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Abstract: A novel fault diagnosis method is proposed, depending on a cloud service, for the typical
faults in the hydraulic directional valve. The method, based on the Machine Learning Service (MLS)
HUAWEI CLOUD, achieves accurate diagnosis of hydraulic valve faults by combining both the
advantages of Principal Component Analysis (PCA) in dimensionality reduction and the eXtreme
Gradient Boosting (XGBoost) algorithm. First, to obtain the principal component feature set of the
pressure signal, PCA was utilized to reduce the dimension of the measured inlet and outlet pressure
signals of the hydraulic directional valve. Second, a machine learning sample was constructed
by replacing the original fault set with the principal component feature set. Third, the MLS was
employed to create an XGBoost model to diagnose valve faults. Lastly, based on model evaluation
indicators such as precision, the recall rate, and the F1 score, a test set was used to compare the
XGBoost model with the Classification And Regression Trees (CART) model and the Random Forests
(RFs) model, respectively. The research results indicate that the proposed method can effectively
identify valve faults in the hydraulic directional valve and have higher fault diagnosis accuracy.

Keywords: hydraulic valve; fault diagnosis; principal component analysis (PCA); extreme gradient
boosting (XGBoost); HUAWEI Cloud machine learning service (MLS)

1. Introduction

Hydraulic systems play an important role in a wide variety of industrial applications, such as
robotics, manufacturing, aerospace, and engineering machinery. Monitoring the condition of hydraulic
equipment can not only effectively improve productivity and reduce maintenance costs and downtime,
but also improve the reliability and safety of this equipment in its application [1–3]. In particular,
the hydraulic valve is the core control component of the hydraulic system, and it is widely used in
numerous engineering applications to control the flow and pressure of fluids [4–6]. In the hydraulic
system, a vibration analysis (VA) is the most popular and efficient condition monitoring technique for
rotating systems including the hydraulic pump, electric motor, bearing, and more [7–16]. However,
the working process of the valve core of the hydraulic valve is a reciprocating motion. These VA
methods, which have been successfully applied in rotating machinery, will not be suitable for fault
diagnosis and a condition monitoring signal analysis of non-rotating machinery, such as the hydraulic
valve [17–19].

Many studies on fault diagnosis of the hydraulic valve have been conducted by theoretical
approaches and test measurements, and certain research results have been obtained. Wu et al. [20]
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proposed a method for the mechanical fault diagnosis based on complex three-order cumulants. In the
experiment regarding the fault diagnosis of the overflow valve, the results show that this method can
improve the correction rate of diagnosis. Huang et al. [21] applied the theory of higher-order spectrum
to the fault diagnosis of hydraulic valves. Li et al. [22] proposed a fault diagnosis method that involves
choosing the fractal characteristic volume of a valve’s displacement signal as a criterion to solve the
nonlinear problems in the working process of autopilot hydraulic valves. Raduenz et al. [23] presented
the development of a method for condition monitoring and online fault detection on proportional
reversing valves. The effectiveness of the method to monitor and detect faults in valves with different
sizes and constructive parameters was shown experimentally using five different proportional valves.
Vianna et al. [24] presented a method to estimate degradation in a servo valve using an application
of the Fading Extended Kalman Filter for system identification. Folmer et al. [25] also presented
a data-driven fault detection system for valves, which uses historical process data obtained across
company borders to detect faults by comparing standardized flow coefficients determined by DIN
IEC 60534-2-1 in physical valve models. Moreover, many challenges emerge in the study of the
condition monitoring and fault diagnosis of hydraulic valves. In particular, there are few research
results for identifying hydraulic valve faults by pressure signals in the hydraulic system with condition
monitoring on an Industrial Internet of Things (IIoT) platform.

