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Abstract: With the rapid development of computer science and information and communication
technology (ICT), increasingly intelligent, and complex systems have been applied to industries as
well as human life. Fault-tolerant control (FTC) has, therefore, become one of the most important
topics attracting attention from both engineers and researchers to maintain system performances
when faults occur. The ultimate goal of this study was to develop a sensor fault-tolerant control (SFTC)
to enhance the robust position tracking control of a class of electro-hydraulic actuators called mini
motion packages (MMPs), which are widely used for applications requiring large force-displacement
ratios. First, a mathematical model of the MMP system is presented, which is then applied in the
position control process of the MMP system. Here, a well-known proportional, integrated and
derivative (PID) control algorithm is employed to ensure the positional response to the reference
position. Second, an unknown input observer (UIO) is designed to estimate the state vector and
sensor faults using a linear matrix inequality (LMI) optimization algorithm. Then an SFTC is
used to deal with sensor faults of the MMP system. The SFTC is formed of the fault detection
and the fault compensation with the goal of determining the location, time of occurrence, and
magnitude of the faults in the fault signal compensation process. Finally, numerical simulations were
run to demonstrate the superior performance of the proposed approach compared to traditional
tracking control.

Keywords: unknown input observer; fault-tolerant control; fault compensation

1. Introduction

In modern industries, valve-driven hydraulic actuators (VHAs) have been used extensively due to
their advantageous features such as simplicity and high-precision control for linear as well as nonlinear
systems [1–4]. However, these actuators have some limitations, including low energy efficiency due to
leakage through the valve of the hydraulic pump, and throttle losses. Electric motor-pump-driven
hydraulic actuators, tagged as electro-hydraulic actuators (EHAs), have been recently introduced as an
alternative to provide high output power at great energy efficiency [5,6]. A representative configuration
of an EHA is depicted in Figure 1. Here, the position of the hydraulic cylinder is adjusted directly
by the bidirectional pump, with the support of two pilot-operated check valves and two pressure
relief valves [5,6]. Because of their advantages, various types of EHAs have been commercialized and
are widely used in different industrial applications, including active vibration isolation of machine
tools [7] and wing control and landing gear control in aircraft [8–10]. Among these, a class of compact
EHAs from Kayaba Industrial Company, known as mini motion packages (MMPs), is considered one
of the most feasible solutions for applications requiring short operating ranges and high output power.
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Figure 1. Schematic of an electro-hydraulic actuator (EHA) system.

However, when working in a disturbed environment, system nonlinearities with large
uncertainties become critical challenges in utilizing EHAs to obtain high-precision positioning (or
force) tracking control. The traditional linear control approaches derived for VHAs are therefore not
suitable for this type of application due to the large control error [11], and the nonlinear schemes for
EHA tracking control have attracted considerable attention from researchers and engineers to solve
faults or failures of EHAs. Faults or failures arise from components of the EHA system such as failures
in the electrical machine of the pump, the leakage faults of the pump and cylinder, aging and cable
break faults of the sensor, and the others as polluted oil, etc. To address this issue, the fault-tolerant
control (FTC) technique for EHAs was introduced. This technique handles the impacts of actuator
faults (AFs) and sensor faults (SFs) [12–18], and sensor fault-tolerant control (SFTC) techniques are
also used to solve the problems of SFs [19,20]. With the rapid development of mechatronics technology,
increasingly intelligent and complex systems using the FTC technique have been applied to both
industries and human life. Applications with EHAs also face new control challenges to maintain the
system stability when a fault or failure occurs. In general, FTC is a complex combination of three major
research fields, fault detection and isolation (FDI), robust control, and reconfigurable control. The FDI
and the reconfigurable controller need to be robust against uncertainties and disturbances as in [21,22].
By using FTC techniques, the system still works as normal instead of stopping under the impacts of
AFs and SFs [12–18]. Thus, the FTC plays a key role to improve the performance of systems prone to
faults or failures. However, actuator failures cannot be handled [21]. In recent decades, various fault
detection and diagnosis (FDD) and FTC techniques have been developed by researchers, such as the
FDD schemes that use an extended Kalman filter (EKF) algorithm for isolating either the SF or the AF
of the system [14,20,23]. In [23], the author applies FDI based on multiple hybrid Kalman filters to
detect the fault process. Furthermore, the FTC technique in [14] utilizes Kalman filter reconfiguration,
which helps ignore the feedback signal from the sensor when a sensor fault occurs. Especially in the
FTC function [20], if a sensor fault appears, the feedback signal is formed from the estimation state of
an unknown input observer (UIO). In contrast, this feedback signal will be the data transferred directly
from the sensor. The systems described in these articles perform fault detection and isolation without
removing the faults.

However, a recently developed FTC compensation technique removes the faults that come from
the SFs or the AFs [19]. This technique has been successfully designed and applied in linear and
nonlinear systems and is attracting several researchers. The two main tasks of this technology are to
determine the estimated fault and to perform fault compensation. To obtain the estimated fault, some
advanced observer methods are proposed, such as the sliding mode observer [15,24], the augmented
observer [12,16–18,25–28], and sensor fault reconstruction [29,30]. In particular, a UIO of the system
variable reconstruction has the benefits of not only estimating the state vector, but also the fault
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estimation, as shown in [18,29,30]. The estimations of the state and the fault are implemented by the
augmented observer, based on a UIO of the system variable reconstruction and an LMI optimization
algorithm. This method has advantages in the AF estimation and the SF estimation are performed
by an LMI optimization algorithm so that the UIO to be asymptotically stable [29]. However, in [18],
decoupling the unknown input disturbance created difficulty in practical applications. Therefore,
the SFTC technology developed in this paper is based on a combination of the error calculation
method described in [18] and the UIO of the system variable reconstruction with the LMI optimization
algorithm given in [31]. We can clearly see the effects of using FTC technique compared with traditional
tracking control in [31,32].

