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Abstract: Model-based concepts have been proven to be beneficial in pharmaceutical manufacturing,
thus contributing to low costs and high quality standards. However, model parameters are
derived from imperfect, noisy measurement data, which result in uncertain parameter estimates
and sub-optimal process design concepts. In the last two decades, various methods have been
proposed for dealing with parameter uncertainties in model-based process design. Most concepts for
robustification, however, ignore the batch-to-batch variations that are common in pharmaceutical
manufacturing processes. In this work, a probability-box robust process design concept is proposed.
Batch-to-batch variations were considered to be imprecise parameter uncertainties, and modeled as
probability-boxes accordingly. The point estimate method was combined with the back-off approach
for efficient uncertainty propagation and robust process design. The novel robustification concept
was applied to a freeze-drying process. Optimal shelf temperature and chamber pressure profiles are
presented for the robust process design under batch-to-batch variation.

Keywords: robust process design; batch-to-batch variation; parametric probability-box; point
estimate method; pharmaceutical manufacturing; freeze-drying

1. Introduction

To implement Quality by Design (QbD) concepts, and to ensure optimally designed processes,
over the last two decades model-based process design has become an important tool in pharmaceutical
manufacturing and process systems engineering [1–5]. For instance, dynamic process models support
recent activities of the Food and Drug Administration (FDA) [6] and the International Council for
Harmonisation (ICH) Q11 guideline [7] regarding QbD, and the quantification of process variability [8].
Although uncertainties in process models and parameters are considered, and are frequently
incorporated in robust process design concepts [9–13], the applied algorithms are commonly based on
perfect uncertainty measures, i.e., using specific probability density functions (PDFs). In addition to
probability-based concepts for robust process design, scenario-based methods exist [14–16]. Simulation
studies seek the worst-case scenario for which the process is optimized, even when the worst-case
scenario rarely occurs in reality, and thus, lead to robust but extremely conservative designs with
considerable performance losses. Therefore, robust design concepts for pharmaceutical processes,
which aim to maximize process performance while satisfying critical process constraints under
probabilistic uncertainties, are preferred, to provide the proper trade-off between process performance
and robustness [2,17]. Probabilistic uncertainties, in turn, are the result of noisy experimental data
and system identification routines that assume a particular experimental setting, while neglecting
batch-to-batch variation effects [17]. In the pharmaceutical industry, the batch operation is the standard
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operating mode when producing active pharmaceutical ingredients (APIs) and drugs [18], i.e., all
materials are charged before the start of processing and discharged at the end of processing. Thus, slight
experimental deviations or the degradation of the process equipment might result in batch-to-batch
variation [18–20]. The source of batch-to-batch variation is difficult to predict, but can be quantified
with process analytical technology (PAT) and multivariate statistical analysis [19,20]. In the literature, it
is well-known that batch-to-batch variation causes severe problems in pharmaceutical manufacturing,
drug quality, clinical studies, and therapeutics [6,17,21,22]. To lower batch-to-batch variation in
pharmaceutical, and to improve QbD measures, analyzing the effect of measurement noise and
batch-to-batch variation is essential. The adverse effect of batch-to-batch variation in pharmaceutical
manufacturing is studied experimentally for various processing steps, e.g., fermentation, crystallization,
and (nanomaterial) formulation [17,19,23]. In model-based process design, in turn, recent studies try to
analysis and control batch-to-batch variation effects too [24,25]. For instance, in the case of model-based
process design, model parameters can be derived for each batch data set separately. When each batch
run is fit individually, batch-to-batch variation leads to different sets of model parameter estimates
and parameter uncertainties. Please note that the variability in the model parameters is not exclusively
the result of measurement noise, but the joint effect of measurement errors and slight differences in
the experimental settings and the raw materials of the batches [6,17]. Thus, simulation studies should
consider imprecise uncertainties [26–28] as well. These imprecise uncertainties cannot be described via
a single PDF, but via a set of PDFs that is known as the ambiguity set [29,30].