Due to the availability of big data technology and data mining methods as well as the emergence
of new IIoT platforms and machine learning algorithms, fault diagnosis for hydraulic valves based on
big data for hydraulic system with condition monitoring is one of the focuses for this research [26–28].
Among them, Principal Component Analysis (PCA) is an effective method for dimensionality reduction
in big data analysis. It is a multivariate statistical method, which compresses multiple linearly related
variables into a few unrelated variables. PCA was first proposed by Pearson [29] in a study on optimal
linear and plane fitting of spatial data. Fisher and Mackenzie [30] believed that PCA was more useful
in the system response variance analysis than in system modeling, and they proposed a prototype
of the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm. Then, PCA was improved by
Hoteling [31] and further developed into a common method widely used in data dimensionality
reduction, fault diagnosis, and anomaly detection. For instance, Mohanty et al. [32] developed a new
algorithm to identify bearing faults using empirical mode decomposition and principal component
analysis (EMD-PCA) based on the average kurtosis technique. It was observed that this proposed
combined approach effectively and adaptively identified inner ball faults. Stief et al. [33] proposed
a sensor fusion approach to diagnose both electrical and mechanical faults in induction motors
based on the combination of a two-stage Bayesian method and PCA. Caggiano [34] also proposed an
advanced feature extraction methodology based on PCA. By introducing artificial neural networks
to the PCA features, an accurate diagnosis of tool flank wear was achieved, with predicted values
being very close to the measured tool wear values. Wang et al. [35] developed a variable selection
algorithm based on PCA with multiple selection criteria, which can identify faults in wind turbines,
determine the corresponding time and location where the fault occurs, and estimate its severity.
Xiao et al. [36] also studied the application of PCA to fault diagnosis in Electro-Hydrostatic Actuators
(EHAs). The experimental results demonstrated that PCA can effectively discriminate faults and their
characteristics for EHAs, and could be used as an optional data fusion tool for the Prognostics and
Health Management (PHM) of EHAs. Riba et al. [37] proposed a very fast, noninvasive, accurate,
and easy-to-apply method to discriminate between paperboard samples produced from recovered and
virgin fibers. For this method, FTIR spectroscopy was analyzed in combination with feature extraction
methods such as PCA, PCA+ canonical variate analysis (CVA), extended canonical variate analysis
(ECVA), and the k Nearest Neighbor algorithm (kNN) classifier. The experimental results proved
that the proposed scheme allowed for the obtainment of a high classification accuracy with a very
fast response.

In addition, the eXtreme Gradient Boosting (XGBoost) algorithm, proposed by Dr. Chen Tianqi in
2014, can automatically utilize the central processing unit (CPU) multi-threaded parallel computing and
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has the advantages of low computational complexity, fast running speed, and high accuracy, no matter
whether the data scale is large or small [38,39]. At present, this method has been successfully applied in
many fields, such as fault diagnosis, environmental prediction, and medical detection. Zhang et al. [40]
designed an efficient machine learning method that combined random forests (RFs) with XGBoost
and was used to establish the fault detection framework of data-driven wind turbines. The results
indicated that the proposed approach was robust in various wind turbine models, including offshore
ones, under different working conditions. Chakraborty and Elzarka [41] developed an XGBoost model
with a dynamic threshold for early detection of faults in Heating Ventilation and Air Conditioning
(HVAC) systems. Zhang et al. [42] applied the XGboost algorithm to the fault diagnosis of rolling
bearings, and the results showed that the XGboost algorithm was superior to other tree algorithms in
accuracy and time. Nguyen et al. [43] developed an XGBoost model to predict peak particle velocity
(PPV). The results indicated that the developed XGBoost model, on both training and testing datasets,
exhibited higher performance than the support vector machine (SVM), the Random Forests (RFs),
and kNN models. Pan B et al. [44] applied the XGBoost algorithm to predict the concentration of PM2.5
per hour. Liu and Qiao [45] proposed a prediction method based on clustering and XGboost algorithms
for the incidence of heart disease, which shows that the proposed method was feasible and effective.
Fitriah et al. [46] proposed an algorithm combining PCA preprocessing with XGBoost classification to
diagnose stroke patients in Indonesia, and the accuracy of diagnosis was increased by using fewer
electrodes. PCA could reduce dimensionality and computation cost without decreasing classification
accuracy. The XGBoost, as the scalable tree boosting classifier, can solve practical scalability problems
with minimal resources.

Huawei launched the Machine Learning Service (MLS) in September 2017, which is a service that
was launched on the IIoT platform for data mining and analysis by Huawei in September 2017 [47].
It has more than 300 algorithm function nodes, which can conveniently build visual workflow models
to perform data processing, model training, evaluation, and prediction. In addition, Jupyter Notebook
is integrated in MLS, and the algorithm functions can be extended by tools such as Python and R,
in order to provide cloud customized services for the collection and analysis of massive data. Moreover,
it can provide a cloud platform for the integration of technology, experience, and machine learning
algorithms. At present, attempts are made to apply MLS in the fields of product recommendation,
customer grouping, abnormality detection, predictive maintenance, and driving behavior analysis.

In summary, the existing fault diagnosis methods for hydraulic valves are not suitable for
extracting fault features from pressure signals in hydraulic valve condition monitoring. It is very
necessary to research a fault diagnosis method for hydraulic valves through a cloud service on the
IIoT platform, where there is an inevitable demand. There will be a development trend for analyzing
big data in hydraulic system condition monitoring in the future. In this paper, a novel fault diagnosis
method is proposed, depending on a cloud service, for the typical faults in hydraulic directional valves.
The method is based on the cloud service of MLS, using raw sensor data collected from inlet and outlet
pressure signals in hydraulic valve condition monitoring, and it integrates both the advantages of the
PCA descending dimension and the XGBoost classification.

