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Abstract: In this paper, we propose a triple-mode model predictive control (MPC) algorithm that uses
future target information to improve tracking performance. To explicitly take into account the future
target information in the MPC optimization, the proposed triple-mode control law encompasses three
parts: (i) the future target information feedforward, (ii) the output feedback, and (iii) the extra degrees
of freedom for constraint satisfaction. The first two parts of the control law are off-line designed
through unconstrained MPC, and the optimal future trajectory horizon is obtained by golden section
search based on the integral of squared error (ISE) criterion. The final part is calculated by the
on-line MPC algorithm aiming to satisfy constraints. Furthermore, we analyze the feasibility and
convergence properties of the proposed algorithm. The method is demonstrated by the simulation
of the shell fundamental control problem and also tested on the coordinated control problem in the
power plant. The test results show that the proposed algorithm can increase tracking performance
dramatically due to the proper selection of future trajectory horizon.

Keywords: model predictive control; dynamic matrix control; future target information; future
trajectory horizon

1. Introduction

Concern about multivariable constrained system control has become a central issue in the control
domain. As a result, much research in recent years has focused on the development of advanced control
algorithms that are process friendly. Model predictive control (MPC) has been widely and successfully
applied in the process industry, primarily due to its superior performance and the capability of dealing
with a multivariate constrained problem [1–3]. Since the step-response model is more convenient
to obtain and more suitable for the process industry, this model has been successfully applied to
numerous industrial processes by Aspen Technology, Honeywell Hi-Spec, and others. There has been
an increase in the adoption of dynamic matrix control in MPC commercial software packages such as
DMC+, SMC, RMPCT, HIECON [1].

The key idea of model predictive control is to use the historical information and model prediction
to calculate the optimal input trajectory by minimizing the deviation between the process output
and the desired target in a receding horizon way. There exists a rich supporting theory [4–6] for its
success in industry. Moreover, the applications of model predictive control have already gone beyond
petrochemical or chemical industries and extended to power plants [7], traffic, robots [8] and any
other fields.

The research to date has tended to focus on the regulation problem (steer the system to the
origin) [4] for facilitating the analysis and design. The regulation problem assumes the hypothesis that
the future setpoint is fixed or changes instantaneously, thus future target information is rarely discussed
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in the current literature. Considering the setpoint changes, Limón et al. [9] adopted a modified cost
function and a stabilizing extended terminal constraint in MPC optimization to obtain the feasible
setpoints in case that the setpoints are not feasible. Their work is still preserving no consideration
of using the future target information. The MPC optimization have the capability of considering the
future target information [10], which may be helpful in control since it allows the controller to react
to the setpoint changes in advance [11]. Carrasco and Goodwin [12] proposed a feedforward model
predictive control, in which the feedforward was designed individually before the feedback design.
However, how much future target information (so-called “preview” in their work) should be used in
feedforward design is not discussed in their work. Rossiter and Grinnell [13] developed an extended
input horizon generalized predictive controller (EIHGPC) algorithm, in which they parameterized
the degrees of freedom to spread the control increments over the prediction horizon and adopted a
heuristic algorithm to select a proper future target horizon, hence improves the tracking performance.
Their method only pertains to the unconstrained case. In [14], the authors proposed a dual-mode
constrained MPC algorithm, which was composed of a linear state feedback and extra degrees of
freedom. Under such a control law, the feedforward could not be designed individually and the future
target horizon was determined through a trial and error process.

However, the inappropriate use of future target information may cause the deterioration of
control performance [13,15]. There remains a need for an effective method that can determine a
proper future target horizon. Moreover, the current implementations of MPC fail to separately
design the feedforward, feedback and constraint satisfaction, which could not yield the desirable
performance from each part. In this study, a triple-mode constrained model predictive control
algorithm is developed, which has the merit of independent design for each mode of the control
law. The main ingredients of the triple-mode control law are: (i) the feedforward design using future
target information, (ii) the output feedback, and (iii) the extra degrees of freedom for constraint
satisfaction. In addition, a golden section search method is proposed to optimize the future trajectory
horizon, which can be used to design the feedforward to improve the tracking performance.

The outline of this article is as follows. First, we describe the typical dynamic matrix control.
Next, we give the future target information feedforward structure derived from the unconstrained
control law and propose an optimization method for the selection of future trajectory horizon. We
then introduce the triple-mode model predictive control using future target information. Finally, we
provide two illustrative simulation examples.

2. Preliminary

Mathematical notations used throughout this paper are defined as follows. Given a vector
x ∈ Rn, the symbol ||x|| denotes the Euclidean 2-norm and ||x||2P denotes the quadratic form of x.
e.g., ||x||2P = xT Px; AT denotes the transpose of A; Given two integers, l ≤ m, we define the set
Il:m = {l, l + 1, ..., m − 1, m}. The superscript ∗ denotes the optimal solution or cost according to
the context.

