Electronic Supporting Information

Green Corrosion Inhibitors from Agri-food Wastes: the Case of Punica granatum Extract and its Constituent Ellagic Acid. A Validation Study

Mirko Magni *, Ester Postiglione, Stefania Marzorati, Luisella Verotta and Stefano P. Trasatti *

Table S1. Statistical parameters of the calibration plots from UV-visible spectroscopy study (Figure 2) of ellagic acid in 0.05 M HCl solution and in pure water, both containing $1 \mathrm{vol} \%$ of methanol.

Medium	Max wavelength	Slope (std. error)	Intercept (std. error)
0.05 M HCl $\left(+1 \mathrm{vol} \% \mathrm{CH}_{3} \mathrm{OH}\right)$	367 nm	$6.2 \cdot 10^{3}\left(5 \cdot 10^{2}\right)$	$1.0 \cdot 10^{-2}\left(4 \cdot 10^{-3}\right)$
	250 nm	$3.7 \cdot 10^{4}\left(4 \cdot 10^{3}\right)$	$3 \cdot 10^{-2}\left(3 \cdot 10^{-2}\right)$
water $\left(+1 \mathrm{vol} \% \mathrm{CH}_{3} \mathrm{OH}\right)$	357 nm	$1.15 \cdot 10^{4}\left(5 \cdot 10^{2}\right)$	$-6 \cdot 10^{-3}\left(4 \cdot 10^{-3}\right)$
	274 nm	$2.9 \cdot 10^{4}\left(1 \cdot 10^{3}\right)$	$-1 \cdot 10^{-2}\left(1 \cdot 10^{-2}\right)$
	253 nm	$3.4 \cdot 10^{4}\left(2 \cdot 10^{3}\right)$	$-2 \cdot 10^{-2}\left(2 \cdot 10^{-2}\right)$

Figure S1. Mass loss of Armco ${ }^{\circledR}$ iron coupons as a function of HCl concentration. Solution temperature: $30^{\circ} \mathrm{C}$. Immersion time: 1 hour. Bars represent standard deviations from at least two independent measures.

Figure S2. Voltammogram traces (scan rate $0.5 \mathrm{mV} \mathrm{s}^{-1}$) of Armco ${ }^{\circledR}$ iron electrodes in aerated HCl 0.05 M solution (black line) and with addition of $1 \mathrm{vol} \%$ methanol as co-solvent (grey line). The last is the blank reference reported in Figure 3 of the main text. Solution temperature: $30^{\circ} \mathrm{C}$.

Table S2. Electrochemical key features obtained from the potentiodynamic polarizations carried out on Armco ${ }^{\circledR}$ pure iron electrodes (Figure 3 and Figure 4). All the solutions invariably present $1 \mathrm{vol} \%$ methanol as co-solvent.

Solution	Inhibitor	$E_{\text {corr }} \boldsymbol{v s}$. RHE / ${ }^{\text {a }}$	$i_{\text {corr }} /\left(\mu \mathrm{A} \mathrm{cm}{ }^{-2}\right)$
0.05 M HCl	none	-0.22	130
	0.01 mM EA	-0.21	114
	$1 \mathrm{mM} \mathrm{EA} \mathrm{(ex-situ)}$	-0.21	70
	FPW (0.01 mM EA)	-0.22	157
	FPW (0.1 mM EA)	-0.21	146
0.05 M NaCl	none	-0.07	n.a. ${ }^{\text {b }}$
	0.01 mM EA	0.07	n.a. ${ }^{\text {b }}$
	FPW (0.01 mM EA)	0.13	n.a. ${ }^{\text {b }}$
	FPW (0.1 mM EA)	0.10	n.a. ${ }^{\text {b }}$

${ }^{\text {apotential }}$ refereed to reversible hydrogen electrode (RHE): $E_{(\mathrm{VS}}$ RHE) $\left.=E_{(\mathrm{vS}} \mathrm{SCE}\right)+0.244+0.059 \mathrm{pH}$. ${ }^{\mathrm{b}} \mathrm{Not}$ available because of inapplicability of the Tafel approximation.

Figure S3. Voltammogram traces (scan rate $0.5 \mathrm{mV} \mathrm{s}^{-1}$) of Armco ${ }^{\circledR}$ iron electrodes in aerated 0.05 M HCl (dashed line) and 0.05 M NaCl (solid line) solutions. For sake of clarity, considering the different pH of the solutions, all potentials are referred to reversible hydrogen electrode (RHE) according to the following formula: $E_{(v s \mathrm{RHE})}=E_{(v s \mathrm{SCE})}+0.244+0.059 \mathrm{pH}$, with 0.244 the potential (in volt) of saturated calomel electrode (SCE) with respect to standard hydrogen electrode (SHE). In this scale of potential, the hydrogen evolution reaction occurs at $E=0 \mathrm{~V} v s$ RHE independently by the actual concentration of hydrogen ions.

Table S3. pH values of the solutions used in voltammetric investigation. Obtained by a combined glass electrode coupled to a potentiometer.

Tested solution	$\mathbf{p H}$
blank $\left(0.05 \mathrm{M} \mathrm{NaCl}+1 \mathrm{vol} \% \mathrm{CH}_{3} \mathrm{OH}\right)$	6.2
blank $+10 \mu \mathrm{M} \mathrm{EA}$	5.6
blank +8 mg dm (ca. FPW extract (ca EA)	4.9
blank +80 mg dm $(\mathrm{ca}$..300 FPW eA) extract	4.9

Figure S4. Effect of temperature on Armco ${ }^{\circledR}$ iron electrodes in aerated 0.05 M NaCl solution with $10 \mu \mathrm{M} \mathrm{EA}$ (solid lines) and without inhibitor (dashed lines). Solution temperature: $30^{\circ} \mathrm{C}$ (left), $40^{\circ} \mathrm{C}$ (centre), $50^{\circ} \mathrm{C}$ (right). Voltammogram traces are recorded at $0.5 \mathrm{mV} \mathrm{s}^{-1}$ potential scan rate.