The outline of the paper is as follows: Sections 2 and 3 summarize the PCA dimension reduction
and the XGBoost algorithm principle. In Section 4, the hydraulic test bed is introduced, and the
raw data acquisition scheme for condition monitoring is described based on the hydraulic system
schematic diagram. In Section 5, the raw data for condition monitoring are analyzed, and inlet and
outlet pressure signals of the hydraulic directional valve are selected as the sample. The PCA-XGBoost
fault diagnosis model for hydraulic valves is built on an MLS cloud service platform, and, compared
with the Principal Component Analysis and Classification And Regression Trees (PCA-CART) and the
Principal Component Analysis and Random Forests (PCA-RFs) models, the test results indicate that
the model is advanced. Section 6 concludes the proposed approach and shows future work regarding
data analytics.
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2. Principal Component Analysis-Based Data Dimensionality Reduction

2.1. Principle of PCA Dimensionality Reduction

PCA dimensionality reduction replaces the original dimension with a smaller number of unrelated
dimensions. This occurs in order to map m-dimensional features to k-dimensional features (k < m).
These unrelated dimensions are called principal components [48].

Suppose A is an n ×m data matrix where each column represents a variable and each row
represents a sample. The matrix can be decomposed into the sum of the outer products of m vectors,
which is shown in the equation below.

A = t1pT
1 + t2pT

2 + · · ·+ tipT
i + · · ·+ tmpT

m (1)

where ti ∈ Rn is defined as the column vector consisting of n observations of the i-th principal
component ti, which is called the score vector, i = 1, 2, · · · , m. pi ∈ Rm is called the load vector.
Equation (1) can be further written in matrix form.

A = TPT (2)

where T = [t1, t2, · · · , ti, · · · , tm] ∈ Rn×m is called the score matrix,
and P =

[
p1, p2, · · · , pi, · · · , pm

]
∈ Rm×m is called the load matrix.

If the score vectors are orthogonal to each other, then for any i and j, when i , j, tT
i t j = 0 is

satisfied. The load vectors are also orthogonal to each other, and the length of each load vector is 1.
This is shown in the formulas below.

pT
i p j = 0i , j (3)

pT
i p j = 1i = j (4)

Multiply both sides of Equation (1) by pi to get the following equation.

Api = t1pT
1 pi + t2pT

2 pi + · · ·+ tipT
i pi + · · ·+ tmpT

mpi (5)

Substitute Equations (3) and (4) into Equation (5) to get the equation shown below.

ti = Api (6)

As can be seen from Equation (6), each score vector is actually a projection of the data matrix
in the direction of the corresponding load vector. The length of the vector ti reflects the degree of
coverage of the data matrix A in the pi direction. The greater the length is, the greater the degree of
coverage is. The score vectors are arranged from largest to smallest according to their length.

‖t1‖ > ‖t2‖ > · · · > ‖tm‖ (7)

Then the load vector p1 represents the direction in which the data matrix A changes the most. p2
is perpendicular to p1 and represents the direction in which the data matrix A change is the second
largest and pm represents the direction in which the data matrix A changes the least.

Furthermore, through the principal component decomposition, the data matrix A can be
transformed into the equation below.

A = t1pT
1 + t2pT

2 + · · ·+ tkpT
k + E (8)

where E is the error matrix, representing the change of A on load vectors from pk+1 to pm. In a practical
application, the error matrix E can be ignored since k is much smaller than m, and the error matrix E is
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mainly caused by measurement noise. Therefore, the data matrix A can be approximately expressed as
the following equation.

A ' t1pT
1 + t2pT

2 + · · ·+ tkpT
k (9)

Thereby, the original dimension of the data matrix A can be reduced to the k dimension. In the
process of PCA dimensionality reduction, eigenvalues and orthogonal normalized eigenvectors need
to be solved. Principal components can be calculated by the Singular Value Decomposition (SVD) of
a matrix.

2.2. Singular Value Decomposition

The principal component analysis of matrix A can be equivalent to the eigenvector analysis of
covariance matrix ATA. The load vectors of the matrix A are the eigenvector of ATA. If the eigenvalues
of ATA are arranged as λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, the eigenvectors p1, p2, · · · , pm, corresponding to the
eigenvalues one by one, are the load vectors of the matrix A. The SVD of matrix A can be expressed by
the equation below.

A = UΣVT (10)

In the equation,
U = [u1, u2, · · · , un] ∈ Rn×n (11)

V = [v1, v2, · · · , vm] ∈ Rm×m (12)

Σ =



σ1 0 · · · 0
0 σ2 · · · 0
0 0 · · · σm
...

...
...

0 0 · · · 0


∈ Rn×m (13)

where σ1 > σ2 > · · · > σm are the singular values of the matrix A. The singular values of the data matrix
A are actually the square roots of the eigenvalues of its covariance matrix ATA. Therefore, the following
is true.

σ1 =
√
λ1

σ2 =
√
λ2

...
σm =

√
λm

(14)

If the columns in the matrices U and V are orthogonal to each other with a length of 1,
then Equation (10) can be expressed as the formula below.

A = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σmumvT
m (15)

If vi is denoted as pi and σiui as ti, Equation (15) is equivalent to Equation (1). σiui is the i-th score
vector of the data matrix A, and vi is the load vector of the i-th principal component.

