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Abstract: This paper investigated the magnetohydrodynamic (MHD) mixed convection flow of
Fe3O4-water ferrofluid over a nonlinearly moving surface. The present work focused on how the state
of suction on the surface of the moving sheet and the effects of thermal radiation influence the fluid
flow and heat transfer characteristics within the stagnation region. As such, a similarity solution is
engaged to transform the governing partial differential equations to the ordinary differential equations.
A collocation method, namely the bvp4c function in the MATLAB software solves the reduced system,
numerically. Two different numerical solutions were identified for the cases of assisting and opposing
flows. The stability analysis was conducted to test the stability of the non-uniqueness solutions. The
increment of the thermal radiation effect affects the rate of heat transfer to decrease. The stability
analysis conveyed that the upper branch solution is stable and vice versa for the other solution.
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1. Introduction

The combined free (natural) and forced convections, also known as mixed convection, normally
take place when both free and forced convection mechanisms coexist in order to contribute to both
flow and heat transfer. In recent years, many researchers have examined various perspectives of mixed
convections in nanofluid as it has numerous industrial significances, especially in nanotechnology.
Furthermore, nanofluid refers to an advanced class of heat transfer fluids that consists of nanoparticles
and base fluid. On record, Choi [1] initially created the term ‘nanofluid’ in 1995 in an effort to express
this new class of fluid. In addition, Saidur et al. [2] indicated that nanofluids are mostly proficient
substance with enhanced thermophysical attributes and heat transfer functioning. On top of that,
due to tremendous practical interest, a great deal of studies have been conducted to analyze the
scope of mixed convection flow and the heat transfer process in nanofluid. For example, a significant
analysis was conducted by Ahmad and Pop [3] to examine the mixed convection flow of nanofluid
over a vertical surface in a porous medium. Meanwhile, Mahdy [4] discovered the effects of the
unsteadiness parameter, mixed convection parameter, Prandtl number, and solid volume fraction of
nanoparticles upon unsteady boundary layer flow past an elongating surface in nanofluids. Other
than that, Tamim et al. [5] scrutinized the consequences of the mass flux, magnetic field, as well as
solid volume fraction of nanoparticles at the moving sheet upon mixed convection stagnation-point
flow of a nanofluid. The valuable work of [5] was then extended by Mustafa et al. [6] by incorporating
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the effects of magnetohydrodynamics and viscous dissipations and concluded that the combination
of these effects depreciate the rate of heat transfer. The initiative of Subhashini et al. [7] to solve the
problem of mixed convection flow of a nanofluid over an exponentially moving surface is also an
excellent effort to fill the research gap within the scope of mixed convection nanofluid flow.

Furthermore, studies referring to thermal radiation effects on both flow and heat transfer in
a nanofluid are increasing because nanofluid possesses various properties. Besides, the impact of
radiative heat transfer has become progressively significant in designing various advanced energy
conversion systems that may operate at high temperatures. Herein, numerous studies have delved into
the effects of thermal radiation with varied aspects. For instance, Ibrahim and Shankar [8] explored the
presences of heat radiation upon boundary layer flow and heat transfer along with the slip conditions.
Meanwhile, in the occurrence of thermal radiation, Yazdi et al. [9] inferred that copper nanoparticles
contribute to the highest rate of heat augmentation compared to alumina and titania in a porous
medium. Apart from that, Pal and Mandal [10] determined the dominancy of thermal radiation upon
mixed convection stagnation-point flow of nanofluid, namely Cu-water, Al2O3-water, and TiO2-water,
in a porous medium over a stretching/shrinking surface in the existence of chemical reaction, heat
source/sink, and suction/injection. In addition, Pal and Mandal [11] also considered the influences of
heat radiation and viscous dissipation on mixed convection flow of nanofluid in a porous medium, and
hence managed to identify the dual solutions for the shrinking case. Later, Haroun et al. [12] employed
a new method, namely the spectral relaxation method (SRM), to solve the problem of mixed convection
flow in MHD nanofluids and produced benchmark solutions, which could be useful for future works.