With the ambiguity set, we can distinguish between noise (aleatory uncertainty) and
batch-to-batch variation (epistemic uncertainty) [8]. The problem of imprecise uncertainties is also
closely related to the Dempster-Shafer theory, where uncertainties are expressed as so-called plausibility
functions (maximum amount of probability) and belief functions (minimum amount of probability).
The same holds for the probability bounds analysis (PBA), which combines probability theory and
interval analysis in probability bounds and probability-box (p-box) concepts [31–33]. Based on these
ambiguity set realizations, robust process design aims to incorporate imprecise uncertainties in
the framework of robust optimization. For instance, recent studies use p-box design concepts for
linear optimization problems in process design [30] and algebraic structural reliability analysis [28].
For dynamical systems, however, uncertainty analysis and propagation are challenging, because the
computational costs when standard Monte Carlo simulation techniques are used [34].

In the case of robust process design for nonlinear dynamic systems, highly efficient methods
for uncertainty propagation are mandatory [35]. In addition to (quasi-) Monte Carlo simulations and
improved sampling techniques [36], surrogate models (e.g., neural networks, Gaussian processes,
and polynomial chaos expansion) are used to accelerate uncertainty propagation problems in robust
process design, but typically suffer the curse of dimensionality [37–40]; that is, the cost increases
exponentially with the number of uncertain model parameters. Alternatively, in our previous work,
we demonstrated the usefulness of the point estimate method (PEM) [41] for the robust design of
pharmaceutical manufacturing processes [35]. The PEM ensures superior efficiency and workable
accuracy for many problems in engineering [41,42]. In the particular case of back-off-based robust design
methods, process optimization and uncertainty propagation can be considered sequentially [13,43].
Thus, combining back-off-based robust design concepts with the PEM can lead to a dramatic
reduction in computational costs, as demonstrated by Emenike et al. [12] for the synthesis of an
API intermediate. To the best of the authors’ knowledge, a back-off-based robust process design under
batch-to-batch variation has not been reported in the literature. Thus, the purpose of this work is
two-fold: (1) We integrate imprecise uncertainties caused by measurement noise and batch-to-batch
variation with the p-box approach in model-based process design, and (2) we combine the PEM
with a back-off-based approach to solve the underlying p-box robust optimization problem efficiently.
In Figure 1, the proposed robustification framework is summarized. The effectiveness of the robust
process design under batch-to-batch variation is demonstrated for freeze-drying as a highly relevant
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pharmaceutical process, where the optimal shelf temperature and chamber pressure profiles are derived
for optimal process efficiency and process quality attributes.
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Figure 1. Flowchart of the proposed framework of robust process design under batch-to-batch variation.

The paper is organized as follows. Section 2 covers the basics of the robust process design
under batch-to-batch variation. In Section 3, an effective solution strategy with the PEM and the
back-off-based design is introduced. Section 4 summarizes the results from the p-box robust process
design of a freeze-drying process. Conclusions can be found in Section 5.

2. Robust Process Design

In what follows, the basics of the probability-based process design are summarized. Starting with
the standard probability-based robust optimization framework, an extension to imprecise uncertainties
representing model parameter uncertainties under batch-to-batch variation is given.

2.1. Probability-Based Robust Optimization

In the literature, various concepts of robust process design exist. Traditional methods for
propagating and quantifying model uncertainties are probabilistic and frequently used in robust
process design. Here, the interested reader is referred to [9,11,13,16,30,35,37] and references therein.
The general structure of the original probability-based robust process design reads as:

min
x(·),u(·)

Φ(M(xt f )) (1a)

subject to:

ẋd(t) = gd(x(t), u(t), p), (1b)

0 = ga(x(t), u(t), p), (1c)

xd(0) = x0, (1d)

Pv = Pr[hnq(x(t), u(t), p) ≥ 0] ≤ εnq, (1e)

umin ≤ u ≤ umax, (1f)

where t ∈ [0, t f ] is the time, u ∈ Rnu is the vector of the control variables, and p ∈ Rnp is the vector of
the time-invariant parameters. xd ∈ Rnxd and xa ∈ Rnxa are the differential and algebra states; that
is, x = [xd, xa] ∈ Rnx . The initial conditions for the differential states are given by x0. Uncertainties
can exist in the parameters and the initial conditions ξ = [p; x0], where the probability space (Ω,F , P)
is defined with the sample space Ω, the σ-algebra F , and the probability measure P. Φ(M(xt f ))

denotes the robust formulation of the Mayer objective term M(xt f ) that is used for the nominal

process design. Equations (1b) and (1c) are the model equations with gd : R(nxd+nxa )×nu×np → Rnxd

and ga : R(nxd+nxa )×nu×np → Rnxa . Pv in Equation (1e) is the probability of violating the inequality
constraints hnq : R(nxd+nxa )×nu×np → Rnnq . εnq is the tolerance factor that gives the maximum
acceptable probability for constraint violations. [umin, umax] are the upper and lower boundaries for
the control variables.

