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Abstract: The result of an adsorption experiment indicated that the pure magadiite (MAG) and the
modified MAG via cetyltrimethylammonium-bromide (CTAB-MAG) possessed pronounced affinity to
the Rhodamine-B (Rh-B) dye molecules. CTAB-MAG was synthesized with an ion-exchange method
between MAG and cetyltrimethylammonium-bromide (CTAB) in an aqueous solution. The adsorption
capacities of CTAB-MAG and MAG on Rh-B were 67.19 mg/g and 48.13 mg/g, respectively; while
the pH and the time were 7 and 60 min, respectively; however, the initial concentration of Rh-B was
100 mg/L, and adsorbent dosage was 1 g/L. Whereas, the adsorption capacity of CTAB-MAG was
increased by 40% over MAG which indicated that CTAB-MAG can be used as an efficient low-cost
adsorbent. Adsorption kinetics were consistent with the pseudo-second-order kinetic equation;
the adsorption processes were dominated by film diffusion process which belonged to monomolecular
layer adsorption.
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Highlights

1. Intercalated CTAB-MAG was characterized by ion exchange;
2. Adsorption kinetics were well fitted in pseudo second order model and adsorption processes

were dominated by film diffusion process which belonged to monomolecular layer adsorption;
3. Adsorption capacity on Rhodamine-B of CTAB-MAG (67.19 mg/g) was increased by 40% over

MAG (48.13 mg/g).

1. Introduction

Many dyes are toxic for human health, and many dyes are widely used in numerous industries;
however, a synthetic pink dye called Rhodamine-B (Rh-B) has been widely used as a pigment for
textiles, food production, and biological staining (in biomedical research laboratories). But it is difficult
to degrade because of stable chemical structure, as can be seen from Figure 1. There are many kinds of
methods used to treat wastewater containing Rh-B, such as electrochemical oxidation [1], catalytic
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degradation [2], photocatalytic degradation [3], photoelectrocatalytic degradation [4], heterogeneous
photo-Fenton degradation [5], and the adsorption method [6] which is the most common way because
it is simple to operate, with wide range of options.
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Figure 1. Structure schematic diagram of the Rhodamine-B (Rh-B).

Magadiite (MAG), which was discovered by Eugster in Kenya’s saline lake [7], is a natural layered
silicate mineral; its plates present a rose petal shape; it presents as a white powder under normal
circumstances. There are so many hydrated sodium ions between the plates that the cation-exchange
capacity (CEC) is higher than other silicates, such as montmorillonite and can reach up to 2.22 meq/g [8],
which was determined from the ideal formulation of MAG (Na2Si14O29). So far, the cation-exchange
properties of MAG investigated [9–13], indicate that MAG can be used as an adsorbent, based on
cation exchange [14,15]. According to the current study, MAG can be synthesized [16–21]; the laminate
of MAG was composed of SiO4 and has no other impurities. Therefore, the structure of the MAG is
very stable and has good chemical stability [22–24]. The Figure 2 shows the lamellar structure of the
MAG; the lines of squares, hexagons and octagons, were expressed as Si–O–Si bond [25].
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So far, there are many ways to modify MAG based on ion exchange. Cetyltrimethylammonium
(CTMA) [26,27], heterocyclic ammine [28], and octyl triethoxysilane (OTES) [29] have been used
to modify MAG, based on cation exchange, which could effectively expand layer spacing and
elevate its adsorption performance. In this experiment, we prepared CTAB-MAG by using
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cetyltrimethylammonium-bromide (CTAB) to modify MAG, which can effectively increase the layer
spacing of MAG from 1.52 nm to 3.166 nm, thereby enhancing its adsorption capacity, then we used
MAG and CTAB-MAG adsorption Rh-B from an aqueous solution to discuss the adsorption mechanism
of CTAB-MAG compared with MAG.

2. Experimental

2.1. Experimental Reagents

The Rh-B (chemical pure) and CTAB (chemical pure) were obtained from Tianjin Fuchen Chemical
Reagent Factory, (Tianjin, China). Other necessary chemicals (chemical pure) were obtained from
Guangzhou Qianhui Company (Guangzhou, China).