On the other hand, magnetic nanofluid or ferrofluid, which are also called a special type of
nanofluid, refers to a colloidal suspension of magnetic nanoparticles in a non-magnetic base fluid
(water, oil, and ethylene glycol) [13]. Note that ferrofluid was pioneered in 1963 at the National
Aeronautics and Space Administration (NASA) Research Centre. Following from there, studies on the
area of ferrofluid have obtained much interest among researchers due to the numerous applications
of ferrofluid in nanotechnology in a wide range of fields related to heat transfer, such as coolant in
thermal management devices, heat exchangers, processes that include boiling, and even to improve
the cooling function of loud speakers [14,15]. Apart from the applications mentioned above, ferrofluid
has been broadly applied in biomedical applications, especially for thermal treatment to battle against
tumors and cancers (i.e., hyperthermia) (see [16–18] for further details). Hence, due to the enormous
practical interest, many researches have been conducted experimentally and numerically to determine
the characteristics of flow and heat transfer in a ferrofluid. For example, the experimental study on
convective heat transfer of ferrofluid in the existence of a magnetic field led to the uncovering of the fact
that the heat transfer enhancement of ferrofluid was proven noteworthy in the presence of magnetic
fields, primarily due to the changes in ferrofluid’s thermophysical properties [19]. In another empirical
study, it was discovered that the thermal conductivity enhancement of ferrofluid under a magnetic field
presented great potential for coolant applications under a controlled magnetic field [20]. On the other
hand, Khan et al. [21] numerically studied the MHD stagnation-point flow and heat transfer towards
a stretching sheet in a ferrofluid with viscous dissipation. Besides, Mustafa et al. [22] numerically
studied the stagnation point flow and heat transfer of a ferrofluid past a stretchable rotating disk with
a magnetic field. Later on, Ilias et al. [23] deliberated the MHD natural convection boundary layer
flow and heat transfer of a ferrofluid past a vertical semi-infinite flat plate. In another study, Abbas
and Sheikh [24] examined the homogeneous–heterogeneous reactions on stagnation-point flow of a
ferrofluid past a flat horizontal surface in the existence of an external magnetic field and non-linear slip
boundary condition. Apart from that, the impacts of radiation, viscous dissipation, and velocity slip
upon ferrofluid flow over a slandering stretching sheet with an aligned magnetic field were investigated
by [25]. On the other hand, the impacts of thermal radiation, magnetic field, and viscous dissipation
upon ferrofluid flow were examined over a nonlinearly stretching sheet in a convective condition [26].
From the outcome of the literature review, it was found that the effect of thermal radiation in the mixed
convection ferrofluid flow past a stretching/shrinking sheet, with the identification of the dual solutions
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and its stability, has not been investigated yet. Therefore, the present work attempts to reconsider the
work of Shen et al. [27], which solved the problem of MHD mixed convection stagnation-point flow
past the nonlinearly vertical stretching sheet with the presence of the velocity slip, by considering
the influence of the thermal radiation, excluding the velocity slip, and focusing on the state of the
shrinking in a water-based magnetite (Fe3O4) ferrofluid. We employed the mathematical nanofluid
model suggested by Tiwari and Das [28]. Interestingly, the flow of this special type of nanofluid was
studied in the cases of assisting and opposing flows in the existence of suction. In addition, stability
analysis, which has been gaining much attention among researchers [29–36], was performed for dual
solutions. Hence, it is believed that the current numerical results are original and distinguished by
Shen et al. [27]. There are many approaches that can be used to solve the convection fluid flow and
heat transfer problems, for instance, the classical density functional theory (DFT) method [37] and
Poisson–Boltzmann (PB) theory [38]. However, the present problem was solved via the collocation
method, namely the bvp4c function in the MATLAB, due to its efficiency in producing more than one
numerical solution. Thus, the numerical solutions that reflect the behavior of the fluid flow and heat
transfer are presented and will be discussed in detail.

2. Formulation of the Problem

The present work deliberated the steady, two-dimensional mixed convection flow and heat
transfer of a viscous and incompressible electrically conducting fluid over a penetrable nonlinearly
stretching/shrinking sheet. The sheet was positioned vertically. The flow geometry is schematically
displayed in Figure 1. The fluid refers to the water-based ferrofluid, which consisted of magnetite
(Fe3O4) nanoparticles. The flow was under the effects of thermal radiation and a transverse magnetic
field of strength B, which was assumed for application in the positive y-direction normal to the sheet.
In view of the current study, it was assumed that the induced magnetic field was negligible. Besides, it
was also assumed that the velocity of the flow external to the boundary layer was ue(x), the velocity of
the wall mass flux was vw(x), the temperature of the sheet was Tw(x), and the ambient temperature
was T∞. Furthermore, the sheet was assumed to stretch/shrink continuously in the x-direction with a
velocity of uw(x).
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Under these assumptions, along with the Boussinesq and the boundary layer approximations, the
governing partial differential equations of the problem were given as below (Shen et al. [27] and Tiwari
and Das [28]):

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+
µn f

ρn f

∂2u
∂y2 +

σn f B2
y

ρn f
(ue − u) +

(ρβ )n f

ρn f
(T − T∞)g, (2)

u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 −

1(
ρCp

)
n f

∂qr

∂y
, (3)

subject to the boundary conditions:

u = uw(x), v = vw(x), T = Tw(x) at y = 0,
u→ ue(x), T→ T∞ as y→∞,

(4)

where u and v represent the velocity components along the x and y directions, respectively, g is
the acceleration due to gravity, By(x) refers to the magnetic field, T denotes the temperature of the
ferrofluid, qr reflects the radiation heat flux, νn f denotes the kinematic viscosity of the ferrofluid, σn f is
the electrical conductivity of the ferrofluid, ρn f refers to the density of the ferrofluid, (ρβ)n f reflects the
thermal expansion coefficient of the ferrofluid, αn f denotes the thermal diffusivity of the ferrofluid, µn f
represents the dynamic viscosity of the ferrofluid, as described in the Brinkman’s model, and lastly,(
ρCp