In this paper, an advanced SFTC technology is proposed for robust position tracking control of
an MMP system under fault conditions. The classic PID control algorithm is employed to enhance
the system tracking performance. First, the mathematical model of the MMP system is developed to
simplify the control process of the EHA system, which is different from the methods in [5,6]. Second,
a UIO is built from robust, observer-based reconstruction for the linear and nonlinear discrete-time
system with an unknown input disturbance and SF. Here, the state estimation and the fault estimation
are applied to the UIO of the system variable reconstruction, which is different from the approaches
in [28–30]. Lyapunov’s stability condition and an LMI optimization algorithm are utilized for the
asymptotical stability of the proposed state observer. Then an SFTC compensation technique is
designed for the MMP system. According to this technique, the magnitude of the compensation signals
is received from the fault estimation process of the UIO. The fault compensation decision is made based
on the residual signal. Finally, numerical simulations are run to demonstrate the superior performance
of the proposed approach compared with traditional tracking control.

The important contributions of this paper are summarized as follows:

• The piston position equation of the MMP system is established using the derivative of the dynamic
system. This equation is transformed in the form of the nonlinear system or the nonlinear
discrete-time system in state space. The main task of this step is to simplify the piston position
control process of the MMP model. Additionally, the new control equations of the valves are
successfully applied to the position control using the PID controller.

• To achieve asymptotic stability of the state observer, the UIO utilizing the optimization algorithm
(LMI) for the linear and nonlinear discrete-time system is proposed. Our approach is described
and validated by Lyapunov’s stability based on the error conditions. Finally, the matrix inequality
is obtained to apply the LMI optimization algorithm.

This paper is organized as follows. In Section 2, a mathematical model of the MMP system is
addressed to simplify the control process of the EHA system and the numerical simulation process.
In Section 3, a UIO-based sensor fault estimation using a reconstruction approach for systems is
implemented, and necessary and sufficient conditions for the existence of a robust UIO are provided.
LMI techniques are described for the discrete-time Lipschitz nonlinear systems. In Section 4, simulations
with the MMP model using the proposed FTC technique are carried out and the results are discussed.
Final conclusions are drawn in Section 5.

2. EHA Model

Referencing the schematic of the EHA system shown in Figure 1, the dynamics of the piston
position can be written as [20]:

mp
..
xp + Bv

.
xp + Fsp + Ff rc + d = AhPh − ArPr (1)

where mp is the equivalent mass of the object Mp, xp is the piston position,
..
xp and

.
xp are the acceleration

and piston velocity, respectively, Ph and Pr are the pressure in two chambers, respectively, Ah and Ar

are the piston area in two chambers, respectively, Fsp is the external load force on the cylinder, d is the
disturbance, Bv is the viscosity damping coefficient, and Ff rc is the friction force.
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The spring force Fsp can be computed as:

Fsp = Kspxp (2)

where Ksp is stiffness of the spring.
The friction force Ff rc can be presented as [33]:

Ff rc =
√

2e(Fbrk − FC)e
−( vp

vst
)

2 vp

vst
+ FC tanh

(
vp

vst

)
(3)

where Fbrk and FC are breakaway friction and Coulomb friction, respectively. vp, vst, and Bv are position
velocity, Stribeck velocity threshold, and viscous friction coefficient, respectively.

The hydraulic continuity equations of the EHA system can be expressed as [5]:

.
Ph = ∆1

(
Qh −Qi −

.
xp Ah

)
(4)

.
Pr = ∆2

(
Qr + Qi +

.
xp Ar

)
(5)

where

∆1 = βe/
(
Vch + xp Ah

)
; ∆2 = βe/

(
Vcr − xp Ar

)
; Q13i = Q1v −Q3v −Qi and Q24i = Q2v −Q4v + Qi.

βe is the effective bulk modulus in each chamber, and Vch, and Vcr are the initial control volumes of the
two chambers.

The internal leakage flow rate of the cylinder Qi is described as [5]:

Qi = Cleak(Ph − Pr) (6)

where Cleak is the coefficient of the internal leakage of the cylinder.
The flow rates into the two chambers of the cylinder are computed as [5]:

Qh = Qpump + Q1v −Q3v (7)

Qr = −Qpump + Q2v −Q4v (8)

where Q1v and Q2v are the flow rate through of the pilot-operated check valve on the left, and the
pilot-operated check valve on the right, respectively. Q3v and Q4v are the flow rate through the pressure
relief valve on the left and the pressure relief valve on the right in Figure 1.

