero-inflation), over-dispersion, phylogenetic relatedness, among others. To combat
these challenges, specialized computational tools and quantitative approaches, to aid in understanding
the role of the microbiota in maintaining homeostasis in their animal host, as well as in the initiation and
propagation of disease, are desired.

A common mode of analysis in microbiome studies is diversity-based community-level analysis,
wherein overall microbiome composition is studied in relation to outcomes of interest, such as host
transcriptome [4], host genetics [8], and other clinical or environmental covariates [9]. Targeting
overall microbiome community composition provides a holistic view towards facilitating identification
of large-scale differences, accommodating correlation among taxa, and harnessing phylogenetic
relationships. Besides being biologically meaningful, the community-level analysis is often statistically
more powerful than individual taxon-level analysis, through reduced multiple testing burden and
the ability to aggregate modest individual effects [10]. Motivated by these advantages, many novel
statistical methods and computational tools have been proposed for efficiently testing for associations
between outcomes and microbial community composition, using either alpha-diversity [11] or
beta-diversity [10,12–19].
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Among the existing quantitative analyses of association between microbial communities and
their host, a powerful and popular method is the MiRKAT-type strategy, which regresses the outcome
on microbiome compositions by way of the kernel machine regression framework [10,15,16]. A major
advantage of MiRKAT over other microbiome community-level association analyses is that the
kernel machine regression framework allows for flexible microbial effect (e.g., nonlinear effects and
interactions) on the outcome. The performance of MiRKAT, as an overall association test, has been well
studied in the literature. In this report, we study the interpretation of MiRKAT results by investigating
the MiRKAT statistic and show that the MiRKAT statistic corresponds to the ratio of explained variation
(by microbiome similarities) and total variation (in outcome similarities).

2. Materials and Methods

We first introduce some notation. Let the triplet (Yi, X i, Zi), i = 1, . . . , n be independent
observations, where Yi denotes the outcome of interest (e.g., body mass index), X i denotes the
q × 1 covariate vector including the intercept (e.g., age, gender, and antibiotic use), and Zi is the
p × 1 composition vector of a microbiome community with p taxa. MiRKAT relates the outcome
to microbiome features through the generalized partial linear model g(E[Yi|X i, Zi]) = X ′iβ + f (Zi),
where g(·) is the link function (e.g., identity function for a continuous outcome and logit function for a
binary outcome) and f (·) is a centered smooth function in a reproducing kernel Hilbert space spanned
by a kernel function k(·, ·). By using a nonparametric function f (·), the model allows for flexible
relationship (e.g., nonlinear effects and interactions) between the outcome Yi and the microbiome
compositions Zi. The general function f (·) is specified by the kernel as f (Zi) = ∑n

i′=1 αi′k(Zi, Zi′) for
some coefficients α1, . . . , αn [10]. In fact, for the purpose of testing H0 : f (·) = 0, it is sufficient to specify
the n× n kernel matrix K with Ki,i′ = k(Zi, Zi′), rather than explicitly defining the kernel function
k(·, ·) [10]. Within the context of microbiome studies, we typically define such a kernel matrix from
a β-diversity using K = − 1

2 (I− 11′
n )D2(I− 11′

n ), where D is a matrix of pair-wise β-diversities between
individual microbial communities. For example, D could be a matrix of Bray-Curtis dissimilarity [20]
of the UniFrac-family distances [9].

The MiRKAT for hypothesis H0 : f (·) = 0 is derived from a variance component score test in
a generalized linear mixed model (GLMM) and the specific MiRKAT statistic was proposed as [10]

Q =
(Y − µ̂0)

′K(Y − µ̂0)

2φ
, (1)

where µ̂0 = (µ̂0,1, . . . , µ̂0,n) are the estimates of µ = E(Y|X, Z) under the null GLMM g(E[Yi|Xi, Zi]) = X′iβ
of no microbiome effect on outcome, and K = {Kij}n×n with Kij being a similarity metric measuring
the similarity level between microbiome profiles Zi and Z j. Examples of such similarity/dissimilarity
metrics include the UniFrac-family and the Bray-Curtis dissimilarity [10]. The original MiRKAT
was proposed for either a continuous outcome or a binary outcome. Under a continuous outcome
model, the dispersion parameter φ equals σ̂2

0 , the null estimates are of residual variance, and φ = 1
under a binary outcome model [10]. The testing strategy of MiRKAT has further been extended
to accommodate more complicated outcome types (e.g., survival times and multiple correlated
outcomes) [15,16,19] and complex study designs (e.g., longitudinal microbiome studies) [21,22],
which all share the same spirit by deriving the test statistic as a variance component score test
in a certain mixed effect model [10,15,16,22]. As a result, all of these aforementioned MiRKAT-type
test statistics have a comparable form to Q in Equation (1). For ease of presentation, we will illustrate
the connection between a MiRKAT statistic and an R2 (coefficient of determination) statistic, using
a continuous outcome as an example.