2.3. Determination of the Number of Principal Components

PCA is an analytical method to reduce the dimension by eliminating the information of independent
variables with strict linear correlation or strong correlation. For m independent variables, up to m
principal component vectors can be obtained. Usually, k principal components are used to replace
m independent variables (k < m), and the information contained in them accounts for most of the
information provided by the original m independent variables. In order to quantitatively describe the
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relative amount of information provided by principal components, the variance contribution rate δi of
principal component vector ti is defined by the equation below.

δi =
λi

m∑
i=1

λi

(16)

The cumulative contribution rate ηk of the first k principal components is defined as:

ηk =

k∑
i=1

λi

m∑
i=1

λi

(17)

where λi is the variance of the principal component ti, and δi is the variance contribution rate of
ti, which represents the contribution share of ti to the total information contained in m variables.
The cumulative contribution rate ηk of principal components is used to represent the proportion of the
information contained in the first k principal components to the total information.

2.4. Main Steps of PCA

The steps of PCA based on Singular Value Decomposition (SVD) are as follows [49].
Input:
(1) data matrix A = {x1, x2, · · · , xm};
(2) dimension k of low-dimensional space.
Steps:
(1) Represent the sample data in the form of column vectors, and conduct zero centered for all

samples: xi ← xi −
1
m
∑m

i=1 xi ;
(2) Calculate the covariance matrix ATA of the sample;
(3) Conduct eigenvalue decomposition of the covariance matrix ATA;
(4) Determine the score vector t1, t2, · · · , tk corresponding to k eigenvalues.
Output:
(1) Score matrix T = [t1, t2, · · · , tk].

3. Principles of the XGBoost Algorithm

XGBoost is an improved Gradient Boosting Decision Tree (GBDT) algorithm, and there is a big
difference between them. GBDT uses only the first derivative in optimization, while XGBoost uses
both the first and second derivatives. Moreover, XGBoost uses the tree model complexity as a regular
term in the objective function to avoid overfitting [50].

3.1. Objective Function of the Model

XGBoost adds the regularization factor Ω(θ) to represent the complexity of the tree based on
the Gradient Boosting Decision Tree (GBDT) algorithm, and it defines the objective function of the
optimization in the training model using the equation below.

Obj(θ) = L(θ) + Ω(θ) (18)

where θ is the model parameter, Ω(θ) is the regular term, which represents the complexity of the
model, and L(θ) is the loss function, which represents the matching degree between the model and the
training set.
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For a given data set with n examples and m features, D =
{
(xi, yi)

}
(i = 1, 2, . . . , n, xi ∈ Rm, yi ∈ R);

a tree ensemble model uses S additive functions θ =
{
f1, f2, · · · fs, · · · , fS

}
to predict the output.

ŷi =
S∑

s=1

fs(xi), fs ∈ F (19)

where F =
{

f (x) = wq(x)

}
(w ∈ RT, q : Rm

→ T) is the space of regression trees (also known as CART).
In this case, q represents the structure of each tree that maps an example to the corresponding leaf
index. T is the number of leaves in the tree. Each fs corresponds to an independent tree structure q and
leaf weight w. Unlike decision trees, each regression tree contains a continuous score on each of the
leaves, and we use wi to represent the score on the i-th leaf. We will use the decision rules in the trees
(given by q) to classify it into the leaves and calculate the final prediction by summing up the score in
the corresponding leaves (given by w). To learn the set of functions used in the model, we minimize
the following regularized objective.

Obj(θ) =
n∑

i=1

l(yi, ŷi) +
S∑

s=1

Ω( fs) (20)

where
n∑

i=1
l(yi, ŷi) is a differentiable convex loss function that measures the difference between the

prediction ŷi and the target ŷi. The second term
S∑

s=1
Ω( fs) penalizes the complexity of the trees.

3.2. Solution of Loss Function in the Objective Function

In the XGBoost model, the objective function (Equation (20)) is difficult to solve by using the
traditional stochastic gradient descent algorithm. In addition, the additive training boosting method is
needed to solve the value, whose specific learning and training process is shown below.

ŷi
(0) = 0

ŷi
(1) = f1(xi) = ŷi

(0) + f1(xi)

ŷi
(2) = f1(xi) + f2(xi) = ŷi

(1) + f2(xi)

· · ·

ŷi
(t) =

t∑
s=1

fs(xi) = ŷi
(t−1) + ft(xi)

(21)

where ŷi
(t) is the predicted value of the t-th round of the model, ŷi

(t−1) is the predicted value of the
(t− 1)-th round, and ft(xi) is the prediction function added for the t-th round.

Substitute ŷi
(t) in Equation (21) into Equation (20).

Obj(t) =
n∑

i=1

l
(
yi, ŷ(t−1)

i + ft(xi)
)
+ Ω( ft) (22)

For Equation (22), the purpose of iteration is to find the most appropriate ft(xi) to minimize the
objective function.