For a conventional robust process design, parameters uncertainties ξ are characterized
with well-defined probability distributions FΞ(ξ). The probability of constraint violations can be
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approximated with statistical moments, and thus, the robust inequality constraints in Equation (1e)
read as:

E[hnq] + βξ Var[hnq]
0.5 ≤ 0, (2)

where E[·] and Var[·] indicate the mean and variance calculated over the probability space of ξ, and βξ

determines the robust design’s conservatism to the variation of the model parameters ξ uncertainties.

2.2. Imprecise Uncertainties

In the case of imprecise uncertainties, the conventional robust process design concept can be
generalized with the parametric p-box approach, where the uncertainties of the parameters ξ depend
on the hyper-parameters θ of the parametric probability distributions:

FΞ(ξ) = FΞ(ξ|θ), θ ∈ DΘ ⊂ Rnθ , (3)

where θ is specified by upper and lower bounds, and DΘ = [θl
1, θu

1 ]× . . . [θl
nθ

, θu
nθ
] denotes the feasible

domain of these hyper-parameters. According to the p-box notation, the probability of a constraint
violation can be expressed as a bounded interval Pv ∈ [Pl

v, Pu
v ] with:

Pl
v = min

θ
Pv(θ), Pu

v = max
θ

Pv(θ). (4)

In the case of the p-box robust process design, the upper probability bound is of interest,
to guarantee a safe operation:

Pu
v = max

θ
(Pr[hnq(x(t), u(t), p) ≥ 0|θ]) ≤ εnq. (5)

If the upper boundary of Pv is lower than or equal to εnq, then Equation (1e) holds for all
realizations of hyper-parameters θ and Pv ∈ [Pl

v, Pu
v ], respectively. To avoid solving a cumbersome

double-loop sampling or optimization problem [31], Equation (5) can be, as for a conventional robust
design, also approximated with statistical moments according to:

Eθ[Eξ [hnq] + βξVarξ [hnq]
0.5] + βθVarθ[Eξ [hnq] + βξ Varξ [hnq]

0.5]0.5 ≤ 0, (6)

where βθ determines the conservativeness of the p-box robust design results from the variation
of hyper-parameters θ. Note the direct link to PBA, where the first term of Equation (6) refers to
the averaged value of the uncertain boundary, and the second term measures the variation. Thus,
with βθ = 2.32, the 99% confidence interval of the uncertain upper limit is calculated, and the upper
bound of the upper bound approximates the plausibility function sufficiently. Please note that the 99%
confidence interval indicates the interval of the probability distribution, in which the constraints are
satisfied, and does not have to be symmetric. Evaluating the plausibility function for a robust process
design might result in too-conservative designs under considerable performance loss. Note that
the plausibility function assigns the inequality constraints the highest probability. Alternatively,
setting βθ = −2.32 leads to the lowest probability of the inequality constraint under batch-to-batch
variation, and thus, approximates the belief function accordingly. Both strategies, i.e., βθ = 2.32 and
βθ = −2.32, are considered within the PEM-based back-off approach, and the general structure of the
double-loop approach is summarized in Figure 2.
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Figure 2. Illustration of the outer and inner loop setting for evaluating the inequality constraint
under aleatory and epistemic uncertainty. Sampling from epistemic uncertainty (a) results in aleatory
uncertainty realization (b), which is propagated to the inequality constraint (c) via the process model.
Re-sampling from the epistemic uncertainty (a) helps to quantify the variation in the upper limit of the
inequality constraint (d).

3. PEM-Based Back-Off Approach

Before introducing the basic notation of back-off-based process design, the concept of the PEM is
introduced, and how it can be efficiently used for problems of imprecise uncertainty propagation.

