Electronic Supporting Information

Green Corrosion Inhibitors from Agri-food Wastes: the Case of *Punica granatum* **Extract and its Constituent Ellagic Acid. A Validation Study**

Mirko Magni *, Ester Postiglione, Stefania Marzorati, Luisella Verotta and Stefano P. Trasatti *

Table S1. Statistical parameters of the calibration plots from UV-visible spectroscopy study (Figure 2) of ellagic acid in 0.05 M HCl solution and in pure water, both containing 1 vol% of methanol.

Medium	Max wavelength	Slope (std. error)	Intercept (std. error)
0.05 M HCl (+ 1 vol% CH ₃ OH)	367 nm	6.2·10 ³ (5·10 ²)	$1.0.10^{-2} (4.10^{-3})$
	250 nm	3.7·10 ⁴ (4·10 ³)	3.10-2 (3.10-2)
water (+ 1 vol% CH ₃ OH)	357 nm	1.15.104 (5.102)	-6.10^{-3} (4.10 ⁻³)
	274 nm	$2.9 \cdot 10^4 (1 \cdot 10^3)$	-1.10^{-2} (1.10 ⁻²)
	253 nm	$3.4 \cdot 10^4$ (2·10 ³)	-2.10^{-2} (2.10 ⁻²)

Figure S1. Mass loss of Armco[®] iron coupons as a function of HCl concentration. Solution temperature: 30°C. Immersion time: 1 hour. Bars represent standard deviations from at least two independent measures.

Figure S2. Voltammogram traces (scan rate 0.5 mV s^{-1}) of Armco[®] iron electrodes in aerated HCl 0.05 M solution (black line) and with addition of 1 vol% methanol as co-solvent (grey line). The last is the blank reference reported in Figure 3 of the main text. Solution temperature: 30°C.

Table S2. Electrochemical key features obtained from the potentiodynamic polarizations carried out on Armco[®] pure iron electrodes (Figure 3 and Figure 4). All the solutions invariably present 1 vol% methanol as co-solvent.

Solution	Inhibitor	$E_{\rm corr}$ vs. RHE /V ^a	$i_{\rm corr}$ /(μ A cm ⁻²)
0.05 M HCl	none	-0.22	130
	0.01 mM EA	-0.21	114
	1 mM EA (<i>ex-situ</i>)	-0.21	70
	FPW (0.01 mM EA)	-0.22	157
	FPW (0.1 mM EA)	-0.21	146
0.05 M NaCl	none	-0.07	n.a. ^b
	0.01 mM EA	0.07	n.a. ^b
	FPW (0.01 mM EA)	0.13	n.a. ^b
	FPW (0.1 mM EA)	0.10	n.a. ^b

^aPotential refereed to reversible hydrogen electrode (RHE): $E_{(vs RHE)} = E_{(vs SCE)} + 0.244 + 0.059 \text{ pH}$. ^bNot available because of inapplicability of the Tafel approximation.

Figure S3. Voltammogram traces (scan rate 0.5 mV s⁻¹) of Armco[®] iron electrodes in aerated 0.05 M HCl (dashed line) and 0.05 M NaCl (solid line) solutions. For sake of clarity, considering the different pH of the solutions, all potentials are referred to reversible hydrogen electrode (RHE) according to the following formula: $E_{(vs RHE)} = E_{(vs SCE)} + 0.244 + 0.059$ pH, with 0.244 the potential (in volt) of saturated calomel electrode (SCE) with respect to standard hydrogen electrode (SHE). In this scale of potential, the hydrogen evolution reaction occurs at E = 0 V vs RHE independently by the actual concentration of hydrogen ions.

Tested solution	pН
blank (0.05 M NaCl + 1 vol% CH ₃ OH)	6.2
blank + 10 µM EA	5.6
blank + 8 mg dm ⁻³ FPW extract (ca. 10 µM EA)	4.9
blank + 80 mg dm ⁻³ FPW extract (ca. 100 µM EA)	4.9

Table S3. pH values of the solutions used in voltammetric investigation. Obtained by a combined glass electrode coupled to a potentiometer.

Figure S4. Effect of temperature on Armco[®] iron electrodes in aerated 0.05 M NaCl solution with 10 μ M EA (solid lines) and without inhibitor (dashed lines). Solution temperature: 30°C (left), 40°C (centre), 50°C (right). Voltammogram traces are recorded at 0.5 mV s⁻¹ potential scan rate.