To build the connection between the MiRKAT statistic (1) and R2 statistic, we rearrange the
non-kernel part and kernel part in the numerator of Q. Let Sy = (Y − µ̂0)(Y − µ̂0)

′ be the cross product
of the residuals, where Sy

ij = (Yi − µ̂0,i)(Yj − µ̂0,j), to describe the covariates X-adjusted outcome



Processes 2019, 7, 79 3 of 6

similarity between Yi and Yj. An alternative way to study the association between outcome and
microbiome is by the similarity matrix regression [23]

Sy
ij = a× Kij + eij, (2)

where eij are some mean-zero normal-distribution error terms. Since the outcome similarity Sy
ij is

calculated from the null model residuals, which have been X-adjusted (note that the intercept term
is included in X), and f (·) (thus K) is assumed to be a centered smooth function, both Sy

ij and Kij are
centered and, thus, we do not include an intercept term in the similarity matrix regression model (2).
It has been pointed out that H0 : a = 0 is equivalent to testing a corresponding variance component
being zero in a random effect model [23], which is the null hypothesis in MiRKAT. Besides the
correspondence between the null hypothesis of MiRKAT and similarity matrix regression, in this short
report, we will further demonstrate the correspondence between the MiRKAT statistic and the R2

statistic (coefficient of determination) of similarity matrix regression.
Define the concatenation of matrix Sy as Svec = (Sy

11, . . . , Sy
n1, . . . , Sy

1n, . . . , Sy
nn)
′, where vec stands

for vectorization. The same notation applies to the microbiome similarities Kij and error terms eij.
Then, the matrix regression (2) can be reformulated in a vector format

Svec = a× Kvec + evec. (3)

Under a simple linear regression model (3), it is easy to verify that

Var(E[Svec|Kvec])

Var(Svec)
= a2 Var(Kvec)

Var(Svec)
=

[
Cov(Svec, Kvec)

Var(Kvec)

]2 Var(Kvec)

Var(Svec)
= Corr2(Svec, Kvec). (4)

The correlation on the right hand side of Equation (4) can be estimated as its empirical sample
correlation, Corrn(Svec, Kvec), further calculated as

Corrn(Svec, Kvec) =
∑n

i=1 ∑n
j=1 KijS

y
ij√

∑n
i=1 ∑n

j=1 Sy
ij

2√
∑n

i=1 ∑n
j=1 K2

ij

=
2

n− q
· Q√

∑n
i=1 ∑n

j=1 K2
ij

, (5)

where q is the dimension of X and the second equality holds because
√

∑n
i=1 ∑n

j=1 Sy
ij

2
= ∑n

i=1(Yi −

µ̂0,i)
2 = (n− q)σ̂2

0 .
On the other hand, according to the law of total variance, Var(Svec) = Var(E[Svec|Kvec]) +

E(Var[Svec|Kvec]), where Var(E[Svec|Kvec]) and E(Var[Svec|Kvec]) represent the explained and
unexplained fraction of variance in the outcome similarities by microbiome similarites, respectively.
In other words, the first term in Equation (4) is the fraction of explained variation of outcome similarity
by microbiome similarity or, equivalently, the R2 statistic (coefficient of determination) of similarity
matrix regression (3). Putting all of this together, we have

R2 = Corr2
n(S

vec, Kvec) =
4Q2

(n− q)2 ∑n
i=1 ∑n

j=1 K2
ij

∝ Q2. (6)

That is, given the microbiome similarity (such that ∑n
i=1 ∑n

j=1 K2
ij is a constant), the coefficient of

determination statistics R2 is proportional to the squared MiRKAT statistic Q2.

3. Results

We conducted a numerical study to verify the analytical result in Equation (6). We simulated the
microbiome data Z (of p = 856 taxa) from an estimated Dirichlet-multinomial distribution, following
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the same strategy used in MiRKAT [10], and considered a sample size of n = 200 in this simulation.
After the microbiome data was generated, we simulated two covariates, X1 and X2, where X1 was
a Bernoulli variable with success probability 0.5, and X2 was simulated from the normal distribution
N(scale(∑j Zij), 1) whose mean depended on the microbiome composition. Then, the outcome was
simulated according to the following model

Yi = 0.5 + 0.5X1i + 0.5X2i + Z′iα + εi,

where α = (α1, . . . , αp)′, and we randomly selected 50 of the αj to be nonzero, generated from the
uniform distribution between −1 and 1. After the (Yi, X i, Zi) were generated, we next calculated both
the outcome similarity Sy and microbiome similarity K. For the outcome similarity, the linear cross
product of residuals (as described previously in this report) was used throughout the simulations.
Four different microbiome similarity metrics were considered in this simulation, including weighted
UniFrac, unweighted UniFrac, generalized UniFrac (parameter set to 0.5, as used in MiRKAT),
and the Bray-Curtis. Each microbiome similarity metric was constructed, based on the corresponding
β-diversity (as described in Zhao et al. [10]). We calculated both the MiRKAT statistic Q and the
R2 statistic of the similarity matrix regression (3) using 1000 replicates. Finally, R2 was compared
to 4Q2/(n− q)2 ∑i ∑j K2

ij, according to Equation (6). The result is reported in Figure 1, and it was

confirmed that R2 = 4Q2/(n− q)2 ∑i ∑j K2
ij.
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Figure 1. Comparison of MiRKAT statistic and R2 statistic of similarity matrix regression. The red line
represents the regression line, which is identical to the 45-degree line y = x.

4. Discussion and Conclusions

In summary, we found a connection between two statistics which seem to be quite different. One is
the MiRKAT-type statistic, which is usually derived as a score test statistic for a variance component in
a GLMM. The other is an R2-type statistic, the proportion of explained variation in similarity matrix
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regression. Despite the popularity of the MiRKAT test itself, it is striking to detect the correspondence
between the MiRKAT statistic and the proportion of variance in outcome that was explained by
microbiome (in the similarity level). A high R2 of a certain microbiome similarity may imply
an underlying microbiome-trait association pattern (e.g., a high unweighted UniFrac R2 may imply that
the trait is more influenced by the presence/absense of OTUs rather than their abundances). As a result,
the correspondence between MiRKAT and R2 can enhance the interpretability of the MiRKAT test,
in the sense that a quantitative R2 value is, in general, more straightforward and informative than
the more qualitative MiRKAT p-value (significant or not). Moreover, this correspondence may also
suggest the potential for development of a powerful similarity-learning procedure, by maximizing the
proportion of explained variance (or, equivalently, minimizing the proportion of unexplained variance).
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