The XGBoost algorithm performs second-order Taylor expansion to the objective function in the
optimization process, which is explained via the formula below.

Obj(t) '

n∑
i=1

[
l
(
yi, ŷi

(t−1)
)
+ gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ Ω( ft) + c

=
n∑

i=1

[
gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ Ω( ft) +

[
n∑

i=1
l
(
yi, ŷi

(t−1)
)
+ c

] (23)
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where gi, hi can be defined as: 
gi = ∂

ŷ(t−1)
i

l
(
yi, ŷ(t−1)

i

)
hi = ∂2

ŷ(t−1)
i

l
(
yi, ŷ(t−1)

i

) (24)

According to Equation (23), ignoring the influence of the constant value, the objective function
optimized in step t can be simplified as:

Obj(t) '
n∑

i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (25)

As can be seen from Equation (25), it is gi, hi that the objective optimization parameters depend on.

3.3. Complexity Calculation in the Objective Function

For a given tree ensemble model, the complexity of the model can be defined by the equation below.

Ω( ft) = γT +
1
2
λ

T∑
j=1

w j
2 (26)

where γ and λ are both regularization factors. γ is the parameter used to control tree node splitting.
When the cost function of a node after splitting is less than this value, it will not split. When it is greater
than this value, it will split. λ is the regularization weight. T is the number of leaf nodes, and w j is the
weight of the leaf nodes.

Define I j =
{
i|q(xi) = j

}
as the instance set of leaf j. We can substitute Equation (26) into the

objective function Equation (25) as:

Obj(t) =
n∑

i=1

[
gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ γT + 1

2λ
T∑

j=1
w2

j

=
n∑

i=1

[
giwq(xi)

+ 1
2 hiw2

q(xi)

]
+ γT + 1

2λ
T∑

j=1
w2

j

=
T∑

j=1

[(∑
i∈I j

gi
)
w j +

1
2

(∑
i∈I j

hi + λ
)
w2

j

]
+ γT

(27)

If we define G j =
∑

i∈I j
gi, H j =

∑
i∈I j

hi, then Equation (27) can be abbreviated as:

Obj(t) =
T∑

j=1

[
G jw j +

1
2

(
H j + λ

)
w2

j

]
+ γT (28)

3.4. Optimization of the Objective Function

When a fixed structure of the tree is q(x)
(
I j =

{
i|q(xi) = j

})
, we can compute the optimal weight

w∗j of leaf j by using the equation below.

w∗j = −

∑
i∈I j

gi∑
i∈I j

gi + λ
= −

G j

H j + λ
(29)

When Equation (29) is substituted into the objective function Equation (28), the optimal value of
the objective function is found.

Obj∗ = −
1
2

T∑
j=1

G2
j

H j + λ
+ γT (30)
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By optimizing the objective function, the optimal structure of the decision tree can be obtained.
The value of the objective function can be understood as an index score of information gained, and, for
the value of the function, the lower value is better.

A split finding algorithm is proposed in the XGBoost algorithm. This means that a splitting point
is added to each leaf node. If a node is decomposed into two leaf nodes, then the score gained can be
found using the equation below.

Gain =
1
2

 G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)
2

HL + HR + λ

− γ (31)

where GL is the sum of samples gi distributed to the left cotyledon, GR is the sum of samples gi
distributed to the right cotyledon, HL is the sum of samples hi distributed to the left cotyledon, and HR
is the sum of samples hi distributed to the right cotyledon. In addition, in Equation (31), the first term
in square brackets is the score of the left node, the second term is the score of the right node, and the
third term is the score of the original node. Thus, select a feature as the reference quantity, and then
scan from left to right with a certain step length in order to find out the gain of each splitting point.
Take the point with the largest gain as the splitting point for the search, and it is not necessary to add a
branch if the gain is less than γ.

Based on the principle of node splitting in the XGBoost, the model will continuously optimize
itself, according to residuals during the iteration. Since the objective function of node splitting contains
both an error term and a regularization term, the model has high precision.

4. Hydraulic Valve Failure Test

4.1. Introduction to the Experimental Platform

The experimental data sets for this study were derived from the UC Irvine Machine Learning
Repository [51]. The data were collected from a hydraulic test bed that allowed a reversible change of
the state or condition of various components, at the Mechatronics and Automation Technology Center
of Saarbrucken University in Germany [52]. The hydraulic system consists of a primary working
circuit (Figure 1a) and a secondary cooling-filtration circuit (Figure 1b), which are connected by the oil
tank. In the working circuit with the main pump (electrical motor power of 3.3 kW), different load
levels are cyclically repeated with the electro-hydraulic proportional valve (V11). It is possible that the
typical cyclical operation and repeated load characteristic in an industrial application can be simulated
by setting fixed working cycles with pre-defined load levels in the test. Meanwhile, the random load
variations in mobile machines can be started by setting variable working cycles with pseudo-random
load variations.