Dynamic Matrix Control Algorithm

The design of the MPC algorithm in this paper follows the standard DMC approach proposed
by Garcia and Morshedi [2]. Without loss of generality, we consider a MIMO linear dynamic system
with ny ∈ R controlled variables and nu ∈ R manipulated variables. The DMC algorithm adopts a
non-parametric step response model as the predictor, thus the ith output yi(t) ∈ R at time t can be
formulated by the following step response model

yi(t) =
nu

∑
j=1

∞

∑
k=1

ai,j,k∆uj(t− k), (1 ≤ j ≤ ny) (1)
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in which ∆uj(t) ∈ R denotes the jth input increment, i.e., ∆uj(t) := uj(t)− uj(t− 1). ai,j,k ∈ R denotes
the kth element of the corresponding step response, and the step response sequence of the ith output
to the jth input is {ai,j,1, ai,j,2, ..., ai,j,n, ...}. For a stable plant this sequence will asymptotically reach a
constant value, i.e., ai,j,n+m ≈ ai,j,n, (m > 0).

Based on the step response model, the output predictions over n future steps can be expressed
as follows

Y(t + 1) = ΛY(t) + A∆u(t) (2)

where
Y(t) = [yT(t|t− 1), yT(t + 1|t− 1), ..., yT(t + n− 1|t− 1)]T

y(t + k|t− 1) = [y1(t + k|t− 1), y2(t + k|t− 1), ..., yny(t + k|t− 1)]T , ∀k ∈ I0:n−1

∆u(t) = [∆u1(t), ∆u2(t), ..., ∆unu(t)]
T

Λ=



0 Iny 0 · · · 0 0
0 0 Iny · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Iny 0
0 0 0 · · · 0 Iny

0 0 0 · · · 0 Iny


, A =


A1

A2
...

An



At =


a1,1,t a1,2,t · · · a1,nu ,t
a2,1,t a2,2,t · · · a2,nu ,t

...
...

. . .
...

any ,1,t any ,2,t · · · any ,nu ,t

 , ∀t ∈ I1:n

∆u(t) ∈ Rnu is a vector of the future control moves at time t. Y(t) ∈ Rny ·n is the dynamic states of the
system, and y(t + k|t− 1) ∈ Rny is the future output vector at time t + k assuming the input remain
constant starting at time t− 1, which means ∆u(t + j) = 0 for j ≥ 0. The evolution of predictions
can be obtained by translation of one-step prediction plus the contribution made by the latest control
move ∆u(t).

To achieve the goal of offset-free tracking, a bias is introduced into the model to incorporate the
feedback. It’s assumed that the model prediction and the measured output at the current time is due to
a constant step disturbance at the output. The constant output step disturbance assumption is standard
in industrial applications [16]. The model bias e(t) ∈ Rny is based on the latest output measurement
ỹ(t) ∈ Rny and the predicted outputs ŷ(t|t− 1) ∈ Rny

e(t) = ỹ(t)− ŷ(t|t− 1) (3)

in which ŷ(t|t− 1) refers to the prediction of output at time t based on the measurements up to time
t− 1. The bias is added to compensate the output prediction

Ŷ(t|t) = Ŷ(t|t− 1) + He(t) (4)

where Ŷ(t|t− 1) denotes the estimate of Y(t) at time t before the latest measurements are obtained.
Ŷ(t|t) is the revised estimate of Y(t) on the basis of the feedback, and H := diag{Iny , ..., Iny} refers to
the weighting matrix of the bias term.

For open-loop stable systems, the future control moves ∆U M(t) ∈ RM·nu over the control horizon
(M) is optimized to drive the model predicted outputs Ŷ P(t + 1|t) ∈ RP·ny as closely as possible to
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a desired future trajectory R(t + 1|t) ∈ RP·ny over prediction horizon (P). The DMC optimization
problem is defined as

min
∆uM(t)

J(t) =
∥∥R(t + 1|t)− Ŷ P(t + 1|t)

∥∥2
Q + ‖∆U M(t)‖2

W (5a)

s.t. Ŷ P(t + 1|t) = ΛPŶ(t|t) + AM
P ∆U M(t) (5b)

∆umin ≤ ∆U M(t) ≤ ∆umax (5c)

umin ≤ U M(t) ≤ umax (5d)

where umax, umin, ∆umax, ∆umin are input constraints and increment constraints, respectively.
The matrix AM

P is the dynamic matrix with P × M block matrix and ΛP is the shift matrix with
appropriate dimension. Q, W are the weighting matrices for outputs and the controller moves.
The above notations read

Ŷ P(t + 1|t) =
[
ŷT(t + 1|t), ..., ŷT(t + P|t)

]T
,

∆U M(t) =
[
∆uT(t|t), ..., ∆uT(t + M− 1|t)

]T
,

R(t + 1|t) =
[
rT(t + 1|t), ..., rT(t + P|t)

]T
,

rT(t + k|t) =
[
r1(t + k|t), ..., rny(t + k|t)

]T
, ∀k ∈ I1:P

AM
P =



A1 0 · · · 0
A2 A1 · · · 0
...