)
n f

represents the heat capacitance of the ferrofluid. The effective properties of the ferrofluid are

further described in the following (see [39,40]):

µn f =
µ f

(1−φ)2.5 , αn f =
kn f

(ρCp)n f
, ρn f = (1−φ)ρ f + φρs,

(ρβ)n f = (1−φ)(ρβ) f + φ(ρβ)s,
(
ρCp

)
n f

= (1−φ)
(
ρCp

)
f
+ φ

(
ρCp

)
s
,

σn f
σ f

= 1 +
3(σs/σ f−1)φ

σs/σ f +2−(σs/σ f−1)φ
,

kn f
k f

=
ks+2k f−2φ(k f−ks)
ks+2k f +φ(k f−ks)

,

(5)

where µ f signifies the base fluid’s dynamic viscosity, φ connotes the nanoparticle solid volume fraction,
ρ f and ρs symbolize the density of the base fluid and the solid nanoparticle, respectively, kn f is the
ferrofluid thermal conductivity, where the subscript ‘f ’ represent the base fluid while ‘s’ denotes
the nanoparticle.

Next, applying the Rosseland’s approximation, the radiation heat flux, qr, possesses the following
form given by:

qr = −
4σ∗
3k∗

∂T4

∂y
, (6)

where σ∗ is the Stefan–Boltzmann constant and k∗ denotes the Rosseland mean spectral absorption
coefficient. The differences in the temperature within the flow vicinity are assumed to be T4, which
can be expanded in a Taylor’s series as a linear combination of the temperature. Upon expanding T4

into the Taylor’s series for T∞, it was approximated after neglecting the higher order terms, yielding
T4 = 4T3

∞T − 3T4
∞. Thus, Equation (3) is reduced as:

u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 +

16σ ∗ T3
∞

3k ∗
(
ρCp

)
n f

∂2T
∂y2 . (7)
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Next, in order to obtain the similarity solutions of the governing Equations (1), (2) and (7), which
are subjected to the boundary conditions (4), expressions uw(x), vw(x), Tw(x), ue(x), and By(x) are
presented in the following form:

uw(x) = bxn, vw(x) = −n+1
2
√aν f x(n−1)/2s, Tw(x) = T∞ + T0 x2n−1,

ue(x) = axn, By(x) = B0x(n−1)/2.
(8)

Here, a and b are constants, B0 is the characteristic magnetic field, n functions as the positive
constant, s is the suction parameter, and T0 is the constant characteristic temperature, with T0 < 0
signifying a cooled surface (opposing flow) and T0 > 0 corresponding to a heated surface (assisting flow).

In this study, the similarity transformation is defined as follows (Shen et al. [27]):

u = axn f ′(η), v = −
√aν f x(n−1)/2

[
n+1

2 f (η) + n−1
2 η f ′(η)

]
,

θ(η) = T−T∞
Tw−T∞ , η =

√
a
ν f

x(n−1)/2y.
(9)

The substitution of Equation (9) into Equations (2) and (7) provides:

1
(1−φ)2.5 f ′′′ +

(
1−φ+ φ

ρs
ρ f

) [
n+1

2 f f ′′ + n − n( f ′)2
]
+

σn f
σ f

M(1− f ′) +
(
1−φ+ φ

(ρβ )s
(ρβ) f

)
λθ = 0, (10)

1
Pr

(kn f

k f
+

4
3

Nr
)
θ′′ +

1−φ+ φ

(
ρCp

)
s(

ρCp
)

f

[n + 1
2

fθ′ − (2n− 1) f ′θ
]
= 0, (11)

while the boundary conditions (4) turned to be as follows:

f (η) = s, f ′(η) = c, θ (η) = 1 at η = 0,
f ′ (η) = 1, θ (η) = 0 as η→∞.