2.2. Measuring Instruments

The X-ray diffraction (XRD) analyses were characterized using an AXS D8 ADVANCE X-ray
diffractometer (Bruker AXS, Karlsruhe, Germany). Using the range of 500–4000 cm−1 at room
temperature, the Fourier transform infrared spectroscopy (FTIR) analyses were characterized by
a NEXUS 670 type FTIR in a KBr pellet (Nicolet, Waltham, MA, USA). The microscopic surface
morphology was observed by SEM analyses by Nova Nano type SEM 430 (Merlin, CA, USA).

2.3. Preparation of Sorbents.

The specific preparation method of MAG was made in our laboratory [21]; the synthesis method
of CTAB-MAG was an ion exchange method. The interlayer Na+ of MAG exchanges with CTA+ of
CTAB to form CTAB-MAG; therefore, the chemical composition of CTAB-MAG was that of the skeleton
was MAG, but the interlayer cation was CTA+. The method of preparation for CTAB-MAG was as
follows. First, 5 g MAG was weighed and added to deionized water, 50mL, ultrasonically dispersed for
10 min, and magnetically stirred for 1 h. Then we weighed 2.5 g CTAB and added it to MAG disperse
solution. We magnetically stirred the solution with MAG and CTAB at 60 ◦C for 7 h. We washed
the CTAB-MAG solution with deionized water until no foam was visible, and filtered it by suction
filtration, then put the CTAB-MAG into a vacuum drying oven and dried at 60 ◦C for 24 h to obtain
CTAB-MAG composite powder.

2.4. Adsorption Performance Experiment

Batch adsorption experimentations were completed to explore the possessions factors of adsorption
process in order to investigate the adsorptive performance of MAG and CTAB-MAG on Rh-B, such as
initial concentration of Rh-B, contact time, solution pH, and adsorbent dose. After adsorption, the MAG
and CTAB-MAG were separated from the Rh-B solution by centrifuge at 6000 rpm/min for 10 min; then
the concentration of Rh-B were measured by ultraviolet spectrophotometer [30,31]. The adsorption
capacity (qe) and the removal of Rh-B by the adsorbent is shown in Equations (1) and (2).

qe = (C0 −Ce) ×V/M (1)

removal = (C0 −Ce)/C0 (2)

where C0 is the initial concentration of Rh-B (mg/L), Ce is the equilibrium concentration of Rh-B (mg/L),
V is adsorption solution volume (mL), and M is adsorbent mass (mg).

2.4.1. Effect of the Initial Concentration of Rh-B

At the normal temperature with the initial concentration of 30, 50, 80, 100, 120, and 150 mg/L, the
40 mL Rh-B solution was added to six beakers; then 40 mg of adsorbent was added for 60 min.
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2.4.2. Effect of Adsorption Time

At room temperature, with the initial concentration of 100 mg/L, 40 mL of Rh-B solution was
added to seven beakers, then 40 mg of adsorbent was added to each beaker. The adsorption times
were set in the seven beakers as 5, 10, 20, 30, 60, 90, and 120 min, respectively.

2.4.3. Effect of pH

At the normal temperature with an initial concentration of 100 mg/L, 40 mL of Rh-B solution was
added to six beakers; then 40 mg of adsorbent was added to each beaker; however, the pH of Rh-B
solution in the six beakers was adjusted by hydrochloric acid and sodium hydroxide solution to be 4, 6,
7, 8, 10, and 12, respectively, and the adsorption time was set for 60 min.

2.4.4. Effect of the Absorbent Dosage

At the normal temperature with the initial concentration of 100 mg/L, 40 mL of Rh-B solution was
added to six beakers, then the dosage of adsorbent was introduced in the six beakers as 10, 20, 30, 40,
50, and 60 mg, respectively, and the adsorption time was set for 60 min.

3. Results and Discussion

3.1. Characterization of Adsorbents

3.1.1. XRD Analyses

It can be seen from Figure 3a that using CTAB modified MAG could effectively expanded its layer
spacing, from original 1.52 nm to 3.166 nm, because CTAB can be inserted into the inter-layer of the
MAG; meanwhile, the reflection at 5.809◦ was still visible, indicating that a small portion of MAG was
still not intercalated by CTAB. However, the diffraction peak at 2.788◦ was higher than the diffraction
peak at 5.809◦, indicating that the intercalation rate was high, which met the needs of this experiment.
The enlargement of the layer spacing means that there will be more space between the layers, which
can absorb more pollutants.
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Figure 3. Patterns of MAG and cetyltrimethylammonium-bromide (CTAB)-MAG (a) XRD and (b) 
FTIR. 
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3.1.2. FTIR Analyses