. . .
...

AM AM−1 · · · A1
...

AP AP−1 · · · AP−M+1


,

ΛP =
[

IP·ny×P·ny 0
]
×Λ,

Q = diag(Q1, ..., QP), Q1 = diag{q1, ..., qny}
W = diag(W1, ..., WM), W1 = diag{w1, ..., wnu}.

At every sample time, controller evaluates its future input trajectories by solving the optimization
problem (5) and sends the first step of its entire future input trajectory to its actuators. However,
although the future target information R(t + 1|t) of the controlled variable were embedded in the
optimization problem of DMC algorithm, the default choice in DMC algorithm was r(t + k|t) =

r(t + 1|t), ∀k ∈ I2:P. Little attention has been paid to the selection of an appropriate future trajectory
horizon and the use of future target information.

3. Main Results

In this section, we first derive the explicit control law of the unconstrained MPC, which includes
two parts: (i) the future target information feedforward, and (ii) the output feedback. Based on
the future target information feedforward, we demonstrate that a poor future trajectory horizon
has quite an impact on the system’s performance. Then we propose an optimization method to
determine the future trajectory horizon and the tripe-mode model predictive control using future
target information. The triple-mode MPC is composed of the designed unconstrained control law and
the extra degrees of freedom. The future target information is taken into account explicitly to improve
tracking performance.
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3.1. Illustrations of Poor Future Trajectory Horizon

Now we show that the unconstrained MPC control law will provide possibilities in the explicit
expression of feedforward and feedback. Consider the performance objective J(t) in problem (5),
one can derive the unconstrained law by minimizing it w.r.t the future control moves, according the
extremum condition d(J(t))/d(∆U M(t)) = 0, we have

∆U M(t) = ((AM
P )TQAM

P + W)−1(AM
P )TQ(R(t + 1|t)−ΛPŶ(t|t)) (6)

and making the following substitutions

Fr ← ((AM
P )TQAM

P + W)−1(AM
P )TQ

K ← ((AM
P )TQAM

P + W)−1(AM
P )TQΛP

(7)

then we can get
∆uM(t) = FrR(t + 1|t)− KŶ(t|t) (8)

It can be seen that the future target information is involved in the first term of the control law:
FrR(t + 1|t), which can be seen as the feedforward in the unconstrained control law. In addition, the
second part of the control law can be seen as the output feedback based on the current output prediction.

For convenience, we define the future trajectory horizon in feedforward term for each output
as fi ∈ R, ∀i ∈ I1:ny , which indicates the length of future target information considered in the
optimization. Any future targets beyond the future trajectory horizon will not be taken into account
in the optimization problem, even if known. For a given fi, ∀i ∈ I1:ny , the future target information
adopted in MPC can be expressed as

ri(t + fi + k|t) = ri(t + fi|t), ∀k ∈ I1:P− fi
(9)

Furthermore, by combining the specific future trajectory horizon, the unconstrained law can be
represented as follows:

FrR(t + 1|t) = F1r1 + ... + Fny rny

= F̃1r̃1 + ... + F̃ny r̃ny

(10)

where F iri, ∀i ∈ I1:ny refers to the ith feedforward contribution, and F̃ i r̃i, ∀i ∈ I1:ny is the reconstructed
future target information feedforward component based on the designed future trajectory horizon fi.

F i =
[

Fi, Fny+i, ..., F(P−1)·ny+i

]
,

F̃ i =
[

Fi, Fny+i, ..., F( fi−2)·ny+i,F( fi−1)·ny+i + ... + F(P−1)·ny+i

]
,

ri =


ri(t + 1|t)
ri(t + 2|t)

...
ri(t + P|t)

 , r̃i =


ri(t + 1|t)
ri(t + 2|t)

...
ri(t + fi|t)

 , ∀i ∈ I1:ny

and Fj, ∀j ∈ I1:P·ny denotes the jth column vector of the feedforward matrix Fr.
It indicates that, for the ith output, the original P-dimension target vector ri has been replaced by a

designed fi-dimension vector r̃i. A major current focus in improving the control performance is how to
select a proper fi, ∀i ∈ I1:ny . It is known that the typical DMC algorithm considers no setpoint changes
during the optimizaiton, which is equivalent to set the future trajectory horizon as fi = 1, ∀i ∈ I1:ny .
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Next, we examine the closed-loop performances of the MPC algorithm adopting different choices
of future trajectory horizon. Consider a single-input, single-output system described by the following
transfer function

G(s) =
1

(10s + 1)(5s + 1)
(11)

The sampling time is chosen as 5 s, a step change of setpoint happens at sampling instant 15 and
the unconstrained MPC algorithm is applied to drive the system to its target. The arbitrary choices
of future trajectory horizon are f = 1, 6, 15. The tuning parameters of DMC are: P = 15, M = 3 and
Q = I, R = 5 ∗ I in which I is the identity matrix.

