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Abstract: Silver nanodecahedrons were successfully synthesized by a photochemical method under
irradiation of blue light-emitting diodes (LEDs). The formation of silver nanodecahedrons at different
LED irradiation times (0–72 h) was thoroughly investigated by employing different characterization
methods such as ultraviolet–visible spectroscopy (UV–Vis), transmission electron microscopy (TEM),
and Raman spectroscopy. The results showed that silver nanodecahedrons (AgNDs) were formed
from silver nanoseeds after 6 h of LED irradiation. The surface-enhanced Raman scattering (SERS)
effects of the synthesized AgNDs were also studied in comparison with those of spherical silver
nanoparticles in the detection of 4-mercapto benzoic acid. Silver nanodecahedrons with a size of 48 nm
formed after 48 h of LED irradiation displayed stronger SERS properties than spherical nanoparticles
because of electromagnetic enhancement. The formation mechanism of silver nanodecahedrons
is also reported in our study. The results showed that multihedral silver nanoseeds favored the
formation of silver nanodecahedrons.
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1. Introduction

Recently, silver nanomaterials have gained much attention due to their various applications in
the areas of electronic and sensor engineering, catalysis, biomedicine, and surface-enhanced Raman
scattering (SERS) [1,2]. For the most part, these applications are based on unique optical properties of
silver nanomaterials, particularly their light absorption and scattering ability as a result of surface plasmon
resonance [1,3]. The optical properties depend on the shape and size of the nanoparticles, therefore in
the last decade, many groups all over the world have studied the synthesis of silver nanomaterials with
shape- and size-controlled anisotropy, such as plate-, cube-, wire-, rod-, pyramid-, and decahedron-shaped
silver [1–4]. Among these, silver nanoplates (AgNPs) and silver nanodecahedrons (AgNDs) have been
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studied because of their localized surface plasmon resonance in a longer wavelength region. In particular,
AgNDs with multihedral structure display a remarkable scattering ability [3,4]. So far, AgNDs have
been synthesized by a chemical method using hydrazine as a reductive agent and trisodium citrate as
a stabilizer [5]. However, only few AgNDs are obtained with this method. The synthesis of AgNDs
using a photochemical method based on irradiation by light-emitting diodes (LEDs) for a better control
of their shape has gained much attention [3,4,6–10]. One of the first researchers to study AgNDs were
Stamplecoskie and Scaiano. In their study, AgNDs were synthesized via two steps: firstly, the synthesis of
3 nm spherical AgNPs with the optical reductive agent I-2959 and, secondly, their irradiation using 455 nm
blue LEDs. However, the reaction mechanism is not known [6]. Jamil Saade et al. also synthesized AgNDs
by irradiating 3–5 nm AgNP seeds with blue LEDs, but no applications of AgNDs were mentioned [7].
Shan-Wei Lee et al. first reported the synthesis of AgNDs based on the two aforementioned steps but
using 520 nm green LEDs at low temperature for SERS applications. Although these authors claimed that
the obtained AgNDs have better SERS properties than AgNPs, no persuasive explanation was given [8].
While studying the thermodynamics of formation of AgNDs, Haitao Wang et al. realized that using LEDs
at a low temperature would facilitate the formation of AgNDs. They studied the mechanism of AgNDs
formation but did not consider the surface plasmon effect, one of the important surface properties of silver
nanomaterials [9]. Cardoso-Avila et al. also applied LED irradiation on quartz cuvettes containing AgNPs
to synthesize AgNDs; however, neither the reaction mechanism nor the SERS effects were thoroughly
investigated [10,11].

In this study, we synthesized AgNDs under blue LED irradiation via a two-step photochemical
method. The formation of AgNDs was investigated at different LED irradiation times. The SERS effects
of the synthesized AgNDs were also studied in comparison with those of AgNPs in the detection of
4-mercapto benzoic acid (4-MBA), a Raman tester able to bind to silver nanoparticles through Ag–S
bonds, enhancing the SERS effects [12–14].

2. Materials and Methods

2.1. Chemicals

Silver nitrate (AgNO3, >99%, Sigma-Aldrich, Darmstadt, Germany), trisodium citrate tribasic
dihydrate (TSC, >99%, Sigma-Aldrich, Darmstadt, Germany), polyvinylpyrrolidone (PVP K30, Prolabo,
Kennersburg, NJ, USA), L-arginine (L-A, 99%, Merck, Darmstadt, Germany), sodium borohydride
(NaBH4, 98%, Merck, Darmstadt, Germany), 4-mercapto benzoic acid (4-MBA, 99%, Sigma-Aldrich,
Darmstadt, Germany), and DI water (standard HPLC, Merck, Darmstadt, Germany). Chemicals were
used without any purification.