, (12)

where M is the magnetic parameter, λ refers to the mixed convection parameter, with λ < 0 represents
the opposing flow, whereas λ > 0 represents the assisting flow, Pr refers to the Prandtl number, Nr
is the thermal radiation parameter, c is the stretching/shrinking parameter, with c > 0 refers to the
stretching sheet and c < 0 refers to the shrinking sheet, and s is the constant mass flux parameter with
s > 0 refers to the suction and s < 0 refers to the injection. The governing parameters M, λ, Pr, Nr, s,
and c can be defined as follows:

M =
σ f B2

0
aρ f

, Pr =
ν f (ρCp) f

k f
, λ = Grx

Re2
x
,

Nr = 4σ∗T3
∞

k∗k f
, s = −

(
2

n+1

) vw(x)
√

aν f x(n−1)/2 , c = b
a ,

(13)

where the local Grashof number, Grx, and the local Reynolds number, Rex, are defined as:

Grx =
gβ f (Tw − T∞)x3

ν f
2 , Rex =

uex
ν f

. (14)

The physical quantities of practical interest are the skin friction coefficient, C f , and the local
Nusselt number, Nux, defined as follows:

C f =
τw

ρ f u2
e

, Nux =
xqw

k f (Tw − T∞)
, (15)
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where τw is the wall shear stress and qw denotes the heat flux, given by:

τw = µn f

(
∂u
∂y

)
y=0

, qw = −kn f

(
∂T
∂y

)
y=0

+ (qr)y=0. (16)

Substituting Equation (9) into Equations (15) and (16), yields:

Re1/2
x C f =

1

(1−φ)2.5 f ′′ (0), Re− 1/2
x Nux = −

(kn f

k f
+

4
3

Nr
)
θ′(0). (17)

3. Stability Analysis

The numerical outcomes of the similar Equations (10)–(12) implied the occurrence of two
solution branches for the variation of respective governing parameters. Therefore, the stability of the
non-uniqueness solutions was tested. The stability of the dual solutions was examined by applying
the scheme, as suggested by Merkin [41], Weidman et al. [42], and Harris et al. [43]. The stability
analysis was initiated by considering an unsteady problem. Hence, Equation (1) was retained, and
Equations (2) and (7) were formed as:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+
µn f

ρn f

∂2u
∂y2 +

σn f B2
y

ρn f
(ue − u) +

(ρβ )n f

ρn f
(T − T∞)g, (18)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 +

16 σ ∗ T3
∞

3k ∗
(
ρCp

)
n f

∂2T
∂y2 , (19)

where t denotes the time. In conjunction with the similarity solutions (Equation (9)), the subsequent
new similarity transformation was formed:

u = axn ∂ f
∂η (η, τ),

v = −
√aν f x(n−1)/2

[
n+1

2 f (η, τ) + n−1
2 η

∂ f
∂η (η, τ) + (n− 1)τ∂ f

∂τ (η, τ)
]
,

θ(η, τ) = T−T∞
Tw−T∞ ,

η =
√

a
ν f

x(n−1)/2y, τ = axn−1t.

(20)

Thus, Equations (18) and (19) were written as given:

1
(1−φ)2.5

∂3 f
∂η3 +

(
1−φ+ φ

ρs
ρ f

)[
n+1

2 f ∂
2 f
∂η2 + n− n

(
∂ f
∂η

)2
+ (n− 1)τ

(
∂ f
∂τ

∂2 f
∂η2

−
∂ f
∂η

∂2 f
∂η∂τ

)
−

∂2 f
∂η∂τ

]
+

σn f
σ f

M
(
1− ∂ f

∂η

)
+

(
1−φ+ φ

(ρβ )s
(ρβ) f

)
λθ = 0,

(21)

1
Pr

(
kn f
k f

+ 4
3 Nr

)
∂2θ
∂η2 +

(
1−φ+

φ(ρCp)s

(ρCp) f

)[
n+1

2 f ∂θ∂η − (2n− 1) ∂ f
∂ηθ

+(n− 1)τ
(
∂ f
∂τ

∂θ
∂η −

∂ f
∂η

∂θ
∂τ

)
−
∂θ
∂τ

]
= 0,

(22)

subject to:
f (η, τ) = s, ∂ f

∂η (η, τ) = c, θ (η, τ) = 1 at η = 0,
∂ f
∂η (η, τ) = 1, θ (η, τ) = 0 as η→∞.

(23)

Following from there, to determine the stability of the dual solutions, Weidman et al. [43] was
adhered to as follows:

f (η, τ) = f0(η) + e−γτF(η, τ), θ(η, τ) = θ0(η) + e−γτG(η, τ), (24)
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where γ is an unknown eigenvalue parameter adopted to determine the linear stability of the flow.
Here, f0(η) and θ0(η) satisfies the similarity of Equations (10)–(12). Besides, it is worth noting that
F(η, τ), G(η, τ), and all its derivatives are smaller in comparison with f0(η), θ0(η) and all its derivatives.
Hence, by employing the time-dependent solutions of Equation (24) into Equations (21) and (22), the
following expressions can be attained:

1
(1−φ)2.5

∂3F
∂η3 +

(
1−φ+ φ

ρs
ρ f

)[
n+1

2

(
f0 ∂

2F
∂η2 + f ′′0 F

)
− 2n f ′0

∂F
∂η

+(n− 1)τ
(
γ f ′0

∂F
∂η − γ f ′′0 F− f ′0

∂2F
∂η∂τ + f ′′0

∂F
∂τ

)
+ γ∂F

∂η −
∂2F
∂η∂τ

]
−
σn f
σ f

M∂F
∂η +

(
1−φ+ φ

(ρβ )s
(ρβ) f

)
λG = 0,

(25)