The pump flow rate Qpump can be presented as [5]:

Qpump = Dpω (9)

where Dp is displacement of the pump, and ω is the speed of the servo pump system.
The left pilot-operated check valve (v1) is described as [34]:

Q1v = Cd A1p

√
2
ρ

p1(
p2

1 + P2
crack

)1/4 (10)

where

A1p =


Aleak i f p1e < pcrack
Aleak + k·(p1e − pcrack) i f pcrack < p1e < pmax

Amax i f p1e ≥ pmax

,



Processes 2019, 7, 89 5 of 20

p1e = kpvPr − Ph; k =
Amax − Aleak
pmax − pcrack

; p1 = −Ph.

Pcrack, Pmax, are the valve cracking pressure and the pressure needed to fully open the valve, respectively.
Apmax and Aleak, are the maximum valve opening area and the closed valve leakage area, respectively.
Cd and Kpc are the valve coefficient and valve constant, respectively.

Similarly, the right pilot-operated check valve (v2) can be calculated as (10).
The flow rate through the pressure relief valve (v3) is determined according to the following

Equations [34]:

Q3v = Cdp A3p

√
2
ρ

p3(
p2

3 + P2
3cr
)1/4 (11)

where

A3p =


Aleak i f p3 < pset

Aleak + k·(p3 − pset) i f pset < p3 < pmax

Amax i f p3 ≥ pmax

,

k = (Amax − Aleak)/preg; p3 = Ph.

The minimum pressure for turbulent flow p3cr is calculated according to the transition from a
laminar to a turbulent regime, as defined by the following equation:

p3cr = (P3/2 + Patm)(1− Blam),

where Patm, and Blam are the atmospheric pressure and the pressure ratio at the transition between the
laminar and turbulent regimes, respectively.

Similarly, the pressure relief valve (v4) can be calculated as (11).
Moreover, taking the derivative of (1) leads to:

mp
...
x p + Θ

..
xp + Ksp

.
xp + Γ

..
xp = Ah

.
Ph − Ar

.
Pr (12)

where
Θ = Bv + FC/vcl

Γ = − FC
vcl

tanh

( .
xp

vcl

)2

+

√
2e(Fbrk − FC)e

−(
.
xp
vst

)
2

vst
−

2
√

2e
.
x2

p(Fbrk − FC)e
−(

.
xp
vst

)
2

v3
st

.

Substituting (4) and (5) into (12), we obtain:

mp
...
x p + Θ

..
xp + Ksp

.
xp + Γ

..
xp = Ah

.
Ph − Ar

.
Pr

= (Ah∆1 + Ar∆2) Qpump −
(

A2
h∆1 + A2

r ∆2
) .
xp + Ω

(13)

where
Ω = Ah∆1Q13i − Ar∆2Q24i.

Finally, (13) can be rewritten as:

...
x p = −γ1

..
xp − γ2

.
xp + g(x, u) (14)

where
g(x, u) = −

(
Γ/mp

) ..
xp + Ω/mp + γ4u− γ3

.
xp

γ1 = Θ/mp; γ2 = Ksp/mp; u = ω.
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Equation (14) can be built in form as:

.
x = Ax + f (x, u) (15)

where
x1 = xp;
.
x1 = x2 =

.
xp;

.
x2 = x3 =

..
xp

.
x3 = −γ1x3 − γ2x2 + g(x, u)

; x =
[

xT
1 xT

2 xT
3

]T
and f (x, u) =

[
0 0 gT(x, u)

]T
.

The matrix A shown in (15) is the constant matrix. It can be expressed in a nonlinear discrete-time
state space model as:

xk+1 = Akxk + φxk ,uk (16)

where
xk =

[
xT

1 (k) xT
2 (k) xT

3 (k)
]T

Ak =

 1 Ts 0
0 1 Ts

0 −Tsγ2 (1− Tsγ1)

, and φxk ,uk =

 0
0

Tsg(xk, uk)

.

3. UIO-Based Reconstruction Approach

3.1. UIO for Linear Discrete-time System

A dynamics system with uncertainty is utilized in a linear discrete form with an additive unknown
disturbance term as the following equation [18]:{

xk+1 = Akxk + Bkuk + Dddk
yk = Ckxk + Fssk

(17)

where xk ∈ Rn is the state vector, yk ∈ Rp is the outputs vector and dk ∈ Rrd is the unknown input or
disturbance vector, and sk ∈ Rq is the sensor fault. Ak, Bk, Ck, Dd, and Fs are known constant matrices
with suitable dimensions.

The system variable reconstruction of (17) can be rewritten in the following form:{
Exk+1 = Akxk + Bkuk + Gsk + Dddk

yk = Ckxk
(18)

where

Ak =

[
Ak 0
0 −Ip

]
; E =

[
In 0
0 0p

]
; Bk =

[
BT

k 0T
p

]T
;

Ck =
[

Ck Fs

]
; Dd =

[
Dd
0

]
; G =

[
0
Ip

]
; xk =

[
xk
sk

]
∈ Rn

with n = n + p.
Based on [18], the UIO model can be built by the influences of unknown inputs in the system (18) as:

zk+1 = Fzk + ΣBkuk + Lyk
x̂k = zk + Hyk
ŷk = Ck x̂k

(19)
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where x̂k ∈ Rn, ŷk ∈ Rp, and zk ∈ Rn are state vector estimation of xk, measurement output estimation
vector and state vector of the observer, respectively. The observer matrices F ∈ Rn×n, Σ ∈ Rn×n,
H ∈ Rn×p, L ∈ Rn×p, L1 ∈ Rn×p, and L2 ∈ Rn×p should be designed according to the state estimation
error vector.