4.2. Data Acquisition System

The condition monitoring system for the hydraulic system is equipped with several sensors for
measuring process values. Among them, there are six pressure sensors (PS1–PS6), two flow rate sensors
(FS1, FS2), five temperature sensors (TS1–TS5), one motor power sensor (EPS1), and one vibration
sensor (VS1) with standard industrial 4–20 mA current loop interfaces connected to a data acquisition
system. In addition, sensors integrating EIA-232 and EIA-485 buses for oil particle contamination
(CS and MCS) and oil parameter monitoring (COPS) are installed in the condition monitoring system.
In total, the above 17 sensor signals are stored while the hydraulic system repeats pre-defined constant
working cycles with changing conditions of hydraulic components to identify typical signal patterns.
The sampling rate of the above sensors is set within the range of 1 Hz to 100 Hz, respectively, according
to the different types of collected state signals. The specific sampling rate of each sensor is shown in
Table 1.
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Figure 1. Schematic diagram of condition monitoring in hydraulic systems.

Table 1. Sampling rates of sensors.

Sensor Physical Quantity Unit Sampling
Rate

Attribute
Information

PS1-6 Pressure bar 100 Hz Actual sensor
EPS1 Motor power W 100 Hz Actual sensor
FS1-2 Volume flow L/min 10 Hz Actual sensor
TS1-4 Temperature ◦C 1 Hz Actual sensor
VS1 Vibration mm/s 1 Hz Actual sensor
CE Cooling efficiency % 1 Hz Virtual sensor
CP Cooling power kW 1 Hz Virtual sensor
SE Efficiency factor % 1 Hz Virtual sensor

The sensor data are connected and buffered on a Programmable Logic Controller (PLC)
(Beckhoff CX5020) at run time and transferred to a computer by EtherCAT, where the data are
stored for further analysis. It is possible to configure fault characterization measurements with a
specifically developed tool such as LabVIEW and to, subsequently, perform them by using the PLC.
Using this tool, measurements of the fault type, severity, and duration are taken, if necessary, to define
different fault states, such as hydraulic pump internal leakage, hydraulic valve switching characteristic
degradation, accumulator leakage, and cooler power degradation. Table 2 shows the components and
respective parameters that are configurable to simulate fault scenarios. The experimental method has
the advantages of not requiring damage to the mechanical structure of the hydraulic valve, repeatability,
and reversibility of the fault state, and simple operation of the fault setting.

4.3. Hydraulic Valve Fault Setting and Data Acquisition

According to the primary working circuit in Figure 1a, the working cycle (duration 60 s) consists
of different segments with transient and static load characteristics performed by the electro-hydraulic
proportional pressure valve (V11) and the directional valve (V10) to simulate a typical machine
operation. Under pre-defined load conditions, the current set points of the directional valve are 100%,
90%, 80%, and 73% of the nominal value. Thus, a simulation is conducted for the hydraulic valve (V10)
in the fault states of normal, slight, medium, and severe valve operation deterioration, and raw sensor
data are collected during characterization.
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Table 2. Hydraulic test bed: components and their simulated fault conditions.

Hydraulic Component Fault Conditions Control Parameters Possible Range

Valve (V10) Switching characteristic
degradation Control current of V10 0 . . . 100% of nom.

current.

Pump (MP1) Internal leakage Switchable bypass
orifices V9

3 × 0.2 mm,
3 × 0.25 mm

Accumulators (A1–A4) Gas leakage
Accumulators A1–A4

with different pre-charge
pressures

90, 100, 110, 115 bar

Cooler (C1) Cooling power decrease Fan duty cycle of C1 0 . . . 100%
(0.6 . . . 2.2 kW)

The specific experimental process is under different fault conditions of the hydraulic valve
(V10). The hydraulic system is cyclically operated for 2205 cycles with a pre-defined load on the
electro-hydraulic servo valve (V11), and the running time of each cycle is 60 s. Among them, the number
of cycles in which the hydraulic system is in an unstable state is 756 cycles, and, in a steady state, it is
1449 cycles. Therefore, in the steady state, the experimental data of 369 normal states, 360 slight fault
states, 360 medium fault states, and 360 severe fault states are obtained, respectively, for a total of
1449 sets of data. Taking the partial pressure signals of the inlet (PS1) and outlet (PS2) measured by the
hydraulic directional valve (V10) within the fixed working cycle with a duration of 60 s as an example,
the changing rule of different fault states in the steady state is shown in Figure 2.
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5. Hydraulic Valve Fault Diagnosis Based on PCA and XGBoost