1
Pr

(
kn f
k f

+ 4
3 Nr

)
∂2G
∂η2 +

(
1−φ+ φ

(ρCp)s

(ρCp) f

)[
n+1

2

(
f0 ∂G
∂η + Fθ′0

)
−(2n− 1)

(
f ′0 G + θ0

∂F
∂η

)
+ (n− 1)τ

(
γ f ′0 G− γθ′0F− f ′0

∂G
∂τ + θ′0

∂F
∂τ

)
+γG− ∂G

∂τ

]
= 0,

(26)

subject to:
F(η, τ) = 0, ∂F

∂η (η, τ) = 0, G (η, τ) = 0 at η = 0,
∂F
∂η (η, τ) = 0, G (η, τ) = 0 as η→∞.

(27)

In this study, to determine the early growth or decay of the solutions (Equation (24)), we considered
τ = 0 [43], which yields F(η, τ) = F0(η) and G(η, τ) = G0(η). Then, the following linearized eigenvalue
problem was resolved via the collocation method:

1
(1−φ)2.5 F′′′0 +

(
1−φ+ φ

ρs
ρ f

)[
n+1

2

(
f0F′′0 + f ′′0 F0

)
−

(
2n f ′0 − γ

)
F′0

]
−
σn f
σ f

MF′0 +
(
1−φ+ φ

(ρβ )s
(ρβ) f

)
λG0 = 0,

(28)

1
Pr

(
kn f
k f

+ 4
3 Nr

)
G′′0 +

(
1−φ+ φ

(ρCp)s

(ρCp) f

)[
n+1

2

(
f0G′0 + F0θ′0

)
−(2n− 1)

(
f ′0 G0 + F′0θ0

)
+ γG0

]
= 0,

(29)

accompanied with:

F0(η) = 0, F′0(η) = 0, F′′0 (η) = 1, G0(η) = 0 at η = 0,
G0(η) = 0 as η→∞.

(30)

It is noteworthy to mention here that the solutions of f0(η) and θ0(η) are from the similarity
Equations (10)–(12). Once the results were obtained, f0(η) and θ0(η) were employed again into
Equations (28) and (29), and Equations (28)–(30) were solved. Moreover, the numerical outcome of the
model Equations (28)–(30) portrays an endless sequence of eigenvalues γ1 < γ2 < γ3 < . . ., where γ1

denotes the smallest eigenvalue. A negative γ1 implies the early development interruption, which
explains the unstable situation in the laminar flow. Apart from that, a positive γ1 predicts a primary
deterioration of interruptions that guarantees a stable laminar flow.

4. Results and Discussion

The similarity Equations (10)–(12) were solved numerically by using the bvp4c program derived
from MATLAB software for magnetite (Fe3O4) nanoparticles with water as its base fluid. In general,
the MATLAB program bvp4c employed a collocation method to solve the two-point boundary value
problem. In fact, the related tutorial and examples to solve boundary value problems with bvp4c
were elaborated in detail by Shampine et al. [44,45]. Also, the relative error tolerance was set at
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10−5. All velocity and temperature profiles meet the far-field boundary conditions (Equation (12))
asymptotically. The values of the governing parameter (mixed convection parameter, λ; magnetic
parameter, M; thermal radiation parameter, Nr; suction parameter, s; and stretching/shrinking parameter,
c) were varied to determine the ferrofluid behavior and its heat transfer characteristics. Throughout
this paper, the value of the Prandtl number was chosen to be 6.2 (water) while the solid volume
fraction of ferrofluid (magnetic nanoparticles) was chosen to be φ = 0.01 and n was selected to be
3 (nonlinear), except for comparisons with prior cases. The thermophysical properties of both the
water and nanoparticles are given in Table 1 (see Sivakumar et al. [26], Oztop and Abu-Nada [46],
and Babu et al. [47]). Next, in order to justify the presently employed numerical method, the present
numerical results were compared with those obtained by Nazar et al. [48] for various values related to
the shrinking parameter (c < 0), when φ = 0.1, Pr = 1, n = 1, and λ = M = Nr = s = 0 for Cu-, Al2O3-,
and TiO2-water nanofluids. In addition, Tables 2 and 3 tabulate the comparative results for values of
Re1/2

x C f and Re− 1/2
x Nux, respectively. It was discovered that the results were in excellent agreement

and hence corroborated the present model.

Table 1. Thermophysical properties of nanoparticles and water (base fluid).