3.1. Point Estimate Method

The conventional robust and p-box robust process design problems are solved with the back-off
approach [12], where the back-offs are calculated with Equations (2) and (6), respectively. The statistical
moments used in Equations (2) and (6) are approximated with the PEM, as it is more efficient
than standard methods for uncertainty propagation [35]. Depending on the underlying parameter
distribution, specialized sample points and weight factors wi can be derived, and evaluated for
uncertainty propagation [35,41]. In the case of aleatory parameter uncertainties, 2n2

ξ + 1 PEM sample
points must be used to evaluate Equation (2), assuming Gaussian distributions for the model parameter
uncertainties. In detail, the deterministic 2n2

ξ + 1 sample points are generated by the first three
generator functions (GF[0], GF[±ϑ], and GF[±ϑ,±ϑ]) defined in [41], where ϑ controls the exploration
of the nξ-dimensional parameter space. Using specific weight factors for each generator function
results in the final approximation scheme for the mean value:

E[hnq] ≈ w0h0
nq(GF[0]) + w1

2nξ+1

∑
i=2

hi
nq(GF[±ϑ]) + w2

2n2
ξ+1

∑
i=2nξ+2

hi
nq(GF[±ϑ,±ϑ]), (7)

where w0 = 1 +
n2

ξ−7nξ

18 , w1 =
4−nξ

18 , w2 = 1
36 , and ϑ depends on the specification of the Gaussian

distribution [41]. Similarly, the variance can be estimated with the following equation:

Var[hnq] ≈w0(h0
nq(GF[0])− E[hnq])

2 + w1

2nξ+1

∑
i=2

(hi
nq(GF[±ϑ])− E[hnq])

2

+ w2

2n2
ξ+1

∑
i=2nξ+2

(hi
nq(GF[±ϑ,±ϑ])− E[hnq])

2.

(8)

With Equations (7) and (8), the conventional robust design can be realized, but they ignore the
batch-to-batch variation and epistemic uncertainty, respectively. To incorporate epistemic uncertainty,
the outer loop of uncertainty propagation must be considered; see Figure 2. To do so, the scaling
factor ϑ and weights wi of the PEM are adapted to uniform probability distributions [35,41]. Thus,
for imprecise parameter uncertainties, and the given nested uncertainty propagation problem in
Equation (6), 2n2

ξ + 1 PEM sample points for the model parameters and 2n2
θ + 1 PEM sample points for
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the bounded hyper-parameters θ are evaluated that result in 4n2
θn2

ξ + 2(n2
θ + n2

ξ) + 1 total PEM sample
points. Please note that the deterministic sampling scheme from the PEM can be easily parallelized,
while ensuring reproducible results.

3.2. Back-Off Realization

For the back-off strategy, the inequality constraint of Equation (1e) is considered in its deterministic
form first:

hnq(x(t), u(t), p) ≤ 0. (9)

To guarantee that the inequality constraint is fulfilled under imprecise uncertainties, a back-off
term bc to the constraint at the nominal parameter vector p is introduced as:

hnq(x(t), u(t), p) + bc ≤ 0. (10)

In conventional robust process design with precise parameter uncertainties, the back-off term bc

can be calculated with the following equation [12]:

bc = E[hnq] + βξVar[hnq]
0.5 − hnq,nom, (11)

in which hnq,nom represents the nominal value of the inequality constraints, and βξ determines the
robustness that could be obtained with this back-off term. For instance, bc calculated with βξ = 2.32
could provide a robust design, where 99% of the process realizations under aleatory uncertainty do
not violate the inequality constraints.

In comparison with the conventional robust design, the p-box robust process design determines
the back-off term bc with Equation (6) and reads as:

bc = Eθ[Eξ [hnq] + βξ Varξ [hnq]
0.5] + βθVarθ[Eξ [hnq] + βξ Varξ [hnq]

0.5]0.5 − hnq,nom, (12)

in which βξ and βθ decide the robustness of the individual batch and the batch-to-batch variation,
respectively. For instance, the back-off term determined with βξ = 2.32 and βθ = 2.32 could provide
robust design, with which 99% of different configurations of parameter uncertainties and process
realizations will have the desired robust performance; that is, the probability of a constraint violation
is smaller than 99%. Different values for βξ and βθ could also be used, depending on the preferred
robustness level required for the process under study. For more details regarding the PEM-based
back-off design and the selection of proper values for bc, we refer to our preview works [12,13] and
references in those works.