Figure 3b shows that the absorption reflection bands at 3430 cm−1 and 1630 cm−1 belong to
the stretching and bending vibration of the O–H bond; the absorption reflection band at 1089 cm−1

belongs to the symmetric stretching vibration of the [SiO4] tetrahedron; the absorption reflection bands
at 785 cm−1 and 619 cm−1 belong to the double rings vibrations. However, CTAB-MAG has three
more absorption peaks (at bands 2920 cm−1, 2852 cm−1, and 1484 cm−1) than the MAG spectrum;
the symmetric vibration of C–H functional groups belong to the absorption reflection band at 2920 cm−1;
the asymmetric vibration of C–H functional groups belong to the absorption reflection band at 2852
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cm-1; however, the bending vibration of C–H functional groups belong to the absorption reflection band
at 1484 cm−1, thus those results can be proof that MAG and CTAB were presented in the CTAB-MAG
sample. Therefore, the addition of CTAB does not destroy the structure of MAG. Combined with XRD
analysis, we can prove that CTAB was inserted into the MAG interlayer, thereby increasing the layer
spacing of CTAB-MAG.

3.1.3. SEM Analysis

Figure 4 shows the SEM images of MAG and CTAB-MAG. The particles of MAG were rose
petal-like and the particle size was nanometer grade in the z direction; however, the particle size
was micrometer grade in two other directions (shown in Figure 4a) while part of the laminate of
CTAB-MAG was stripped because of the change of layer spacing (shown in Figure 4b).

Processes 2018, 6, x FOR PEER REVIEW  5 of 12 

 

symmetric vibration of C–H functional groups belong to the absorption reflection band at 2920 cm−1; 
the asymmetric vibration of C–H functional groups belong to the absorption reflection band at 2852 
cm-1; however, the bending vibration of C–H functional groups belong to the absorption reflection 
band at 1484 cm−1, thus those results can be proof that MAG and CTAB were presented in the CTAB-
MAG sample. Therefore, the addition of CTAB does not destroy the structure of MAG. Combined 
with XRD analysis, we can prove that CTAB was inserted into the MAG interlayer, thereby increasing 
the layer spacing of CTAB-MAG. 

3.1.3. SEM Analysis 

Figure 4 shows the SEM images of MAG and CTAB-MAG. The particles of MAG were rose petal-
like and the particle size was nanometer grade in the z direction; however, the particle size was 
micrometer grade in two other directions (shown in Figure 4a) while part of the laminate of CTAB-
MAG was stripped because of the change of layer spacing (shown in Figure 4b). 

 
(a) (b) 

Figure 4. SEM image of (a) MAG and (b) CTAB-MAG. 

3.2. Adsorption Performance 

3.2.1. Influencing Factors of the Adsorption Capacity 

As can be seen from Figure 5a, the adsorption capacity of MAG and CTAB-MAG increased from 
21.79 mg/g to 57.87 mg/g, and 27.16 mg/g to 77.68 mg/g with the increasing of the initial concentration 
of Rh-B from 30 mg/L to 150 mg/L. This was because with the increasing of the initial concentration 
of Rh-B, the mass transfer power to the adsorbent increases, resulting in an adsorption capacity 
increase. As can be seen from Figure 5b, the adsorption capacity of MAG and CTAB-MAG increased 
quickly from 31.85 mg/g to 46.56 mg/g, and from 45.36 mg/g to 65.34 mg/g with the increase of the 
adsorption time from 5 min to 40 min; however, the adsorption capacity of MAG and CTAB-MAG 
increased slowly from 46.56 mg/g to 49.07 mg/g, and 65.34 mg/g to 68.82 mg/g with the increase of 
adsorption time from 40 min to 120 min, respectively. The reason is that the adsorption capacity was 
increased rapidly first and then increased slowly. The active site of adsorbent was decreased 
gradually with the adsorption process; on the other hand, the concentration of Rh-B in the solution 
was gradually decreased; therefore, the rate of particle diffusion was promoted by the concentration 
difference decreases, resulting in the decrease of the adsorption rate. Figure 5c shows that the 
adsorption capacity of MAG and CTAB-MAG decreased quickly from 52.39 mg/g to 34.90 mg/g, and 
from 84.12 mg/g to 40.52 mg/g with the increasing of the pH from 4 to 12, respectively. This decrease 
could be attributed to competition between the Rh-B dye molecules and the hydroxyl ions present at 
these pH values [32]. Figure 5d shows that the adsorption capacity of MAG and CTAB-MAG 
decreased quickly from 128.52 mg/g to 35.54 mg/g, and 149.24 mg/g to 52.43 mg/g with the increasing 
of the dosage of MAG and CTAB-MAG from 0.25 g/L to 1.5 g/L, respectively. 
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3.2. Adsorption Performance