5.1. Acquisition of Sample Data for a Hydraulic Valve Fault Diagnosis

Figure 2 shows that, in each working cycle, the hydraulic directional valve (V10) is switched at
about the 10th second, and the valve outlet pressure (PS2) rises rapidly when the valve inlet pressure
(PS1) decreases significantly. It can be seen that the sensor data contain the fault characteristics of the
hydraulic valve. As shown in Figure 3, based on the working principle and switching performance
characteristics of the hydraulic valve, 100 data points between 9.3 s and 11.3 s in each cycle of PS1
(Figure 3a) and PS2 (Figure 3b) are, respectively, intercepted in the 1449 sets of data, which obtains
two sample data sets of 1449 × 100 dimensions for the modeling analysis. These data sets contain the
pressure changes before and after the hydraulic valve switching process.
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5.2. Dimensionality Reduction of a PCA-Based Training Set Sample

Dimensionality reduction of the training set sample data by the PCA method not only has the
advantages of reducing the dimension of the training set and improving the speed of the model
training, but also has the functions of eliminating the outliers of the signal and denoising the signal.
Based on the dimensionality reduction principle and analysis steps of the PCA method described
above, the variance contribution rates δi of the principal components of the PS1 and PS2 training
set samples are calculated, according to Equation (16). The variance contribution rates δi of the first
1–18 principal elements are shown in Table 3.

Table 3. Variance contribution of partial principal components.

Number of Principal Component 1 2 3 4 5 6 7 8 9

Unit % % % % % % % % %

PS1 90.36 4.96 3.02 0.68 0.24 0.18 0.12 0.07 0.06
PS2 66.72 20.90 11.19 0.46 0.21 0.17 0.12 0.05 0.03

Number of Principal Component 10 11 12 13 14 15 16 17 18

Unit % % % % % % % % %

PS1 0.04 0.04 0.03 0.02 0.01 0.01 0.00 0.00 0.00
PS2 0.03 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00

According to Equation (17), the relationship between the cumulative contribution rate ηk of the
principal components of the PS1 and PS2 training set samples and the number of principal components
is further plotted, as shown in Figure 4.
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However, there is no general method to select the optimal number of principal components to be
retained. In order to retain the original information to the greatest extent, the variance contribution
of principal components δi is set close to 0, and the cumulative contribution rate ηk is set close to
100%. According to Table 3 and Figure 4, from the variance contribution rates δi of the principal
components, it can be known that, after PCA dimensionality reduction, the information of PS1 data is
concentrated in the first 1–15 principal components, and the PS2 data information is concentrated in
the first 1–13. Considering the balance of the model training data, the number of principal components
k after dimensionality reduction to the PS1 and PS2 data sets is determined to be 15. The data set of
1449 × 100 dimensions can be compressed to 1449 × 15 dimensions. The data set after dimensionality
reduction is applied to the modeling and learning process of the training sample data set, which is
divided into training samples and test samples, according to a certain proportion, as displayed in
Table 4.

Table 4. The proportion sets of sample data for the hydraulic valve (V10).

Fault Conditions for the Hydraulic Valve Normal Slight Medium Severe Total

The total number of samples 369 360 360 360 1449
Number of training samples 257 252 238 264 1011

Number of test samples 112 108 122 96 438

5.3. Model Establishment Based on the XGBoost Algorithm

Huawei MLS integrates multiple algorithm nodes and can combine different nodes by dragging
and connecting, and creating a corresponding visual workflow for data processing, model training,
evaluation, and prediction, according to research tasks. At the same time, MLS integrates the function of
the Jupyter notebook, which provides users with an interactive notebook as an integrated development
environment for machine learning applications. The environment supports the writing of Python
scripts and performs data analysis and model building by using the Spark native algorithm MLlib.
Based on the workflow, a hydraulic valve fault diagnosis model combining PCA and the XGBoost
algorithm is established in MLS. The specific process is shown in Figure 5.
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5.4. Model Evaluation

In the model shown in Figure 5, the training sample data are split into a training set and a test
set by a “Data set split” module, and the split ratio is shown in Table 4. The test set is evaluated by
the “Model Evaluation” module in the MLS. The models are quantitatively evaluated by using model
evaluation indicators, such as confusion matrix, precision, recall rate, and an F1 score. The specific
definitions of each indicator are as follows.

Taking the binary classification problem as an example, the sample data are divided
into true positive (TP), false positive (FP), true negative (TN), and false negative (FN),
according to the combination of its real category and machine learning prediction category. Then,
TP + FP + TN + FN = Total number of samples.
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(1) Precision

Precision indicates the proportion of the sample whose real category is positive in the sample
with a positive prediction category. The calculation formula is shown below.

P =
TP

TP + FP
(32)

(2) Recall Rate

The recall rate indicates that the proportion of the sample with a positive prediction category in
the sample with a real positive category. The calculation formula is shown below.

R =
TP

TP + FN
(33)

where the precision P and the recall rate R are a pair of contradictory indicators. In general, when the
precision is high, the recall rate tends to be low. When the recall rate is high, the precision tends to
be low.

(3) F1 Score

The F1 score takes the precision and recall rate into account and is their weighted harmonic mean.
When the weights of precision and recall rate are the same, the harmonic mean obtained is called the
F1 score, and the calculation formula is shown below.