4. Case Study

The freeze-drying process, also known as lyophilization, is used extensively in pharmaceutical
manufacturing to stabilize APIs that have limited storage time in aqueous solutions, for example,
therapeutic protein formulations and vaccines [10]. The primary drying process, which dominates
the overall energy consumption of the lyophilization process, is considered the most critical step [44].
In this study, we analyze the robust process design of the primary drying process in the presence of
imprecise parameter uncertainties due to batch-to-batch variations. Thus, we advance our preliminary
work on robust process design for the primary drying process which was based on precise parameter
uncertainties [45], and we extend recent model-based studies and experimental work on inter-vial
heterogeneity in general [46–48].
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4.1. Mathematical Model of the Primary Drying Process

The mathematical model of the primary drying process used in this work is adapted from [10,44],
and the overall setup is illustrated in Figure 3. The mass transfer equation of vapor, which represents
the dynamics of the sublimation process at the sublimation surface, is given as:

dmsub
dt

= Ap
Pi − Pc

Rp
, (13)

where msub is the mass of ice removed by sublimation. Ap, Pc, and Rp are the cross-sectional area of
the product, the chamber pressure, and the dried product resistance to the vapor flux, respectively.
The heat used for sublimation is assumed to be equal to the heat transferred from the heating shelf:

Kv(Ts − TB)Av = ∆Hs
dmsub

dt
, (14)

where Kv, Av, and Ts are the heat transfer coefficient, the outer cross-sectional area of the vial, and the
shelf temperature, respectively.

(a) (b)

Figure 3. Illustration of the freeze-drying process. Model parameters can represent the dynamic
processes of a single vial (a) appropriately, but may fail for all vials that are handled in the freeze-dryer
(b) due to batch-to-batch variations.

Pi is the vapor pressure at the sublimation interface which depends on Ti [49]:

Pi = exp(9.55− 5720
Ti

+ 3.53ln(Ti)− 0.00728Ti). (15)

Ti is the temperature at the sublimation interface, and is calculated with the energy balance equation
given in [44]. Kv, Av, and Ts are the heat transfer coefficient, the outer cross-sectional area of the vial,
and the shelf temperature, respectively. ∆Hs is the heat of sublimation which also depends on Ti [49].
TB = Ti + ∆T is the temperature at the bottom of the vial. ∆T is the temperature difference across the
frozen layer [10]:

∆T =
889200

(L f (Pi−Pc))

Rp
− 0.0102L f (Ts − Ti)

1− 0.0102L f
, (16)

where L f is the height of the frozen layer and can be linked to msub via:

msub = (Ltotal − L f )ρIεAp. (17)
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Ltotal , ρI , and ε are the total height of the product layer, the density of the ice, and the volume of the ice
fraction, respectively. Nominal values and units for the parameters and the initial conditions can be
found in [10,44], and the used nominal parameter values are summarized in Table 1.

Table 1. Nominal values of the model parameters and the initial conditions for the primary drying
model [10].

Parameters Symbols Unit Nominal Value

cross-sectional area of product Ap m2 3.80× 10−4

outer cross-sectional area of the vial Av m2 4.15× 10−4

Av,n m2 1.25× 10−4

dried product resistance Rp m/s 5.57× 104

heat transfer coefficient Kv J/(m2sK) 11.47
Ltotal m 0.00658

ρI kg/m3 919
ε − 0.97
M kg/mol 0.018
k − 1.33
R J/(Kmol) 8.314

4.2. Optimal Process Design Strategy

This case study aims to maximize the efficiency of the primary drying step under parameter
uncertainties in Rp and Kv, while ensuring the product quality at the same time. The shelf temperature
and the chamber pressure are adapted to maximize the total mass of ice removed by sublimation, and to
minimize the operating time. To avoid irreversible product damage of the API cake, temperature Ti is
maintained to be smaller than the critical collapse temperature Tcrit = −34 ◦C [10]. Feasible operation
intervals for chamber pressure Pc and shelf temperature Ts are [5, 30] Pa and [−40, 30] ◦C, respectively.