Similarly, by using [18], the estimation error can be defined as:

ek = xk − x̂k (20)

and
ek+1 = xk+1 − x̂k+1

=
(

In − HCk
)

xk+1 − zk+1
= Σxk+1 − zk+1

(21)

where
Σ = In − HCk

Multiplying both sides of the matrix Equation (18) by the matrix Σ, Equation (18) can be rewritten as:

ΣExk+1 = ΣAkxk + ΣBkuk + ΣGsk + ΣDddk (22)

and from (19), we obtain

x̂k+1 = Fzk + ΣBkuk + Lyk + HCkxk+1
= Fx̂k − FHyk + ΣBkuk + Lyk + HCkxk+1
= Fx̂k − (FH − L2)yk + ΣBkuk + L1Ckxk + HCkxk+1

(23)

where L = L1 + L2

Using (20)–(23), we have:

ek+1 = Fek +
[
In −

(
ΣE + HCk

)]
xk+1 +

[(
ΣAk − L1Ck

)
− F

]
xk + (FH − L2)yk +ΣGsk +ΣDddk (24)

From (20), (21), and (24), the estimation error (25) can be represented as:

ek+1 = Fek + ΣDddk (25)

If the following conditions are satisfied

ΣE + HCk = In
ΣG = 0

ΣAk − L1Ck = F
FH = L2

 (26)

without loss of generality, the matrix Σ can be defined:

Σ =

[
In δ1

−Ck δ2

]
(27)

where δ1 ∈ Rnxp and δ2 ∈ Rpxp are arbitrary matrices.
By solving (26) and (27), we obtain:

Σ =

[
In 0
−Ck 0

]
; δ1 = δ2 = 0; H =

[
0
Ip

]
(28)
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Lemma 1. [18] The necessary and sufficient conditions for the existence of UIO (19), if the system (18)
guarantees as follows:

rank(CkDd) = rank(Dd)

a)

[
Ak − In Dd

Ck 0

]
= n + rd, and Dd is a full column rank

b)

[
Ak − zIn Dd

Ck 0

]
= n + rd ∀z with |z| > 1.

Lemma 2. [29] For the equation in the following form:

.
ζ(t) = Φζ(t) + Υu(t) (29)

The eigenvalues of a given matrix Φ ∈ Rn×n belong to the circular region D(α, ρ) with the center
α + j0 and the radius ρ if and only if there exists a symmetric positive definite matrix P ∈ Rn×n such
that the following condition holds: [

−P P(Φ− αIn)

∗ −ρ2P

]
< 0 (30)

Theorem 1. For system (18), there exists a robust UIO in the form of (19) such that‖eyk‖ ≤ γ‖dk‖, and a
prescribed circular region D(α, r), if there exists a positive-definite symmetric matrix PL ∈ Rn×n and matrix
QL ∈ Rn×p, and a scalar γ > 0 such that the following inequalities hold:

−PL 0
(
ΣAk

)T PL − CT
k QT

L CT
k

∗ −γId
(
ΣDd

)T PL 0
∗ ∗ −PL 0
∗ ∗ ∗ −γIP

 < 0 (31)

and [
−PL PLΣAk −QLCk − αPL
∗ −r2PL

]
< 0 (32)

where QL = PLL1 and output estimation error eyk = Ckek
Then the state observer (18) is asymptotically stable.

Proof of (31). Consider Lyapunov functions as Vk = eT
k PLek; then its difference between two adjacent

steps ∆Vk = Vk+1 −Vk is given as:

∆Vk = Vk+1 −Vk
= eT

k+1PLek+1 − eT
k PLek

= eT
k FT PLFek + eT

k FT PLΣDddk − eT
k PLek + dT

k
(
ΣDd

)T PLFek + dT
k
(
ΣDd

)T PLΣDddk

(33)

or

∆Vk =

[
ek
dk

]T[
FT PLF− PL FT PLΣDd

∗
(
ΣDd

)T PLΣDd

][
ek
dk

]
.
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Based on the initial condition ‖eyk‖ ≤ γ‖dk‖, the matrix J in (34) can be presented as:

J =

[
ek
dk

]T[ 1
γ CT

k Ck 0
0 −γId

][
ek
dk

]
≤ 0 (34)

where eyk = Ckek is output estimation error.
From (33) and (34), the matrix Υ can be expressed in the stable condition of system as:

Υ = ∆Vk + J ≤ 0 (35)

Thus, (35) can be rewritten as:

Υ =

[
ek
dk

]T[
FT PLF− PL +

1
γ CT

k Ck FT PLΣDd

∗
(
ΣDd

)T PLΣDd − γId

][
ek
dk

]
= χTΠχ

(36)

where
χ =

[
eT

k dT
k

]T

Π =

[
−PL +

1
γ CT

k Ck 0
0 −γId

]
+

[
FT PLF FT PLΣDd

∗
(
ΣDd

)T PLΣDd

]
.

Using the Schur lemma [34] for the inequality (35) with Π < 0, then (31) is satisfied, once existent
J < 0 satisfies the condition ‖eyk‖ ≤ γ‖dk‖. �

Proof of (32). Applying (25) to Lemma 2, then (32) is satisfied. �

Although the linear UIO is developed here, there are still some limitations:

• Performance of the control system using the linear UIO can be inaccurate because of any unknown
nonlinear terms.