As illustrated by Figure 1, with a default choice of future trajectory horizon in MPC ( f = 1),
the system response is slugglish when the setpoint changes, in contrast, setting the future trajectory
horizon as the prediction horizon could result in an aggressive response. A proper selection f = 6
deserves a desirable tracking performance.

0 5 10 15 20 25 30 35

sample

0

0.1

0.2

0.3

0.4

0.5

0.6

ou
tp

ut

setpoint
f=15

f=6
f=1

Figure 1. The closed-loop output response with respect to different future trajectory horizon.

The integral of squared error (ISE) criterion is widely used to evaluate the system performance in
control engineering, the discrete form of ISE reads

ISE =
∞

∑
t=0

[error(t)]2 (12)

in which error(t) refers to the difference between the expected value (target value) and the actual
response value at time instant t.

The ISE values shown in Table 1 demonstrate that the standard MPC algorithm with no
anticipation ( f = 1) owns large ISE value during the transition from one target to another. On the
other hand, with large number of future trajectory horizon ( f = 15), the system would react far in
advance and lead to bad performance too.

Table 1. Closed-loop system performance with different choices of f .

f = 1 f = 6 f = 15

ISE 0.8055 0.1797 0.3192
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3.2. Future Trajectory Horizon Optimization Algorithm

Since the closed-loop response with smaller ISE value is better, we advocate use of the ISE value
to select the proper future trajectory horizon. The ISE value can be regarded as a function of future
trajectory horizon, i.e., ISEi = g( fi), ∀i ∈ I1:ny . A better fi deserves lower function value g( fi), we take
the idea of golden section search algorithm [17] to optimize the future trajectory horizon. The algorithm
can be summarized as follows:

According to Algorithm 1, we plot the ISE value subject to the iteration of ak, bk, λk, µk as Figure 2
shows. The optimal future trajectory horzion obtained is f = µ6 = 6. Which testifies the result of
last section.

Algorithm 1 The optimization of Future trajectory horizon based on ISE value

For any controlled variable yi, ∀i ∈ I1:ny ;
Step 1. Given the prediction horizon P, set a1 = 1, b1 = P, then calculate the initial point:

λ1 = ba1 + 0.382 ∗ (b1 − a1)c
µ1 = da1 + 0.618 ∗ (b1 − a1)e

(13)

and set k = 1;
Step 2. Give a specified target, govern the process by using the control law Equation (8) and evaluate
the ISE value g(·) over the entire runtime;
Step 3. If ak == λk, set fi = µk or if bk == µk set fi = λk, and the optimal future trajectory horizon
is obtained, break the optimization; Otherwise, if g(λk) > g(µk), go to Step 4, else if g(λk) ≤ g(µk),
go to Step 5;
Step 4. Set 

ak+1 = λk

bk+1 = bk

λk+1 = µk

µk+1 = dak+1 + 0.618 ∗ (bk+1 − ak+1)e

(14)

and go to Step 6;
Step 5. Set 

ak+1 = ak

bk+1 = µk

µk+1 = λk

λk+1 = bak+1 + 0.382 ∗ (bk+1 − ak+1)c

(15)

and go to Step 6;
Step 6. Set k = k + 1, go to Step 2.

3.3. Triple-Mode MPC Algorithm Using Future Target Information

For the conventional MPC algorithm, the optimization problem (5) is solved with nu ·M degree
of freedom ∆U M(t) to tackle constraints. However, the original optimization problem treats the input
as decision variables, which breaks down the inherent future target information feedforward structure
as described before. What’s more, the default choice of future trajectory horizon fi = 1, ∀i ∈ I1:ny in
the MPC algorithm may lead to sluggish tracking performance. There exists no effective method to
determine a proper future target horizon for MPC optimization.

With the proposed Algorithm 1 used, we next present a triple-mode MPC algorithm using future
target information. Different from the typical DMC algorithm as described in preliminary section,
the proposed triple-mode control law encompasses three parts: (i) the future target information
feedforward, (ii) the output feedback, and (iii) the extra degrees of freedom. Each mode of the control
law can be designed individually. The first two parts of the control law are off-line designed through
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unconstrained MPC, and the optimal future trajectory horizon is obtained by using Algorithm 1.
The final part is calculated by the on-line MPC algorithm aiming to satisfy constraints.