3.2.1. Influencing Factors of the Adsorption Capacity

As can be seen from Figure 5a, the adsorption capacity of MAG and CTAB-MAG increased from
21.79 mg/g to 57.87 mg/g, and 27.16 mg/g to 77.68 mg/g with the increasing of the initial concentration
of Rh-B from 30 mg/L to 150 mg/L. This was because with the increasing of the initial concentration of
Rh-B, the mass transfer power to the adsorbent increases, resulting in an adsorption capacity increase.
As can be seen from Figure 5b, the adsorption capacity of MAG and CTAB-MAG increased quickly
from 31.85 mg/g to 46.56 mg/g, and from 45.36 mg/g to 65.34 mg/g with the increase of the adsorption
time from 5 min to 40 min; however, the adsorption capacity of MAG and CTAB-MAG increased slowly
from 46.56 mg/g to 49.07 mg/g, and 65.34 mg/g to 68.82 mg/g with the increase of adsorption time from
40 min to 120 min, respectively. The reason is that the adsorption capacity was increased rapidly first
and then increased slowly. The active site of adsorbent was decreased gradually with the adsorption
process; on the other hand, the concentration of Rh-B in the solution was gradually decreased; therefore,
the rate of particle diffusion was promoted by the concentration difference decreases, resulting in the
decrease of the adsorption rate. Figure 5c shows that the adsorption capacity of MAG and CTAB-MAG
decreased quickly from 52.39 mg/g to 34.90 mg/g, and from 84.12 mg/g to 40.52 mg/g with the increasing
of the pH from 4 to 12, respectively. This decrease could be attributed to competition between the
Rh-B dye molecules and the hydroxyl ions present at these pH values [32]. Figure 5d shows that the
adsorption capacity of MAG and CTAB-MAG decreased quickly from 128.52 mg/g to 35.54 mg/g, and
149.24 mg/g to 52.43 mg/g with the increasing of the dosage of MAG and CTAB-MAG from 0.25 g/L to
1.5 g/L, respectively.
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and (d) absorbent dosage.

3.2.2. Isothermal Adsorption Experiment

The adsorption capacity was fitting by the Langmuir model equation and the Freundlich model
equation [33,34], as shown in Equations (3) and (4).

qe =
KLqmaxCe

1 + KLCe
(3)

where Ce is the concentration at equilibrium (mg·L−1), qe is the adsorption capacity when the adsorption
balance (mg·g−1), and KL is Langmuir equilibrium constant (L·mg−1).

qe = KFCn
e (4)

where KF and n are the Freundlich equilibrium constant and the characteristic constant, respectively.
Figure 6 shows that the adsorption capacity was fitted by Langmuir model equation and Freundlich
model equation; meanwhile, Table 1 shows that the related parameters had been well presented.
By using the Langmuir model, the correlation coefficients (R2) for MAG and CTAB-MAG were
found—0.99 and 0.993, respectively; however, by using the Freundlich model, the correlation coefficients
(R2) for MAG and CTAB-MAG were found to be 0.984 and 0.987, respectively, thus indicting that the
Langmuir model and Freundlich model can simulate the adsorption process together. However, the
Freundlich model constants (1/n) for MAG and CTAB-MAG were found to be 0.40486 and 0.32086,
respectively. They were less than 1, indicating an adsorption process consist with monolayer adsorption;
meanwhile, this conclusion is also consisted with the assumptions of the Langmuir model.
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The adsorption capacity was fitted by the pseudo first order dynamic equation and the pseudo 
second order dynamic equation [35–37], as shown in Equations (5) and (6). Equation (5) was the 
pseudo first order dynamic equation expression. 𝑞௧ = 𝑞ୣ୯ሺ1 − 𝑒ି௞భ௧ሻ (5) 