• In fact, an MMP system is a nonlinear system with unknown nonlinearities and uncertainties [5,6].

To address this challenge, the nonlinear UIO is proposed and developed in the following section.

3.2. UIO for Nonlinear Discrete-time System

We consider the following nonlinear discrete-time system subject to an unknown input in the
following form: {

xk+1 = Akxk + Bkuk + φxk ,uk + Dddk
y k = Ckxk + Fssk

(37)

where φxk ,uk = φ(xk, uk) is a nonlinear function vector ∀xk, xk ∈ Rn, uk ∈ Rm.
Based on [29], a Lipschitz constraint of the discrete-time nonlinear function vector φxk ,uk can be

expressed as
‖∆φxk ,uk‖ ≤ ζ‖ek‖ (38)

where ‖∆φxk ,uk‖ = ‖φxk ,uk − φx̂k ,uk‖ and ‖ek‖ = ‖xk − x̂k‖.
Similar to (18), the system variable reconstruction for the nonlinear discrete-time system (37) is

rewritten as: {
Exk+1 = Akxk + Bkuk + φxk ,uk

+ Gsk + Dddk

yk = Ckxk
(39)

where φxk ,uk
=
[

φxk ,uk 0
]T
∈ Rn.



Processes 2019, 7, 89 10 of 20

From (38), we obtain
‖∆φxk ,uk

‖ ≤ ζ‖ek‖ (40)

where
∆φxk ,uk

= φxk ,uk
− φx̂k ,uk

ek = xk − x̂k; ζ =

[
ζ In 0
0 0p

]
∈ Rn .

The UIO is built for the nonlinear discrete-time systems (38) as:{
zk+1 = Fnzk + ΣBkuk + Lyk + Σφx̂k ,uk

x̂k = zk + Hyk
(41)

where vector Σ and H are matrices to be designed for satisfying (28).
Furthermore, the estimation error is also computed following (20) and (21). It is easy to write (42) as:

ek+1 = Fnek + Σ∆φxk ,uk
+ ΣDddk (42)

if the following conditions are satisfied:

ΣE + HCk = In
ΣG = 0

ΣAk − L1Ck = Fn

Fn H = L2

 (43)

The matrix Λ in the inequality condition (44) can be inferred from (40) as:

Λ =

[
ek

∆φxk ,uk

]T[
−ζ

T
ζ 0

0 In

][
ek

∆φxk ,uk

]
≤ 0 (44)

Theorem 2. For system (39), there exists a robust UIO in the form of (41) such that the output estimation error
satisfies ‖eyk‖ ≤ µ‖dk‖ and a prescribed circular region D(α, r) if there exists a positive-definite symmetric
matrix Pn ∈ Rn×n, matrix Qn ∈ Rn×p, and positive scalars µ, and ε such that the following inequalities (41,
42) hold: 

−Pn + εζ
T

ζ 0 0
(
ΣAk

)T Pn − CT
k QT

n CT
k

∗ −εIn 0 ΣT Pn 0
∗ ∗ −µId

(
ΣDd

)T Pn 0
∗ ∗ ∗ −Pn 0
∗ ∗ ∗ ∗ −µIp

 < 0 (45)

and [
−Pn PnΣAk −QnCk − αPn

∗ −r2Pn

]
< 0 (46)

Then the state observer (41) is asymptotically stable.
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Proof of (45). Consider a Lyapunov function as Vk = eT
k Pnek; then its difference between two adjacent

steps ∆Vk = Vk+1 −Vk is given as:

∆Vk = Vk+1 −Vk
= eT

k+1Pnek+1 − eT
k Pnek

= λT

 FT
n PnFn − Pn FT

n PnΣ FT
n PnΣDd

∗ ΣT PnΣ ΣT PnΣDd

∗ ∗
(
ΣDd

)T PnΣDd

λ

(47)

where
λ =

[
eT

k ∆φ
T
xk ,uk

dT
k

]T
.

Moreover, (44) can be described as:

Λ = λT

 −ζ
T

ζ 0 0
0 In 0
0 0 0

λ ≤ 0 (48)

Combining (47) and (48) leads to:

∆Vk ≤ λT

 FT
n PnFn − Pn FT

n PnΣ FT
n PnΣDd

∗ ΣT PnΣ ΣT PnΣDd

∗ ∗
(
ΣDd

)T PnΣDd

λ− εΛ

= λT

 FT
n PnFn − Pn + εζ

T
ζ FT

n PnΣ FT
n PnΣDd

∗ ΣT PnΣ− εIn ΣT PnΣDd

∗ ∗
(
ΣDd

)T PnΣDd

λ

(49)

Based on the measurement error condition ‖eyk‖ ≤ µ‖dk‖ of the output, the matrix Jn in (50) can
be presented as:

Jn =

[
ek
dk

]T[ 1
µ CT

k Ck 0
0 −µId

][
ek
dk

]
≤ 0 (50)

A matrix Tn is defined as:
Tn = ∆Vk + Jn (51)

Equation (52) can be described using (49) and (51) as:

Tn ≤ λT

 FT
n PnFn − Pn + εζ

T
ζ + 1

µ CT
k Ck FT

n PnΣ FT
n PnΣDd

∗ ΣT PnΣ− εIn ΣT PnΣDd

∗ ∗
(
ΣDd

)T PnΣDd − µId

λ

= λTΠnλ

(52)

where

Πn =

 FT
n PnFn FT

n PnΣ FT
n PnΣDd

∗ ΣT PnΣ ΣT PnΣDd

∗ ∗
(
ΣDd

)T PnΣDd

+

 −Pn + εζ
T

ζ + 1
µ CT

k Ck 0 0
∗ −εIn 0
∗ ∗ −µId

 (53)
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Appling the Schur lemma [33] to (51) with Πn < 0, we obtain:

Πn′ =


−Pn + εζ

T
ζ + 1

µ CT
k Ck 0 0

(
ΣAk

)T Pn − CT
k QT

n

∗ −εIn 0 ΣT Pn

∗ ∗ −µId
(
ΣDd

)T Pn

∗ ∗ ∗ −Pn

 (54)

Similarly, applying the Schur complement lemma [33] to (54) with Πn′ < 0, then the inequality
(45) is satisfied once Jn < 0 satisfies the condition ‖eyk‖ ≤ µ‖dk‖. �

Proof of (46). Applying (41) to Lemma 2, then (46) is satisfied. �

In summary, the design procedure for this fault estimator is implemented in the following steps:

• Step 1: Construct the augmented system (39) for the discrete-time system (37).
• Step 2: Determine the matrices Qn, Pn, and L1 = P−1

n Qn to solve the LMI defined by the matrix
inequality (45, 46).

• Step 3: Calculate the gain matrices Fn, L2 and L using (46).

• Step 4: Obtain the state and fault estimation as x̂k =
[

In on×r

]
x̂k, and ŝk = Cs x̂k, respectively,

where Cs =
[

or×n Ir

]
.

4. Sensor Fault-Tolerant Control in an MMP System

4.1. General Residual from the Sensor Fault Signal

Under the state estimation vector of the UIO, the residual vector is calculated as [12]:

rk = yk − ŷk (55)

This means that rk = 0 if sk = 0 and rk 6= 0 if sk 6= 0.

4.2. Sensor FTC Compensation

The sensor fault output from the measurements influences the closed-loop behavior and corrupts
the state estimation.

The SFTC technique is designed based on the position SFs compensation to handle the sensor fault
issues of the MMP system, as shown in Figure 2. The PID main controller will operate conventional
close-loop trajectory control. The measurement is employed as [18]:

yck = yk − Fs ŝk (56)

Fault compensation is operated by a logic process that is based on a residual via a threshold value
k equal to 0 if |rk| ≤ k, and equal to 1 if |rk| > k [12].
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4.3. Simulation and Results

4.3.1. The parameters of the MMP system

The parameters of the MMP system were gathered from a KYB MMP4 by a cylinder of ϕ40 −
ϕ20 − 250 and a motor of DC 24V. Some parameters were determined using the parameter estimation
method in MATLAB version 2015a, 64 bits. The resulting parameters of the MMP system are shown in
Table 1.

Table 1. Basic parameters of the mini motion package (MMP) system.

Components Values Units

Ah 0.0013 m2

Ar 9.4e-4 m2

Vch 2.09e-4 m3

Vcr 4.0065e-05 m3

mp 10 kg

βe 2.9e+08 Pa

Ksp 2383 Nm

Dp 3.5e-6 m3

The basic parameters of the MMP system are listed in Table 1 as follows:
The matrices in (16) and (34) of the EHA system were obtained as:

Bk =
[

0 0 0
]

T ; Ck =
[

1 0 0
]
; Fs= 1;

Ak =

 1 0.001 0
0 0.9998 0.0005
0 −0.2911 0.2311

 .

Based on [35], the sampling time Ts can be selected by Ts = 1 ms.
To investigate the MMP tracking control, without loss of generality, a reference trajectory for the

positive position of the system cylinder was given as:

yr = sin(0.85t) + 1.5 (57)
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and a sensor fault s(t) was simulated by the following function:

s(t) =



0 if t < 2.945
0.75 sin(8t) + 1 if 2.945 ≤ t ≤ 3.9275
0.75 if 3.9275 ≤ t ≤ 7
2.55t− 17.1 if 7 ≤ t ≤ 7.25
−2.55t + 17.7 if 7.25 ≤ t ≤ 7.75
0.8125t− 6.034375 if 8.75 ≤ t ≤ 10
0 if t > 10

(58)

Based on the design experience, the positive scalars ζ, r, α, ε, and µ were selected as ζ = 20;
r = 0.01, α = 0.1, ε = 0.1, and µ = 0.2. The LMI defined by (45, 46) can be solved for Pn, Qn, and Fn.
If the solution is feasible, then the results can be obtained as:

Σ =


1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 0

; H =


0
0
0
1

; Qn =


−2.3626e + 0
0.1264e− 08
−3.1485e− 09
−2.3626e + 0

 ;

Pn =


2.321e + 1 −1.001e− 7 2.965e− 8 2.321e + 1
−1.001e− 7 1.914e− 9 4.062e− 10 −1.001e− 7
2.965e− 8 4.062e− 10 3.097e− 9 2.965e− 8
2.321e + 1 −1.001e− 7 2.965e− 8 2.321e + 1

 ;

L1 =


−6.2519e + 02
−9.3052e− 02
9.2219e− 02
6.2509e + 02

 ; L =


−2.2737e− 13
−2.7756e− 17

2.7756e− 17
2.2737e− 13

;

Fn =


6.262e + 2 9.999e− 4 3.244e− 7 6.252e + 2
9.305e− 2 9.998e− 1 5.250e− 4 9.305e− 2
−9.222e− 2 −2.911e− 1 2.311e− 1 −9.222e− 2
−6.261e + 2 −9.999e− 4 −3.244e− 7 −6.251e + 2

 .