1 2 3 4 5 6

iteration (k)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

IS
E

 v
al

ue
 g

(
)

a
k

b
k

k

k

Figure 2. The evolution of golden section search for future trajectory horizon of illustrated example by
using Algorithm 1.

Enhance the unconstrained MPC control law Equation (8) with an additional term C(t) ∈ Rnu ·M

∆U M(t) = FrR(t + 1|t)− KŶ(t|t) + C(t) (16)

in which C(t) = [c(t|t), c(t + 1|t), ..., c(t + M− 1|t)]T and c(t + i|t), i ∈ I0:M−1 ∈ RNu representing
degrees of freedom to get the constraints satisfied.

It indicates that the original degree of freedom ∆U M(t) in constrained DMC optimization (5) is
replaced by C(t), which not only provide the feedforward design from future target information but
also guarantee the advantage of constraint satisfaction. At each sampling time, the controller solves
the following optimization problem

min
C(t)
‖C(t)‖2

W (17a)

s.t. Ŷ P(t + 1|t) = ΛPŶ(t|t) + AM
P ∆U M(t) (17b)

∆U M(t) = FrR(t + 1|t)− KŶ(t|t) + C(t) (17c)

∆umin ≤ ∆U M(t) ≤ ∆umax (17d)

umin ≤ U M(t) ≤ umax (17e)

Ŷ P(t + P|t) = R(t + P|t) (17f)

where Equation (17f) refers to the terminal constraint used to ensure closed-loop stability when
model predictive control is employed. After optimization, the optimal solution C∗(t) =

[c∗(t|t), c∗(t + 1|t), ..., c∗(t + M− 1|t)]T can be obtained, and the optimal input increment is nothing
but ∆u∗(t) = dT(FrR(t + 1|t) − KŶ(t|t)) + c∗(t|t) with d = [Inu , 0, ..., 0]T . Note that the proposed
triple-mode MPC optimiazation problem (17) is a quadratic programming [18] with nu ×M degrees of
freedom. The degrees of freedom are the same as the original DMC optimization problem (5), thus the
computation load of proposed triple-mode MPC is the same as which of DMC.

A detailed implementation procedure of the proposed triple-mode MPC algorithm (Algorithm 2)
is summarized as follows.
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Algorithm 2 Triple-mode MPC algorithm using future target information

Offline computation:
Carry out the Algorithm 1 to obtain the future trajectory horizon fi, ∀i ∈ Rny , the first two parts of
the control law are designed through Equations (7) and (10);
Online computation:
Step 1. At sampling time t, controller receives measurement from the sensors and evaluate the
modified estimate of predictions according to Equation (4);
Step 2. Solve the optimization problem (17) to evaluate its future input trajectory;
Step 3. Injects the optimal input into the plant;
Step 4. Set t = t + 1, and go to Step 1.

In this section, the triple-mode MPC using future target information is presented. As has been
previously stated, this triple-mode control law is based on the usage of the perturbations on the fixed
dual-mode unconstrained control law. To this end, the following assumption is considered.

Assumption 1. The step response sequence ai,j,k, ∀i ∈ I1:ny , ∀j ∈ I1:nu , ∀k ∈ N+ is a Cauchy sequence:
∀ε > 0, ∃N ∈ N, ∀n, ∀m, (m, n > N → |ai,j,n − ai,j,m| < ε).

Assumption 2. The weighting matrices Q ∈ RP·ny×P·ny and R ∈ RM·nu×M·nu are positive definite matrices.
At least as many inputs as outputs is required: nu ≥ ny.

The future target is admissible if there exist a set of control sequence ∆U M(t) such that the system
output Ŷ P(t) can reach it and the constraints (e.g., ∆umin ≤ ∆U M(t) ≤ ∆umax, umin ≤ U M(t) ≤ umax)
can be satisfied during the stage. The following theorem follows immediately.

Theorem 1. Consider that Assumption 1 and 2 hold, and the future target R(t + 1|t) is admissible. Then,
for any feasible initial state Ŷ(t|t), the proposed triple-mode controller ∆u∗(t) = dT(FrR(t + 1|t)−KŶ(t|t)) +
c∗(t|t) asymptotically steers the system to R(t + 1|t).

The proof can be found in the Appendix A.

4. Applications

In this section, dynamic simulations are carried out to evaluate the performance of the
proposed triple-mode controllers. This section presents two illustrative applications for the proposed
methodology: (i) the shell fundamental control problem (case study I), and (ii) the coordinated control
problem in the power plants (case study II). We aim at showing the better performance can be achieved
by proper selection of future trajectory horizon. The simulation case study was performed on a PC
with Intel Core i5 Quad 1.6GHz, 16GB memory and in the Matlab platform.