2.2. Synthesis of Silver Nanodecahedrons

AgNDs were synthesized in 2 steps: (i) synthesis of AgNPs as seeds and (ii) irradiating the seeds with
blue LEDs to grow AgNDs with the aid of L-A [3,11]. The synthesis procedure is described in Figure 1.
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2.3. Synthesis of Seeds

All glass equipment and magnetic stirrers were treated with aqua regia before use. In total, 5 mL
of 50 mM TSC, 150 µL of 50 mM PVP, 2 mL of 5 mM AgNO3, and 250 µL of 5 mM L-A were mixed in
a beaker, then milli-Q water was added into the mixture to 100 mL. The mixture was magnetically
stirred at 500 rpm for 5 min. Afterwards, 800 µL of 100 mM NaBH4 was rapidly added to the solution.
The color of the solution immediately changed into light yellow, then yellow, indicating the presence of
AgNPs in the solution. The solution was stirred at room temperature and aged in the dark overnight.

2.4. Synthesis of AgNDs

A volume of 20 mL of the as-synthesized AgNPs solution stored in a glass bottle
(Wheaton-Germany) was exposed to blue LEDs (Dragon—Taiwan, 460 ± 12 nm, output: 10 W)
for 6, 12, 24, 48, and 72 h; the color of the solution changed from yellow to orange.

2.5. Characterization

The morphological structure of the synthesized AgNDs was studied through a JEOL JEM-1400
(Jeol Ltd., Tokyo, Japan). The samples were dropped onto 3 mm-diameter copper grids, dried at room
temperature, and analyzed by TEM (Jeol Ltd., Tokyo, Japan) at 100 kV. The light absorption spectra
of AgNDs and intermediates were analyzed by a V-750 UV/Vis spectrophotometer (Jasco Co., Tokyo,
Japan, 100 nm scanning speed per minute).

2.6. SERS Measurements

SERS in the presence of the reductive agent 4-MBA by silver nano-seeds and AgNDs obtained
after 48 h of LED irradiation was measured on a Si wafer. The wafer was cut into 1 × 1 cm slices and
treated with piranha solution to remove all organic compounds. Then, 2 mL of AgNDs (or AgNPs)
solution was centrifuged at 12,000 rpm for 15 min to obtain a precipitate. The precipitate was then
redispersed into 1 mL of DI water; 50 µL of 10−5 M 4-MBA solution was mixed with 450 µL of the
sample solution for 1 h at room temperature. Afterwards, 20 µL of the obtained mixture was dropped
on the Si wafer and dried at room temperature, obtaining a 4-MBA@AgNDs (or AgNPs) @Si wafer
ready for Raman analysis, carried out with HORIBA XploRA ONE TM, Palaiseau, France, equipped
with a 532 nm laser source and a 10x optical microscope lens. The sample was analyzed at 10 random
locations to obtain an average value. For comparison, the Raman spectrum of a 10−4 M 4-MBA solution
without AgNDs or AgNPs was also recorded with the same procedure.

3. Results

3.1. Synthesis of Silver Nanodecahedrons

The UV–Vis results in Figure 2 show the formation of silver nanoseeds (at 0 h) which presented
an absorption peak at 400 nm (peak 1). A yellow color indicated the presence of spherical silver
nanoparticles in the solution [4–9]. After irradiating with LEDs for 6 h, this peak showed a red shift
to 407 nm, and another peak (peak 2) appeared at 460 nm, corresponding to the vibration of dipole
resonance of AgNDs [6–9]. It was concluded that AgNDs were formed after 6 h of LED irradiation.
After increasing the irradiation time to 12 h, the UV–Vis spectra showed red shifts of both peak 1 and
peak 2 toward higher wavelengths, i.e., 413 nm and 470 nm, respectively. On the other hand, the
absorbance of peak 1 decreased, while that of peak 2 increased rapidly due to the generation of more
AgNDs from AgNPs after 12 h of irradiation. After 24 h, peak 1 was shifted toward 404 nm, and the
absorbance decreased from 1.1 to 0.5 a.u., proving the number of AgNPs in the solution continued
to decrease under LED irradiation. Peak 2 showed a decrease in the absorbance from 2.0 to 1.3, but
the wavelength did not change much. On the other hand, after 24 h, peak 3 appeared at 345 nm, in
accordance with AgNDs’ out-of-plane quadrupole resonance [6,9]. When we continued to increase the
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irradiating time to 48 and 72 h, we did not observe significant changes in the UV–Vis spectra. In fact,
compared to the 24 h spectrum, peak 1 and peak 3 intensity almost did not change, while the intensity
of peak 2 (464 nm), corresponding to AgNDs’s dipole resonance, increased to 1.81. In conclusion, 48 h
of irradiation was a suitable time to transform AgNPs to AgNDs.
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Figure 2. UV–Vis spectra of silver nanoparticles at different LED irradiation times.