4.3.2. The Evaluated Equations of the PID Controller for the MMP System

To evaluate the PID controller’s efficiency, the control error is normally one of the most important
factors to evaluate the PID controller.

Considering that a position control error estimation is calculated as:

eck = yr − yck (59)

a maximum error result eckmax of the position control error eck is computed as:

eckmax = yrmax − yckmax (60)

where yrmax and yckmax are the maximum reference signal and the maximum response signal, respectively.
The error performance peckmax of the PID controller of the position control error eckmax is defined as:

peckmax =

(
1− eckmax

esmax

)
100% (61)

where
esmax = smax − smin
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with smax and smin being the maximum and minimum sensor fault s(t), respectively.

4.3.3. Simulation Results and Discussion

To assess the effectiveness of the developed control approach, we conducted a comparative
simulation study on the system tracking performance, between the proposed SFTC and the traditional
PID control without an FTC module. This control had been built in a MATLAB/Simulink environment,
and a sampling time of Ts = 1ms was selected for all the simulations.

Numerical simulations were then carried out with the developed MMP model to follow the given
trajectory (57) under the disturbed environment, including the faulty sensor condition (58) without
disturbance (dk = 0), or with disturbance [dk = 0.0045random(2, t)]. By using the PID tuning tool of
the Matlab Simulink toolbox, the parameters of the PID controller are obtained (KP = 1.536, KI = 1.32
and KD = 0.0015) and applied to all the simulations.

The simulation results from Figures 3–6 show that the PID response signal and its estimation
signal followed the reference signal at locations without fault impacts, whereas when the SFTC was
not applied for the system, these signals were affected by the fault at locations where the fault occurred
(Figure 3a). In Figure 3a,b, the PID response signal without the SFTC clearly shows the effect of
the unknown input disturbance. This influence of the fault estimation signal is similar to the sensor
fault signal in Figure 3a, which demonstrates that the fault estimator of the system worked well.
Nevertheless, there is the big difference between the fault estimation of Figure 3b compared with
Figure 3a due to influences of the unknown input disturbance.

Processes 2019, 7, 89 15 of 20 

 

sensor fault signal in Figure 3a, which demonstrates that the fault estimator of the system worked 
well. Nevertheless, there is the big difference between the fault estimation of Figure 3b compared 
with Figure 3a due to influences of the unknown input disturbance. 

0 5 10 15
-1

0

1

2

3

4

Po
si

tio
n 

an
d 

ít 
es

tim
at

io
n 

(m
m

)

Time (s)

 Reference (mm)
 PID response without SFTC (mm)
 Estimated response without SFTC(mm)

 

(a) 

0 2 4 6 8 10 12 14
-1

0

1

2

3

4

Po
si

tio
n 

an
d 

its
 e

st
im

at
io

n 
(m

m
)

Time (s)

 Reference (mm)
 PID response without SFTC (mm)
 Estimated response without SFTC(mm)

 

(b) 

Figure 3. Position response and its estimation without SFTC of (a) disturbance 0kd = , and (b) 
disturbance kd  = 0.0045random(2,t). 

Figure 4a shows that the fault estimation signal reaches the sensor fault. This means that the 
fault estimator is performed well. Figure 4b shows the influences of disturbance to the fault 
estimation signal. The PID response signal and its estimation signal followed the reference signal 
when we applied the SFTC technology to our system even though the system is affected by the SFs 
in Figure 5a and unknown input disturbances in Figure 5b. Furthermore, the estimated fault can be 
reduced to zero when the SFTC technique is implemented by the compensation process, in cases with 
and without unknown inputs disturbance. Previous issues, to demonstrate that the MMP system 
works well when the proposed SFTC technology is utilized by the fault compensation process. 
Disturbances coming from an actuator are canceled after fault compensation; hence, we can use only 
the SFTC for fault compensation, which does not need an added actuator FTC for fault compensation. 

0 5 10 15

0.0

0.5

1.0

1.5

2.0

Se
ns

or
 fa

ul
t a

nd
 it

s 
es

tim
at

io
n 

(m
m

)

Time (s)

 Sensor fault (mm)
 Fault estimation (mm)

 

(a) 

0 5 10 15

0.0

0.5

1.0

1.5

2.0

Se
ns

or
 fa

ul
t a

nd
 e

st
im

at
ed

 fa
ul

t (
m

m
)

Time (s)

 Sensor fault (mm)
 Fault estimation (mm)

 

(b) 

Figure 4. Sensor fault and its estimation without SFTC (a) disturbance 0kd = , and (b) disturbance 

kd = 0.0045random(2,t). 

Figure 3. Position response and its estimation without SFTC of (a) disturbance dk = 0,
and (b) disturbance dk = 0.0045random(2,t).