Physical Properties Cu Al2O3 TiO2 Fe3O4 Water

Cp
(
J kg−1K−1

)
385 765 686.2 670 4179

ρ
(
kg m−3

)
8933 3970 4250 5180 997.1

k
(
W m−1K−1

)
400 40 8.9538 9.7 0.613

β× 10−5
(
K−1

)
1.67 0.85 0.9 0.5 21

σ
(
S m−1

)
59.6 × 106 35 × 106 2.6 × 106 0.74 × 106 5.5 × 10−6

Table 2. The values of Re1/2
x C f when φ = 0.1, Pr = 1, n = 1, λ = 0, M = 0, Nr = 0, and s = 0. The results

in parentheses ( ) refer to the lower branch solution.

c Cu-Water Al2O3-Water TiO2-Water

Nazar et al. [48] Present Nazar et al. [48] Present Nazar et al. [48] Present

−1.1 1.81414 1.81414 1.54239 1.54239 1.55898 1.55898
(0.07526) (0.07526) (0.06399) (0.06399) (0.06467) (0.06467)

−1.15 1.65447 1.65447 1.40663 1.40663 1.42176 1.42176
(0.17841) (0.17841) (0.15168) (0.15168) (0.15332) (0.15332)

−1.2 1.42552 1.42552 1.21198 1.21198 1.22502 1.22502
(0.35719) (0.35719) (0.30369) (0.30369) (0.30695) (0.30695)

Table 3. The values of Re− 1/2
x Nux when φ = 0.1, Pr = 1, n = 1, λ = 0, M = 0, Nr = 0 and s = 0. The results

in parentheses ( ) refer to the lower branch solution.

c Cu-Water Al2O3-Water TiO2-Water

Nazar et al. [48] Present Nazar et al. [48] Present Nazar et al. [48] Present

−1.1 0.07358 0.07358 −0.06258 −0.06258 −0.06716 −0.06716
(−2.78699) (−2.78732) (−3.69342) (−3.69356) (−3.66295) (−3.66305)

−1.15 −0.03334 −0.03334 −0.18285 −0.18287 −0.18567 −0.18567
(−1.83645) (−1.83645) (−2.41407) (−2.41407) (−2.39321) (−2.39321)

−1.2 −0.18352 −0.18353 −0.35356 −0.35359 −0.35396 −0.35395
(−1.25320) (−1.25364) (−1.65139) (−1.65140) (−1.63698) (−1.63698)
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It is clear that dual solutions (upper and lower branch solutions) exist for the Equations (10)–(12)
within the range of λ > λc, where λc is the critical value of λ. In addition, for the case when λ < λc, the
solutions for Equations (10)–(12) did not exist while both full Navier–Stokes and energy equations
have to be solved.

Table 4 presents the results of the stability analysis, where the smallest eigenvalues were identified
for the respective values of the governing parameters. The sign of the smallest eigenvalue (γ1) is vital
in deciding the stability of the solutions. For instance, a positive smallest eigenvalue conveys a stable
solution, which explicates the stabilizing property of the solution to overcome the given disturbance.
Meanwhile, the negative smallest eigenvalue illuminates the unstable numerical solution that indicates
the growth of the disturbance. Usually, the unstable solutions lead to flow separation. Therefore, from
Table 4, it can be concluded that the upper branch solution is stable while the lower branch solution is
unstable. Figure 2 demonstrates the behavior of the skin friction coefficient, f ”(0), as M varies from 1 to
3 concerning λ. The upper branch solution and the lower branch solution (within the range of λ > 0) in
Figure 2 convey that there is an increment in f ”(0) when M increases from 1 to 3. The increment of M
in the electrically conducting fluid (water) forms the Lorentz force, which reduces the flow motion.
However, the velocity profiles in Figure 3 reflect that the velocity of the upper branch solution increases
as M increases. The interaction between the suspended magnetic nanoparticles with the magnetic field
in the fluid flow vicinity may result in an enhancement in the fluid velocity during shrinking. The
increment in the fluid velocity increases the velocity gradient, which then increases the wall shear
stress along with the shrinking sheet, and promotes the values of f ”(0). On the other hand, the lower
branch solution in Figure 2 shows the opposing behavior in the region of the opposing flow (λ < 0),
where there is a decrement in f ”(0) when M increases from 1 to 3. The velocity profiles in Figure 3 also
display that the velocity of the lower branch solution in the region of opposing flow decreases. The
reduction in the fluid flow essentially indicates the flow separation is about to happen. The plotting in
Figure 2 elucidates that the dominancy of the magnetic field in the fluid flow manages to delay the
flow separation and help to elongate the laminar flow.

Table 4. Smallest eigenvalues γ1. when s = 1 and c = −2.