F1score= 2×
P×R
P + R

(34)

(4) Confusion Matrix

The confusion matrix is used for evaluating the model when faced with a multi-classification
problem, and the weight of each category is almost equal. Each column of the confusion matrix
represents a prediction category, and the total number of data for each column represents the number
of data predicted to be in the category. Each row represents the true attribution category of the data,
and the total number of data for each row represents the number of data instances belonging to
that category. For a confusion matrix, the larger the value on the diagonal is, the better the matrix.
The smaller value of other locations are better.

The above-mentioned the Principal Component Analysis and eXtreme Gradient Boosting
(PCA-XGBoost) model trained in the Huawei Cloud MLS is tested by the test set, and its specific
indicators are shown in Table 5.

Table 5. Evaluation indexes of the model using test samples.

Confusion Matrix
Precision Recall

Rate
F1 Score

Practical Predicted Normal Slight Medium Severe

Normal 101 11 0 0 0.990 0.902 0.944
Slight 0 108 0 0 0.885 1.000 0.939

Medium 0 3 119 0 1.000 0.975 0.988
Severe 1 0 0 95 1.000 0.990 0.995

It can be seen from Table 5 that the diagonal value of the confusion matrix in the hydraulic valve
fault diagnosis model is much larger than the value of the non-diagonal line. The precision and recall
rate of the model are all above 88%, and the F1 score is higher than 93%. The above results show that
the PCA-XGBoost model has high accuracy.
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5.5. Comparison of Model Diagnosis Results

In the same environment of the Huawei Cloud MLS platform, the model constructed by the
XGBoost algorithm was compared with the CART Tree classification model and the Random Forests
(RFs) algorithm model. The comparison diagram is displayed in Figure 6.

The comparison is made based on the model evaluation indicators such as the precision, the recall
rate, and the F1 score. Additionally, the comparison results are shown in Table 6.
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Table 6. Model evaluation comparison.

Model Algorithm Fault Conditions for the
Hydraulic Valve

Model Evaluation Index

Precision Recall Rate F1 Score

PCA-CART

Normal 0.878 0.902 0.890
Slight 0.914 0.889 0.901

Medium 0.907 0.959 0.932
Severe 0.966 0.896 0.930

Average value 0.916 0.911 0.913

PCA-RFs

Normal 0.916 0.875 0.895
Slight 0.909 0.926 0.917

Medium 0.929 0.959 0.944
Severe 0.958 0.948 0.953

Average value 0.928 0.927 0.927

PCA-XGBoost

Normal 0.990 0.902 0.944
Slight 0.885 1.000 0.939

Medium 1.000 0.975 0.988
Severe 1.000 0.990 0.995

Average value 0.969 0.967 0.966

As shown in Table 6, after the principal component dimensionality reduction of the data, the CART
Tree, Random Forests, and XGBoost algorithms are, respectively, used to construct the fault diagnosis
model of the hydraulic valve. Afterward, the models are tested through the test set. The test results
indicate that the average precision of the XGBoost model is 96.9%0.969, the average recall rate is 96.7%,
and the average F1 score is96.6%. The values of the evaluation indicators are higher than those of the
CART Tree and Random Forests models, which can not only prove the superiority of the algorithm,
but also demonstrate the effectiveness of this algorithm for hydraulic valve fault diagnosis.
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6. Conclusions

This paper mainly studies the fault diagnosis of hydraulic valves. Based on the status monitoring
data of the measured inlet and outlet pressure signals of the hydraulic valve, PCA was adopted to
reduce the dimensions of the data, and the XGBoost algorithm was used to construct a machine learning
model for hydraulic valve fault diagnosis. By testing the evaluation indexes of the machine learning
model, the effectiveness and superiority of the above method are proved. The main conclusions are
as follows.

(1) In this study, the pressure signals of the hydraulic valve are utilized as the sample data for
fault diagnosis in order to realize accurate diagnosis and classification of hydraulic valve faults. Then,
a novel fault diagnosis method for hydraulic valves based on the variation characteristics of pressure
signals is proposed.

(2) PCA dimensionality reduction for the original data set of feature vectors can not only
significantly reduce the dimension of the feature vector, but also remove redundant information in the
original data set. The principal component feature set after dimensionality reduction is used to train
the XGBoost machine learning, in order to construct the fault diagnosis model for the hydraulic valve.
The test results indicate that the precision mean of the model is 96.9%, the recall rate mean is 96.7%,
and the F1 score mean is 96.6% on the test set. Compared with the decision tree and random forest
models, the constructed model has higher accuracy.

(3) This research builds a fault diagnosis model for the hydraulic valve in the visual workflow of
HUAWEI Cloud MLS, and carries out data processing, model training, evaluation, and prediction.
In this way, hydraulic valve fault diagnosis, machine learning algorithms, and HUAWEI cloud are
organically combined together, which can provide a theoretical basis and practical guidance for the
remote fault diagnosis of hydraulic components and the predictive maintenance of hydraulic systems.
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