where K1 was pseudo first order rate constants(min−1), qeq was the adsorption capacity when the 
adsorption balance(mg·g−1), and qt was the adsorption capacity when the time was t (mg·g−1). 
Equation (6) was the pseudo second order dynamic equation expression. 𝑞௧ = 𝑘ଶ𝑞ୣ୯ଶ 𝑡1 + 𝑘ଶ𝑞௘௤𝑡 (6) 

where K2 is the pseudo second order rate constants (g·mg−1·min−1), qeq is the adsorption capacity when 
the adsorption reached at equilibrium (mg·g−1), and qt is the adsorption capacity at time t (mg·g−1). 
Figure 7 shows that the adsorption capacity was fitted by of the pseudo first order kinetic model and 
the pseudo second order kinetic model; meanwhile, Table 2 shows that the related parameters had 
been well presented. By using of the pseudo second order kinetic model, the correlation coefficients 
(R2) for MAG and CTAB-MAG were found to be 0.999 and 0.999, respectively; however, by using the 
pseudo first order kinetic model, the correlation coefficients (R2) for MAG and CTAB-MAG were 
0.988 and 0.979, respectively, thus the correlation coefficients (R2) of the pseudo second order kinetic 
model were larger than the correlation coefficients (R2) of the pseudo first order kinetic model for 
MAG and CTAB-MAG. Therefore, it indicates that the pseudo second order kinetic model was more 
appropriate for describing the adsorption process. 
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Table 1. Isotherm adsorption equation fitted parameters.

Langumir Model Freundlich Model

KL qm R2 KF 1/n R2

MAG 0.0476 69.44 0.99718 9.611 0.40486 0.98432
CTAB-MAG 0.1321 85.11 0.99327 21.304 0.32086 0.98763

3.2.3. Adsorption Kinetics Model

The adsorption capacity was fitted by the pseudo first order dynamic equation and the pseudo
second order dynamic equation [35–37], as shown in Equations (5) and (6). Equation (5) was the
pseudo first order dynamic equation expression.

qt = qeq
(
1− e−k1t

)
(5)

where K1 was pseudo first order rate constants(min−1), qeq was the adsorption capacity when the
adsorption balance(mg·g−1), and qt was the adsorption capacity when the time was t (mg·g−1). Equation
(6) was the pseudo second order dynamic equation expression.

qt =
k2q2

eqt

1 + k2qeqt
(6)

where K2 is the pseudo second order rate constants (g·mg−1
·min−1), qeq is the adsorption capacity when

the adsorption reached at equilibrium (mg·g−1), and qt is the adsorption capacity at time t (mg·g−1).
Figure 7 shows that the adsorption capacity was fitted by of the pseudo first order kinetic model and
the pseudo second order kinetic model; meanwhile, Table 2 shows that the related parameters had
been well presented. By using of the pseudo second order kinetic model, the correlation coefficients
(R2) for MAG and CTAB-MAG were found to be 0.999 and 0.999, respectively; however, by using the
pseudo first order kinetic model, the correlation coefficients (R2) for MAG and CTAB-MAG were 0.988
and 0.979, respectively, thus the correlation coefficients (R2) of the pseudo second order kinetic model
were larger than the correlation coefficients (R2) of the pseudo first order kinetic model for MAG and
CTAB-MAG. Therefore, it indicates that the pseudo second order kinetic model was more appropriate
for describing the adsorption process.
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Figure 7. Kinetic curves. (a) Pseudo-first-order kinetic model, and (b) pseudo-second-order
kinetic model.

Table 2. Adsorption kinetic constants of Rh-B.

Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model Experiment

K1 qeqc R2 K2 qeqc R2 qeqe

MAG 0.0501 22.81 0.98817 0.00449 50.994 0.99937 49.07
CTAB-MAG 0.0448 27.99 0.97913 0.00336 71.327 0.99949 68.82

The Table 2 shows that the experimental results (qeqe) of MAG and CTAB-MAG were 49.07
and 68.82, respectively. The calculated results (qeqc) for the pseudo-second-order dynamic equation
of MAG and CTAB-MAG were 50.994 and 71.327, respectively; however, the calculated results
(qeqc) for the pseudo first order dynamical equation of MAG and CTAB-MAG were 22.81 and
27.99, respectively. Thus, the calculated results (qeqc) of the pseudo-second-order dynamic equation
approached the investigational results (qeqe) indicting that the pseudo-second-order kinetic model was
more appropriate for relating the adsorption process.