The TEM images in Figure 3a revealed that AgNDs with average size of 30 nm and AgNPs smaller
than 10 nm on average were the dominant species in the sample irradiated for 6 h. After 48 h of
irradiation, the TEM image showed the presence in the sample of AgNDs with average size of 48 nm,
in addition to AgNPs smaller than 10 nm on average. Moreover, the TEM results also indicated that
increasing the LED irradiation time would result in the combination of AgNPs, leading to the formation
of AgNDs, which was consistent with the UV–Vis results.
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of irradiation.

The formation mechanism of AgNDs under blue LEDs is shown in Figure 4. Due to their surface
plasmon resonance properties, the silver nanoparticles were able to combine to form anisotropic silver
nanoparticles with larger size when they were irradiated by LEDs, which provided enough energy for
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surface plasmon resonance [9]. The combination is illustrated in Figure 4. We propose two plausible
growth processes for the formation of Ag decahedrons.
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Mechanism 1: AgNP seeds were first generated as multihedral seeds with a small size,
then combined with new-born seeds to form larger AgNDs [3,4,7,9]. It is widely accepted that
the shape of multihedral seeds strongly depends on the excitation wavelength. For example, irradiation
with blue LEDs would result in the formation of penta-twinned AgNDs [4,7,9,15], while planar twinned
seeds can be generated under green LEDs [6–8]. The TEM results of AgNDs formed after 6 h of LED
irradiation in this study showed the existence of AgNDs with sizes smaller than 20 nm, supporting
this mechanism.

Mechanism 2: Silver nanopyramids were first generated due to the combination of AgNPs. Five
pyramids were then combined along their side edges to form AgNDs during LED irradiation [4,7].
The TEM results of AgNDs observed after 48 h of irradiation (Figure 3) showed the presence of some
silver nanopyramids and incomplete AgNDs, providing a proof of this mechanism.

In general, both mechanisms are possible during LED irradiation. Compared to mechanism
2, mechanism 1 is favored because of the low probability of forming AgNDs from five pyramid
nanoparticles. Moreover, according to the UV–Vis results, the dramatic decrease in intensity of both
peak 1 and 2 after 24 h of LED irradiation, as well as the gradual increase in intensity of peak 2 and
the negligible change in intensity of peak 1 as the LED irradiation time of the silver solution kept
increasing up to 48 h, indicated the aggregation of small AgNDs into larger AgNDs, which further
supports mechanism 1.

3.2. SERS Properties of AgNDs

The Raman spectra of 4-MBA powder shown in Figure 5c revealed two peaks at 1091 and
1597 cm−1, corresponding to the aromatic ring vibration, and two peaks at 1150 and 1180 cm−1,
corresponding to the COO− vibration [12–14]. The SERS spectra of the mixture of 10−5 M 4-MBA and
AgNPs or AgNDs showed that the peaks of the aromatic ring were shifted toward 1082 and 1589 cm−1

(Figure 5a,b). The remarkably higher intensity of the Raman peaks compared with the flat Raman
signal of 10−4 M 4-MBA (as well as of 10−5 M 4-MBA) (Figure 5d) indicated that both materials were
capable of enhancing SERS; in particular, AgNDs showed better SERS enhancement than AgNPs.
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The enhancement of SERS was probably due to chemical and electromagnetic mechanisms [12,13].
The chemical mechanism depends on the binding of 4-MBA and nano-silver. Since both AgNPs and
AgNDs were capable of binding 4-MBA through Ag–S bonds, the difference in SERS properties was due
to the electronic mechanism, which is deeply related to the surface plasmon properties of nano-silver.
AgNDs have better surface plasmon properties than AgNPs, as displayed by the UV–Vis results,
showing a bipolar peak for AgNPs twice as big as that of AgNDs. On the other hand, because the
excited wavelength was 532 nm, closer to the wavelength of the bipolar peak of AgNPs (464 nm) than
to that of the peak of AgNDs (400 nm), AgNDs were capable of better enhancing SERS, in agreement
with Haifei Lu’s report [3]. Besides, energy-concentrating spots called “hot spot” formed on AgNDs’
surface, which were located at the points and lines of the decahedrons [3,4,12,13] corresponding to face
(111). These spots further enhanced the SERS properties of AgNDs.

4. Conclusions

We successfully synthesized silver decahedrons nanomaterials (AgNDs) by a photochemical
method using blue 10 W LEDs. After 48 h of LED irradiation, silver nanoparticles with size smaller than
10 nm combined with each other, forming AgNDs with average size of 48 mn, which were analyzed by
UV–Vis spectroscopy and TEM. The results indicated that AgNDs were formed through intermediates
such as small AgNDs seeds or silver nanopyramids. Both silver nanoseeds and AgNDs exhibited good
SERS enhancement in the presence of 4-MBA. AgNDs had better SERS effects than AgNPs, which can
be explained by an electronic mechanism.
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