First, the optimization problem is solved in the absence of parameter uncertainties for the nominal
design. Second, precise uncertainties in parameters Rp and Kv are included for the conventional robust
process design; that is, batch-to-batch variation effects are ignored. According to [10], we assume
that the uncertainties of Rp and Kv follow a Gaussian distribution; i.e., Rp ∼ N (56,000, 56002)
and Kv ∼ N (11.47, 1.152). Finally, we assume imprecise parameter uncertainties in Rp and Kv for
the p-box robust process design as introduced in Section 2. According to the parametric p-box
concept, the interval of the hyper-parameters and the type of probability distribution families are
listed in Table 2. For the sake of demonstration, the performance of the proposed framework, i.e.,
precise parameter uncertainties and imprecise parameter uncertainties, are assumed according to the
information from [10] and the reference therein.

Table 2. Imprecise uncertainties in model parameters represented as parametric p-boxes.

Parameters Distribution Mean Value Standard Deviation

Rp Gaussian [50,000, 80,000] [5000, 6000]
Kv Gaussian [9, 14] [0.5, 1.5]

The number of model evaluations needed to calculate the back-offs for the p-box robust design is
297 for each iteration, and the back-offs converge at the 4th iteration. The optimization problems were
implemented in MATLAB (2017a), and solved within the CasADi framework [50] using the nonlinear
programming (NLP) solver IPOPT [51].

4.3. Results and Discussion

In Figure 4, we show the designed profiles of the shelf temperature and the chamber pressure for
the nominal, robust, and p-box robust designs of the primary drying step. For the nominal design, Ti is
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kept at its upper boundary to ensure higher vapor pressure Pi at the sublimation interface, and thus,
to accelerate the sublimation process according to Equations (13) and (15). In the beginning, Pc is set to
9.6 Pa to achieve a higher sublimation speed and is decreased gradually to compensate for the influence
of the decreasing height of the frozen layer following Equation (16). However, with the existence of
(imprecise) parameter uncertainties, the variation of temperature at the sublimation interface will
lead to significant violations of the critical temperature which is necessary for maintaining the quality
of dried API product. Therefore, results from the robust designs attempt to reduce the temperature
of the heating shelf to avoid quality failures of the API cake, while the pressure is maintained at its
lower boundary to maximize the efficiency of the freeze-drying process. The shelf temperature for
the conventional robust design decreases, while that for the nominal design remains at the upper
limit; see Figure 4a. Moreover, the shelf temperature for the p-box robust design (plausibility function,
βθ = 2.32) decreases further as the effect of imprecise parameter uncertainties is taken into account
with the highest probability. The chamber pressure for the robust and p-box robust designs is also
lower than that for the nominal design, and is kept at the minimum to increase the efficiency of the
sublimation process; see Figure 4b. The increase in robustness is at the cost of decreased performance;
that is, the drying time of the p-box robust design shown in Figure 5 is longer than that for the
nominal and conventional robust designs. In addition, the effect of batch-to-batch variation and
epistemic uncertainties is also illustrated with the p-box design (belief function, βθ = −2.32). The shelf
temperature and chamber pressure profiles are close to those of the nominal case.
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 / 
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robust
p-box robust(plausibility function)
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P c
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(b)
Figure 4. Designed profiles for the shelf temperature Ts (a) and the chamber pressure Pc (b) of the
nominal, robust, p-box (plausibility function) robust, and p-box (belief function) robust designs.

In Figure 5, we illustrate the probability distributions of Ti calculated with the parameter
uncertainties of different hyper-parameter realizations for the nominal, robust, and p-box robust
designs. Results from the nominal design violate the upper limit of Ti in most scenarios, as indicated
in Figure 5a, and thus, the designed shelf temperature and chamber pressure profiles are unlikely to
be beneficial for most of the vials that are handled in the freeze-dryer. In Figure 5b, we show that
the conventional robust design increases the robustness of the process, but with significant constraint
violations when the hyper-parameters are different from the one used for the conventional robust
process design, i.e., when there is considerable batch-to-batch variation. In the case of batch-to-batch
variation and imprecise parameter uncertainties, the p-box robust design (plausibility function,
βθ = 2.32) ensures the lowest number of constraint violations; see Figure 5c. To demonstrate the effect
of batch-to-batch variation further, the p-box design (belief function, βθ = −2.32) is given in Figure 5d.
Considering the belief function, the p-box design is far from robust, and is close to the nominal design,
as indicated in Figure 5d.
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Figure 5. Probability density functions of the temperature at the sublimation interface (Ti) obtained
from different probability distributions of parameter uncertainties for (a) nominal, (b) robust, (c) p-box
robust (plausibility function), and (d) p-box robust (belief function) process designs. The red line is the
upper limit of Ti.