4.1. System I: A Heavy Oil Fractionator

In this example, consider a plant shown in Figure 3 presented in Prett and Morari [19]. in which a
gaseous feed stream is separated by removing heat.

Here we will only consider the two-by-two subsystem, which consists of two inputs: the top draw
u1 and the side draw u2; two outputs: the top end point y1 and the side end point y2. The model for
this system is: [

y1

y2

]
=

[
4.05e−30s

50s+1
1.77e−30s

60s+1
5.39e−20s

50s+1
5.72e−15s

60s+1

] [
u1

u2

]
(18)

The system will be represented using a 60-coefficient step response model with a 5-min sampling
time. Set the initial operating point to be the origin and the upper bound of both output and input is
0.5, the lower bound of both output and input is −0.5. Three MPC algorithms are used to compare the



Processes 2020, 8, 54 10 of 18

system performance: the typical DMC, the proposed triple-mode MPC (Algorithm 2), and the DMC
algorithm with an artificial selection of future target horizon (denoted as DMC-FF in the following).
Tuning parameters of the MPC controllers are the same as follows: a prediction horizon of P = 60 and a
control horizon of M = 8. The weighting matrices are set as identity matrix. In the DMC-FF algorithm,
the future target horizon is selected as f1 = 40, f2 = 40. In the triple-mode MPC algorithm, the optimal
future target horizon can be obtained as f1 = 13, f2 = 13 according to Algorithm 1. To compare the
tracking performance, the evolution of setpoint is given as: the initial setpoint is coincident with the
system’s initial operating point; at sample time 20, change the setpoint sp1 of output y1 to its upper
bound and the setpoint sp2 of output y2 is also changed to its upper bound when sample time 40; at
sample time 60, set the setpoint of output y1 to the origin and the setpoint of output y2 is also set to the
origin at sample time 80.

Figures 4 and 5 present the output response and input response of the controlled system.
As it can be seen in Figure 4, both two outputs are sluggish under the typical DMC algorithm when

the setpoint changed. On the other hand, using an artificial selection of future target horizon may cause
the system to response to the future target information far in advance. The performance is degraded
because the typical DMC algorithm overlooks the information of future target and the DMC-FF
algorithm uses too much future target information. In contrast, the triple-mode MPC algorithm which
taking into account the future target information properly can respond to subtlety, the performance of
the system is improved dramatically.

Next, Table 2 shows the sum of the ISE value of the controlled system for each control strategy
throughout the simulation horizon. The DMC-FF using the future target information can outperform
the typical DMC, and the triple-mode MPC using an optimal future target horizon achieves the best
tracking performance among the three algorithms.

A

A

T

T

T

T

T
Top 

Temperature

Upper

Reflux Duty

Upper Reflux 

Temperature

Intermediate

Reflux Duty

Intermediate

Reflux Temperature

Bottoms

Reflux Duty

Bottoms

Reflux Temperature

Feed

Side Draw

Temperature

Side End Point

Composition

Side Draw

Top End Point

Composition

Top Draw
1u

1y

2u

2y

Figure 3. Schematic diagram of “Shell” heavy oil fractionator [5]. Reproduced with permission from
J.M.Maciejowski, predictive control with constraints; published by Pearson education, 2002.
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Figure 4. Comparison of output response obtained by DMC, triple-mode MPC and DMC-FF. The top
end point is contained in the first panel and the side end point is contained in the second panel.
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Figure 5. Comparison of input response obtained by DMC, triple-mode MPC and DMC-FF. The top
draw is contained in the first panel and the side draw is contained in the second panel.

Table 2. Comparison of tracking error with respect to typical DMC, the triple-mode MPC and the
DMC-FF algorithms.

DMC Triple-Mode MPC DMC-FF

ISE 6.3771 0.7088 0.9515
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4.2. System II: A Power Plant Coordinated Control System

Coordinated control system (CCS) is the system that coordinates the steam turbine and the boiler
at the same time to respond to the various load demands quickly [20]. The boiler and the turbine
possess different dynamic characteristics. The dynamic from the combustion rate to the main steam
pressure is a slow process with large delay and great inertia. In contrast, the response from the turbine
governor valve to the unit output is a relatively fast process.

The simplified coordinated control system can be shown in Figure 6.

Figure 6. Simplified block diagram of the coordinated control system.