M Nr λ γ1 (Upper Branch) γ1 (Lower Branch)

1 0 −7 1.1886 −1.1165
−7.5 0.7752 −0.7442
−7.88 0.0923 −0.0919

1 0.5 −4 1.6649 −1.5358
−4.5 1.0874 −1.0318
−4.89 0.1150 −0.1144

1 1 −4 1.1699 −1.1104
−4.1 0.9728 −0.9315
−4.33 0.0861 −0.0858

2 1 −6 1.8845 −1.7512
−6.5 1.2976 −1.2338
−6.97 0.1160 −0.1155

3 1 −9 1.5448 −1.4634
−9.5 0.8729 −0.8466
−9.74 0.0993 −0.0990



Processes 2020, 8, 95 10 of 17

Processes 2020, 8, x FOR PEER REVIEW 10 of 18 

 

velocity gradient, which then increases the wall shear stress along with the shrinking sheet, and 
promotes the values of f″(0). On the other hand, the lower branch solution in Figure 2 shows the 
opposing behavior in the region of the opposing flow (λ < 0), where there is a decrement in f″(0) when 
M increases from 1 to 3. The velocity profiles in Figure 3 also display that the velocity of the lower 
branch solution in the region of opposing flow decreases. The reduction in the fluid flow essentially 
indicates the flow separation is about to happen. The plotting in Figure 2 elucidates that the 
dominancy of the magnetic field in the fluid flow manages to delay the flow separation and help to 
elongate the laminar flow. 

Table 4. Smallest eigenvalues 1.γ  when s = 1 and c = −2. 

M Nr λ  1γ  (Upper Branch) 1γ  (Lower Branch) 
1 0 −7 1.1886 −1.1165 
  −7.5 0.7752 −0.7442 
  −7.88 0.0923 −0.0919 
1 0.5 −4 1.6649 −1.5358 
  −4.5 1.0874 −1.0318 
  −4.89 0.1150 −0.1144 
1 1 −4 1.1699 −1.1104 
  −4.1 0.9728 −0.9315 
  −4.33 0.0861 −0.0858 
2 1 −6 1.8845 −1.7512 
  −6.5 1.2976 −1.2338 
  −6.97 0.1160 −0.1155 
3 1 −9 1.5448 −1.4634 
  −9.5 0.8729 −0.8466 
  −9.74 0.0993 −0.0990 

 
Figure 2. Variation of ( )0f ′′  with λ  for several values of M when Nr = 1, c = −2, and s = 1. Figure 2. Variation of f ′′ (0) with λ for several values of M when Nr = 1, c = −2, and s = 1.Processes 2020, 8, x FOR PEER REVIEW 11 of 18 

 

 
Figure 3. ( )f η′  when Nr = 1, c = −2, s = 1, and λ  = −2 as M varies. 

Figure 4 demonstrates the behavior of the local Nusselt number or −θ′(0) with respect to λ as M 
varies. Both solutions express that an increment in the values of M improves the rate of heat transfer 
past the permeable shrinking sheet. When the strength of the magnetic force becomes stronger, it 
attracts more magnetic nanoparticles at the surface of the shrinking sheet and reduces the thermal 
conductivity of the fluid. This fact is in accordance with the temperature profiles as in Figure 5, where 
the ferrofluid temperature decreases when M increases. Consequently, the rate of convective heat 
transfer increases when M increases. Figure 6 overviews the trend of f″(0) as the radiation parameter 
(Nr) varies in the opposing and assisting flow cases. The upper branch and lower branch solutions 
depicts that there is a depreciation in f″(0) when Nr increases in the vicinity of the opposing flow 
towards the permeable shrinking sheet. The greater impact of the thermal radiation in the opposing 
flow was found to decrease the fluid flow (see velocity profiles in Figure 7) and reduces the wall shear 
stress along with the shrinking sheet. Eventually, the value of f″(0) declines and a stronger influence 
of Nr quickens the flow separation. However, in the region of assisting flow (λ > 0), the value of f″(0) 
is enhanced, and this may occur because of the buoyancy force, which helps to accelerate the fluid 
flow past the shrinking sheet.  

 

Figure 4. Variation of ( )0θ ′−  with λ  for several values of M when Nr = 1, c = −2, and s = 1. 

Figure 3. f ′(η) when Nr = 1, c = −2, s = 1, and λ = −2 as M varies.