Figure 4a shows that the fault estimation signal reaches the sensor fault. This means that the fault
estimator is performed well. Figure 4b shows the influences of disturbance to the fault estimation
signal. The PID response signal and its estimation signal followed the reference signal when we
applied the SFTC technology to our system even though the system is affected by the SFs in Figure 5a
and unknown input disturbances in Figure 5b. Furthermore, the estimated fault can be reduced to zero
when the SFTC technique is implemented by the compensation process, in cases with and without
unknown inputs disturbance. Previous issues, to demonstrate that the MMP system works well when
the proposed SFTC technology is utilized by the fault compensation process. Disturbances coming
from an actuator are canceled after fault compensation; hence, we can use only the SFTC for fault
compensation, which does not need an added actuator FTC for fault compensation.
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In Figure 6a,b, the estimated error signal reaches zero value when the SFTC technology is used to
perform error compensation.

To evaluate the PID controller performance, some data are listed in Table 2. Here, the control
error result eck is compared between cases with and without sensor faults in Figure 7a. Moreover, the
superior performance of the proposed SFTC compared with the traditional tracking controller PID is
evidenced by the difference between the control error eck without SFTC and the control error eck with
SFTC, which is described in Table 2 and displayed in Figure 7a,b. The error performance peckmax of
the PID controller with the SFTC averaged about 98.258% from 0.2 s to 9 s, whereas it averaged about
27.785% without the SFTC (Table 2). In contrast, the control error barely changed from 9 s to 15 s, even
though there were fewer errors with the SFTC. This can be explained by the fact that the compensation
process is executed in the second step of two adjacent steps. Therefore, signals with a vertical direction
change will not be performed for compensation, as can be seen in Figure 5a,b at time 10 s.

Table 2. The error assessment eckmax with disturbance dk = 0.

The Requirement
Content

Without SFTC With SFTC
eckmax (mm) peckmax (%) ftceckmax (mm) peckmax (%)

From 0.2 s to 5 s 1.194 20.67 0.0194 98.06
From 5 s to 9 s 0.6074 34.9 0.0149 98.51

From 0.2 s to 9 s 1.194 27.79 0.0194 98.26
From 9 s to 15 s 0.7511 24.89 0.7515 24.50
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Figure 7. The position control error eck for the case without disturbance dk of (a) without SFTC, and (b)
with SFTC.

Table 3 summarizes the position control error eckmax of the PID controller under an unknown
input disturbance dk condition, with and without SFTC. In the case with disturbance dk, from 0.2 s to
9 s, the average performance of the PID controller decreased by 0.83% (from 27.79% to 26.96%) without
an SFTC and by 26.5% (from 98.26% to 71.76%) with an SFTC due to the effect of the disturbance.
The PID controller performance was strongly decreased, from 24.89% to -11.88%, from 9 s to 15 s
without an SFTC and from 24.50% to 13.46% with an SFTC (Figure 8a,b).
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Table 3. The error assessment eckmax using a PID controller with disturbance dk.

Content
Without SFTC With SFTC

dk=0 With dk dk=0 With dk

eckmax
(mm)

peckmax
(%)

eckmax
(mm)

peckmax
(%)

ftceckmax
(mm)

peckmax
(%)

ftceckmax
(mm)

peckmax
(%)

From 0.2 s to 5 s 1.1940 20.67 1.1181 25.46 0.0194 98.06 0.3961 73.60
From 5 s to 9 s 0.6074 34.9 0.7154 28.46 0.0149 98.51 0.3003 69.97

From 0.2 s to 9 s 1.1940 27.79 1.1181 26.96 0.0194 98.26 0.3961 71.76
From 9 s to 15 s 0.7511 24.89 1.1188 -11.88 0.7515 24.50 0.8654 13.46Processes 2019, 7, 89 18 of 20 
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5. Conclusions 

In this paper, an advanced SFTC technique is developed for a class of nonlinear discrete-time 
systems. This technique is successfully applied to control the position of an MMP system with sensor 
faults and an unknown input disturbance. The developed control technique, including SFs and 
system disturbances, is first estimated using the UIO and an LMI optimization algorithm. The 
estimated signals are utilized to generate compensation control to overcome the control challenges. 
By using the proposed SFTC, the system output follows the desired trajectory very well, even under 
the disturbed environment and concurrent sensor faults. Simulations are carried out to demonstrate 
the superior performance of the proposed SFTC technique over the traditional control method 
without fault-tolerant control features, as summarized in Table 2. With the SFTC technique, the 
control performance is determined to be 98.26% for the case without disturbance kd  and 71.76% for 

the case of disturbance kd , as shown in Table 3. In future work, practical experiments with the 
developed rig will be carried out to confirm the applicability of the developed SFTC approach in real-
time. 
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5. Conclusions

In this paper, an advanced SFTC technique is developed for a class of nonlinear discrete-time
systems. This technique is successfully applied to control the position of an MMP system with sensor
faults and an unknown input disturbance. The developed control technique, including SFs and system
disturbances, is first estimated using the UIO and an LMI optimization algorithm. The estimated
signals are utilized to generate compensation control to overcome the control challenges. By using the
proposed SFTC, the system output follows the desired trajectory very well, even under the disturbed
environment and concurrent sensor faults. Simulations are carried out to demonstrate the superior
performance of the proposed SFTC technique over the traditional control method without fault-tolerant
control features, as summarized in Table 2. With the SFTC technique, the control performance is
determined to be 98.26% for the case without disturbance dk and 71.76% for the case of disturbance dk,
as shown in Table 3. In future work, practical experiments with the developed rig will be carried out
to confirm the applicability of the developed SFTC approach in real-time.
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