It can be seen that this system is a two-input, two-output control system, in which the manipulated
variables are the fuel command uB(%) and the opening level of the turbine valve µt(%), the controlled
variables are the main steam pressure pt(MPa) and the output power NE(MW). Consider a 660MW
unit in Datang Panshan Power Plant, China, in which the CCS is composed of the boiler of Type
HG− 2023/17.6−YM4 boiler and the turbine of Type N600− 16.7/537/537− I. The nonlinear model
from the load 50% to load 100% was identified through the step test [21]. When the load NE = 550MW,
the linearized model is:[

∆NE
∆pt

]
=

 2257s
(1+250s)(1+12s)

18.6(1−35s)
(1+189s)(1+250s)(1+12s) e−23s

−0.279
1+250s

0.571(1−35s)
(1+189s)(1+250s) e−23s

 [ ∆µt

∆uB

]
(19)

In this case study, it was established that the control system must always obey the speed restriction
on the manipulated variables |∆µt| ≤ 0.5%, |∆uB| ≤ 0.5%, and the system is initially at NE = 550 MW,
pt = 16.9 Mpa. The sampling time is T = 5 s. Three MPC algorithms are used to compare the system
performance: the typical DMC, the proposed triple-mode MPC (Algorithm 2), and the DMC algorithm
with an artificial selection of future target horizon (denoted as DMC-FF in the following). Tuning
parameters of the three MPC algorithms are the same as follows: the prediction horizon is P = 300
and the control horizon is M = 20; the weighting matrices are set as: the weight for NE is q1 = 1 and
for pt is q2 = 100, the weight for inputs is W = 5 ∗ I. In the DMC-FF algorithm, the future trajectory
horizon for outputs NE and pt are set to f1 = 80, f2 = 120 respectively. In addition, the triple-mode
MPC adopts f1 = 22, f2 = 26 to design the feedforward based on Algorithm 1. The main purpose of
the CCS is to keep the output power responding to load demands quickly when the unit running in
either constant or sliding pressure operation. The following two scenarios are considered:

4.2.1. Constant Pressure Operation

When the unit is running in constant pressure operation mode, the main steam pressure is
maintained at the rated value regardless of any changes in load demand.

Assuming that the evolution of load demand is given as: the initial load demand is coincident
with the system’s initial operating point NE = 550 MW; at sample time 200, change the load demand
to 600 MW then remain constant; at sample time 700, set the target load to 500 MW and then push it
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to the 550 MW at time instant 1500. In order to prevent the step load disturbance of the target load
from impacting the entire control system of the unit, the setpoint of the output power is formed by
limiting the load change rate after the target load is changed [22]. In general, the load change rate is
determined by the operating personnel according to the operating conditions of the unit equipment.
Here we set the load change rate as 5 MW/min.

Figure 7 presents the dynamics of the controlled outputs NE and pt. The figure shows the
responses obtained by the typical DMC, the triple-mode MPC and the DMC-FF algorithms. The control
actions implemented by the manipulated inputs µt and uB that caused the responses in Figure 7, are
shown in Figure 8.

It can be observed the output power governed by triple-mode MPC can track the load demand
more quickly while maintaining steam pressure at the constant value. In contrast, the DMC-FF
algorithm uses too much future target information and responses to the load demand far in advance,
which leads to large oscillations in the main steam pressure. The main steam pressure controlled by
the typical DMC algorithm also oscillates a lot when the load demand changes. In this case, the typical
DMC algorithm even outperforms the DMC-FF algorithm due to the improper selection of future
target horizon in the DMC-FF algorithm.

Table 3 reports the square errors between the output response and the desired setpoint value.
In contrast, the proposed triple-mode MPC is expressed explicitly in terms of future information
feedforward, and is hence expected to yield improved results for tracking performance.

Table 3. Comparison of square errors under constant pressure operation.

Error of NE (MW) Error of pt (MPa)

DMC 431.7057 5.6357
Triple-mode MPC 104.3930 0.0331

DMC-FF 877.6251 32.3255
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Figure 7. Comparison of output response. The output power NE is contained in the first panel and the
main steam pressure pt is contained in the second panel.
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Figure 8. Comparison of input response. The turbine valve µt is contained in the first panel and the
fuel command uB is contained in the second panel.

4.2.2. Sliding Pressure Operation

We then proceed with the running of the unit concerning sliding pressure operation, and the
optimal operating curve is plotted in Figure 9. The main steam pressure increases in line with the
increase of the load when the load is less than 550 MW, and maintains constant when the load exceeds
550 MW. The load demands used for tracking are the same as before.

Figure 10 presents the dynamics of the controlled outputs NE and pt. The figure shows the
responses obtained by the typical DMC, the proposed triple-mode MPC and the DMC-FF algorithms.
The control actions implemented by the manipulated inputs µt and uB that caused the responses in
Figure 10, are shown in Figure 11.