The performance of the nominal, robust, and p-box robust designs is further analyzed,
and validated for the imprecise parameter uncertainties of Rp and Kv with Monte Carlo simulations.
To this end, 1000 realizations of the hyper-parameters (epistemic uncertainty) and 1000 samples of
parameters Rp and Kv from each realization (aleatory uncertainty) are generated, which leads to 106

samples in total for the double-loop approach (Figure 2). In Figure 6, we summarize the number
of constraint violations determined from the 1000 model evaluations with the parameter samples
generated from the probability distributions of parameter uncertainties, with a fixed hyper-parameter
realization. The normalized histograms of the violation number, in turn, are obtained from the 1000
realizations of the hyper-parameters. Please note that for the sake of validation, we aim for a robust
design for the individual batches and batch-to-batch variations. Thus, two parameters, βξ = 2.32
and βθ = 2.32, are selected, and determine the final robustness level of the designed process. (1)
βξ = 2.32 (i.e., εnq is set to 1%) attempts to have a design with which the constraint violation number
should be lower than or equal to 10 in the case of 1000 parameter samples in single realization of the
hyper-parameters, and (2) βθ = 2.32 attempts to guarantee that fewer than or equal to 10 realizations
of hyper-parameters will not obey the first desired robustness.
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Figure 6. Normalized histograms of constraint violations for the (a) nominal, (b) robust, (c) p-box
robust (plausibility function), and (d) p-box robust (belief function) process designs.

The probability that the violation number ≥ 10 is the highest for the nominal design; see Figure 6a.
As indicated in Figure 6b, the conventional robust process design has a certain effect of, but results in
a considerable number of constraint violation, due to the neglected batch-to-batch variation. For the
p-box robust design (plausibility function, βθ = 2.32) in Figure 6c, the number of constraint violations
fulfills the given specification for almost all sample realizations. Only a small number of samples do
not fulfill the given specification of the violation number, which can be attributed to the approximation
errors of the PEM used for the inner and outer loops of uncertainty propagation (Figure 2). The effect
of the batch-to-batch variation becomes also obvious for the alternative p-box design (belief function,
βθ = −2.32) in Figure 6d. The likelihood of a constraint violation increases drastically when compared
with the previous p-box design (plausibility function, βθ = 2.32), and has a performance similar to that
of the nominal design. To summarize, the probability that the violation number is larger than 10 is
equal to 98.6%, 78.9%, 2%, and 96.8% for the nominal, conventional robust, p-box (plausibility function),
and p-box (belief functions) designs, respectively. As can be observed, the proposed p-box (plausibility
function) approach can handle the imprecise parameter uncertainties and provide a process design
which is robust enough for not only an individual batch but also for batch-to-batch variations.

5. Conclusions

In this work, we introduced a p-box robust process design to compensate for batch-to-batch
variation and imprecise parameter uncertainties, which were expressed as parametric p-boxes.
The notation of the robust inequality constraint was adapted according to the parametric p-boxes,
and further approximated with statistical moments that were calculated efficiently. Moreover,
combining the point estimate method with a back-off strategy for robust design implementation
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has been proven to be beneficial in terms of the computational costs for the p-box robust process design
concept. The efficiency of the proposed strategy was successfully demonstrated with a freeze-drying
process, as a highly relevant pharmaceutical manufacturing process. The results of the p-box robust
process design were compared with the results from the nominal and conventional robust designs.
The proposed strategy performed quite well, and could ensure the robustness of the inequality
constraint, even in the presence of batch-to-batch variation and imprecise parameter uncertainties,
respectively. For the p-box design, the two scenarios of plausibility and belief function illustrated
the considerable impact of batch-to-batch variation on the optimal process design results. Thus,
future work will focus on rigorous sensitivity studies of robust process designs for pharmaceutical
processes that have imprecise parameter uncertainties, and systematic analysis of the effect of epistemic
and aleatory uncertainties. Moreover, the proposed approach could also be incorporated into advanced
control strategies, e.g., model predictive control, to guarantee the robustness of process constraints in
the presence of imprecise parameter uncertainties, which is also an interesting aspect for novel Quality
by Control concepts.
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