3.2.4. Adsorption Ratio Model

In order to investigate the adsorption rate, we research the dynamic boundary models, such as
the film diffusion model, particle diffusion model, and chemical reaction model. We defined qt/qeq as F,
where qt was the adsorption capacity at time t (mg·g−1), and qeq was the adsorption capacity when the
adsorption reached equilibrium (mg·g−1), in the three equations that follow [38,39].

Film diffusion model:
− In(1− F) = kt (7)

Particle diffusion model:
1− 3(1− F)

2
3 + 2(1− F) = kt (8)

Chemical reaction model:
1− (1− F)

1
3 = kt (9)

Figure 8 shows the three moving boundary models. Figure 8a is the film diffusion; 8b is the
particle diffusion; 8c is the chemical reaction. The results of the moving boundary models have been
presented in Table 3. As shown in Table 3, the correlation coefficients R2 of the film diffusion model for
MAG (0.988) and CTAB-MAG (0.979) were larger than in the particle diffusion model for MAG (0.909)
and CTAB-MAG (0.887), as well as chemical reaction model for MAG (0.934) and CTAB-MAG (0.911),
indicating that the film diffusion was more suitable for describing the adsorption.
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Figure 8. Moving boundary models. (a) Film diffusion, (b) particle diffusion, and (c) chemical reaction.

Table 3. Equation constants of moving boundary models.

Film Diffusion Particle Diffusion Chemical Reaction

k R2 k R2 k R2

MAG 0.051 0.988 0.009 0.909 0.006 0.934
CTAB-MAG 0.045 0.979 0.008 0.887 0.006 0.911

3.2.5. The Greater Adsorption Performance of CTAB-MAG

The adsorption capacities of MAG and CTAB-MAG were 48.13 mg/g, 67.19 mg/g, respectively.
When pH was 7, adsorption time was 60 min, the initial concentration of Rh-B was 100 mg/L, and the
adsorbent dosage was 1 g/L. The Table 4 shows that the adsorption capacity of MAG (48.13 mg/g) and
CTAB-MAG (67.19 mg/g) were both higher than kaolinite (46.08 mg/g) [40], sodium montmorillonite
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(42.19 mg/g) [41], and duolite C-20 resin (28.57 mg/g) [42]. Those results indicate in this process that
CTAB-MAG can be used as an efficient low-cost adsorbent for removing Rh-B from an aqueous solution.

Table 4. Comparison of Rh-B adsorption capacity with other reported systems.

Adsorbents Conditions Isotherms Kinetics Adsorption
Capacity References

CTAB-MAG Ph = 7; dosage 1 g/L; Rh-B
concentration 100 mg/L

Langmuir and
Freundlich

pseudo-
second-order 67.19 mg/g This work

MAG Ph = 7; dosage 1 g/L; Rh-B
concentration 100 mg/L

Langmuirand
Freundlich

pseudo-
second-order 48.13 mg/g This work

Kaolinite Ph = 7; dosage 3 g/L; Rh-B
concentration 90 mg/L Langmuir pseudo-

second-order 46.08 mg/g [40]

Sodium
montmorillonite

Ph = 7; dosage 0.3 g/L; Rh-B
concentration 200 mg/L Langmuir pseudo-

second-order 42.19 mg/g [41]

Duolite C-20
resin

Ph = 7; dosage 0.4 g/L; Rh-B
concentration 8.129 mg/L

Langmuir and
Freundlich

pseudo-
first-order 28.57 mg/g [42]

4. Conclusions

In this work, we prepared CTAB-MAG by using CTAB to modify MAG, based on ion exchange.
Compared with MAG, CTAB-MAG can effectively increase the layer spacing of MAG from 1.52 nm
to 3.166 nm, thereby enhancing its adsorption capacity. Meanwhile, the adsorption results shown
the pronounced affinity of the CTAB-MAG to the Rh-B dye molecules. The adsorption capacities of
MAG and CTAB-MAG were 48.13 mg/g and 67.19 mg/g. The adsorption capacity of CTAB-MAG
was increased by 40% over MAG, indicating that CTAB-MAG can be used as an efficient, low-cost
adsorbent. The pseudo-second-order kinetic equation was more suitable for describing the adsorption;
the adsorption process was dominated by a film diffusion process. The adsorption process belongs to
monomolecular layer adsorption processes.
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