Analyzing the results in the first panel of Figure 10, one can notice that for the trajectory of
the controlled output NE under the proposed triple-mode MPC algorithm is closer to the desired
trajectory than which under the typical DMC algorithm. In addition, the trajectory governed by the
DMC-FF algorithm can also respond to the load demand more quickly than the typical DMC algorithm.
(The curves of triple-mode MPC and DMC-FF almost overlap in the left magnified figure) However,
the DMC-FF algorithm responses to the load demand far too early, which leads to the loss of tracking
performace as we can see in the right magnified figure.

On the other hand, as shown in the second panel of Figure 10, when the setpoint of the main
steam pressure changes with the load demand, the accuracy of tracking deteriorates a lot under either
the typical DMC or the DMC-FF algorithms. In contrast, using the triple-mode MPC can drive the
main steam pressure pt to track its setpoint without too much performance loss.

A quantitative comparison of square errors for the whole simulation is also shown in Table 4.
In the table, the power output and pressure errors of the triple-mode MPC algorithm are dramatically
reduced compared to those of the typical DMC and the DMC-FF algorithms.

Table 4. Comparison of square errors under sliding pressure operation.

Error of NE (MW) Error of pt (MPa)

DMC 501.7570 10.7935
Triple-mode MPC 124.5650 0.1009

DMC-FF 753.2611 22.1475
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Remark 1. In many practical processes such as power plants [23], wind tunnels [24], there exists future
target information that can be used in feedforward design. When the MPC algorithm is applied to real systems,
the closed-loop performance is related to the accuracy of the model and the future target information. If the model
is consistent with the plant, and the future target information is correct, the control performance obtained is as
good as which obtained in the case study.
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Figure 9. Sliding pressure operation curve of the 660 MW unit.
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Figure 10. Comparison of output response. The output power NE is contained in the first panel and
the main steam pressure pt is contained in the second panel.
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Figure 11. Comparison of input response. The turbine valve µt is contained in the first panel and the
fuel command uB is contained in the second panel.

5. Conclusions

In this work, we propose a triple-mode model predictive control algorithm using future
target information. In order to explicitly take into account the future target information in the
MPC optimization, the proposed triple-mode control law includes the future target information
feedforward term, and the future trajectory horizon can be optimized off-line to design the feedforward.
Furthermore, the extra degrees of freedom are added to append the control law such that the constraints
can be met when the MPC is running. Experimental results on the shell fundamental control problem,
and the coordinated control problem in the power plant demonstrate that, by incorporating future
target information feedforward explicitly and using an optimal future target horizon, the proposed
triple-mode MPC algorithm could better hedge against the future target information, mitigate the
sluggish response, and improve the tracking performance.
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Appendix A. Proof of Theorem 1

Proof of Theorem 1. A deviation model is obtained by computing an error model with respect to
the future targets. To do so, consider a desired future trajectory described by R(t + 1|t), and define
deviation variables

Ȳ P(t + 1|t) = Ŷ P(t + 1|t)− R(t + 1|t) (A1)

that satisfy the dynamic model

Ȳ P(t + 1|t) = ΛPȲ(t|t) + AM
P ∆U M(t) (A2)
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The zero regulation problem applied to the system in deviation variables finds ∆U M(t) that takes
Ȳ(t|t) to zero.

Feasibility: Assume that the state at the current sample time t is Ȳ(t|t). Also assume
that the optimal solution is C∗(t) = [c∗(t|t), c∗(t + 1|t), ..., c∗(t + M− 1|t)]T with an optimal cost
V∗(Ȳ(t|t), C∗(t)). Let Ȳ(t + 1|t) be the state at the next sampling time. Consider a control sequence

∆Ũ M(t + 1) = FrR(t + 2|t + 1)− KŶ(t + 1|t + 1) + C̃(t + 1) (A3)

with C̃(t + 1) = [c∗(t + 1|t), ..., c∗(t + M− 1|t), 0]T . Then it is easy to see that ∆Ũ M(t + 1) is a feasible
solution at time t + 1 due to the feasibility of the optimal solution at time t and enforced terminal
constraint. Consequently, Ŷ P(t + 1 + P|t + 1) = R(t + 1 + P|t + 1).

Convergence: Consider the feasible solution at time t + 1 previously presented. Following standard
steps in the stability proofs of MPC (Mayne et al. [25]), we get that

V∗(Ȳ(t + 1|t + 1), C∗(t + 1))

≤V(Ȳ(t + 1|t + 1), C̃(t + 1))

≤V∗(Ȳ(t|t), C∗(t))− ‖r(t + 1|t)− ŷ∗(t + 1|t)‖2
q − ‖∆u∗(t|t)‖2

w

(A4)

Due to the definite positiveness of the optimal cost and its nonincreasing evolution, we infer
that limt→∞

∥∥ȲP(t + 1|t)
∥∥2

Q = 0 and limt→∞ ‖∆U M(t)‖2
W = 0. Consequently, the system is steered to

R(t + 1|t).
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