Figure 4 demonstrates the behavior of the local Nusselt number or −θ′(0) with respect to λ as M
varies. Both solutions express that an increment in the values of M improves the rate of heat transfer
past the permeable shrinking sheet. When the strength of the magnetic force becomes stronger, it
attracts more magnetic nanoparticles at the surface of the shrinking sheet and reduces the thermal
conductivity of the fluid. This fact is in accordance with the temperature profiles as in Figure 5, where
the ferrofluid temperature decreases when M increases. Consequently, the rate of convective heat
transfer increases when M increases. Figure 6 overviews the trend of f ”(0) as the radiation parameter
(Nr) varies in the opposing and assisting flow cases. The upper branch and lower branch solutions
depicts that there is a depreciation in f ”(0) when Nr increases in the vicinity of the opposing flow
towards the permeable shrinking sheet. The greater impact of the thermal radiation in the opposing
flow was found to decrease the fluid flow (see velocity profiles in Figure 7) and reduces the wall shear
stress along with the shrinking sheet. Eventually, the value of f ”(0) declines and a stronger influence of
Nr quickens the flow separation. However, in the region of assisting flow (λ > 0), the value of f ”(0) is
enhanced, and this may occur because of the buoyancy force, which helps to accelerate the fluid flow
past the shrinking sheet.
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Figure 8 exposes the performance of −θ′(0) for λ as Nr varies. The upper branch and lower
branch solutions signify that the value of –θ′(0) declines as Nr increases. The stronger impact of the
thermal radiation increases the fluid temperature within the boundary layer region because the rate of
conduction heat transfer is enhanced at the surface of the sheet. The temperature profiles in Figure 9
support this fact, where the ferrofluid temperature increases when Nr increases. Consequently, the
thermal conductivity increases and this results in the decrement in the rate of convective heat transfer.
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Figures 10 and 11 illustrate the behavior of f ”(0) and –θ′(0) for λ when s varies, respectively. The
upper branch solution identifies an increment in f ”(0) in the opposing flow region over a shrinking
sheet. The state of opposing flow, where the direction of the fluid flow is opposed with the direction
of the gravity, increases the wall shear stress of the shrinking sheet and that results in the rise of
f ”(0). However; the lower branch solution views the decrement in f ”(0) as the intensity of suction
increases. This trend may postulate the flow with separation, where the formation of small wake
might reduce the wall shear stress along with the shrinking sheet. Hence, the values of f ”(0) decreases.
Figure 10 also indicates that as the strength of the suction increases, the flow separation is delayed.
The permeable sheet helps to sustain the laminar flow by trapping the slow-moving molecules along
with the shrinking sheet. As a result, the wall shear stress at the surface of the sheet increases and
postpones the flow separation. Figure 11 exhibits the trend of the rate of heat transfer as s varies across
the assisting and opposing flow, respectively. The upper branch and lower branch solutions show
that the value of –θ′(0) increases when s increases. When the value of s increases, it increases the
permeability of the sheet, where it allows more ferrofluid to diffuse the sheet. Then, the higher thermal
conductivity of ferrofluid increases the heat flux at the shrinking sheet. Consequently, the rate of heat
transfer is enhanced when s increases.Processes 2020, 8, x FOR PEER REVIEW 14 of 18 
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Figure 12 shows the velocity profiles when the solid volume fraction (φ) varies past the permeable
shrinking sheet in the opposing region. The velocity profiles indicate that, for the upper branch solution,
there is an increment in the fluid velocity when φ increases. When more magnetic nanoparticles
present in the MHD influence the fluid flow, the fluid velocity will increase. However, the lower
branch solution hints that the fluid velocity decreases when φ increases. This contradicts the trend
implying flow separation and can be assumed as an early indication of the occurrence of the flow
separation. Figure 13 portrays the temperature profiles when the solid volume fraction (φ) varies past
the permeable shrinking sheet in the opposing region. Both numerical solutions convey that the fluid
temperature increases when the value of φ increases. The better thermal conductivity property of the
magnetic nanoparticles contributes to the thermal enhancement of the ferrofluid past the permeable
shrinking sheet.Processes 2020, 8, x FOR PEER REVIEW 15 of 18 
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5. Conclusions

The current study reported the mathematical solutions for the problem of MHD mixed convection
stagnation-point flow towards a nonlinearly moving sheet that was positioned vertically. The sheet
was permeable, and Fe3O4-water ferrofluid was used as the interacting fluid. The collocation method,
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namely bvp4c function in the MATLAB software, was employed to solve the model in the form of
ordinary differential equations. Dual solutions, which are categories of the upper branch solution
and the lower branch solutions, were observable as the governing parameter was varied. As a result,
several significant observations of this study can be recapitulated as follows:

• The existence and duality of solutions were clearly demonstrated for the opposing flow and
assisting flow.

• The solutions failed to exist for values of λ lower than the specified critical value for the opposing
flow region.

• The stability of the dual solutions validated that the upper branch solution was stable while it was
unstable for the lower branch solution.

• Ferrofluid velocity profiles increased with an increase in M and φ but decreased with an increment
in Nr.

• Temperature profiles of the ferrofluid decreased with an increase in M; however, they increased
with increasing φ and Nr.

Author Contributions: A.J.; K.N.; R.N. and I.P. modelled the problem, numerically computed results, discussed
the results, computed the tabulated results, wrote the manuscript and proofread it. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Kebangsaan Malaysia, grant number [DIP-2017-009].

Acknowledgments: The authors are thankful to the honourable reviewers for their constructive suggestions to
improve the quality of the paper. The authors from the Universiti Kebangsaan Malaysia would like to acknowledge
the research university grant from the Universiti Kebangsaan Malaysia (project code: DIP-2017-009) and the
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