

Article

MDPI

Supplementary data

Optimization of In-situ Backwashing Frequency for Stable Operation of Anaerobic Ceramic Membrane Bioreactor

Rathmalgodage Thejani Nilusha ^{1,2,3}, Tou Wang ^{1,2,3}, Honyan Wang ^{1,2,3}, Dawei Yu ^{1,2,3}, Junya Zhang ^{1,2,3} and Yuansong Wei ^{1,2,3,4,*}

- ¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; nthejani@yahoo.com (R.T.N.); wangtuo17@mails.ucas.edu.cn (T.W.); hywang_st@rcees.ac.cn (H.W.); dwyu@rcees.ac.cn (D.W.); jyzhang@rcees.ac.cn (J.Z.)
- ² Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- ³ University of Chinese Academy of Sciences, Beijing 100049, China
- ⁴ Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330029, China
- * Correspondence: yswei@rcees.ac.cn; Tel.: +86-10-6284-9690

S1: Composition of Synthetic Wastewater

Synthetic wastewater was designed to simulate domestic wastewater. This synthetic wastewater contained (per liter) D (+) – Glucose monohydrate (200 g/L), Triptone (15 g/L), Calcium chloride dehydrate CaCl₂·2H₂O (25 g/L), Pottasium dihydrogen phosphate KH₂PO₄ (17.5 g/L), Sodium hydrogen Carbonate NaHCO₃ (137.5 g/L), Ammonium Chloride (NH₄Cl) 95.5 g/L, Sodium acetate (C₂H₃NaO₂)(100 g/L), Sodium acetate (C₂H₃NaO₂) (100 g/L), Magnesium sulfate (MgSO₄·7H₂O) (50 g/L). All were analytical grade chemicals purchased from Sinopharm, China). In addition, trace element solution was also added based on Zhang et al, 2018.

www.mdpi.com/journal/processes

S2: 3D EEM Analysis of Anaerobic Supernatant, Permeate, Backwashing Solutions and Cleaning Solutions

All samples taken for 3D EEM analysis were size-fractionated by membrane filter ($\leq 0.45 \mu$ m) and UV absorbance was measured. The UV–Visible spectrometer equipped with a quartz cell (1 cm path length) was used to estimate absorbance at 254 nm (Shimadzu UV254, Japan). The absorbance at 254nm was measured beforehand in order to determine if the absorbance is <0.5 to avoid the inner filter effect, then the samples was diluted 50 times according to the UV₂₅₄ data. Then three-dimensional EEM spectra were measured using a fluorescence spectrometry (F-7000, spectrophotometer, Hitachi, Japan). In this study, the EEM spectra were collected with corresponding scanning emission spectra from Emission wavelengths (Em) 220 nm to 550 nm at 5 nm increments by varying the excitation (Ex) wavelength from 200 nm to 400 nm at 5 nm sampling intervals. The scanning speed was set at 12000 nm/min for this study. The spectrum of deionized water was recorded as the blank. The software Origin Pro-2018 was employed to process the EEM data. The EEM spectra are plotted as the elliptical shape of contours. The X-axis represents the emission spectra (Em) from 200 nm to 550 nm while the Y-axis indicates the excitation (Ex) wavelength from 200 nm to 450 nm, and the third dimension, i.e., the contour line, is shown to express the fluorescence intensity at an interval of 5.

Figure S2. The outside in filtration mode during backwashing.

Figure S3. The images of virgin and fouled membranes. (**a**) The virgin membrane prior to filtration; (**b**) The fouled membrane after 60 days of filtration.

Figure S4. (a) Transmembrane pressure and flux evolution; (b) Permeability and cross flow velocity evolution

	Permeability	P _x /P _i *100%
Original pure water	2.64	
Without backwashing	0.43	16.28
Stage 1	0.48	18.18
Stage 2	0.49	18.56
Purewater cleaning	2.12	80.30
NaOCl cleaning	2.61	98.86
Citric acid cleaning	2.18	82.57

x: initial purewater permeability i: permeability at different scenarios.

Table S2. Fluorescence Spectral parameters of samples of initial backwashing, final backwashing and the cleaning solutions.

Stage	Sample	Region 1	Region 11	Region 111	Region IV	Region V	FI*
		Ex: 200-250	Ex: 200-250	Ex: 200-250	Ex: 250-280	Ex: 280-500	
		Em230-330	Em330-380	Em380-500	Em200-380	Em380- 500	
1. Without	AnMBR				Em 340		2.09
backwashing					Ex225		
					Z2365		
					Em 345		
					Ex 285		
					Z 2060		
	Permeate		Em 345		Em 355		2.14
			Ex220		Ex 275		
			Z3614		Z3267		
2. First	AnMBR		Em 345nm		Em 340	Em 400	2.12
backwashing			Ex225nm		Ex275	Ex315	
			Z3633		Z32724	Z1032	
	Permeate		Em 360		Em 335		2.18
			Ex220		Ex275		
			Z32628		Z32227		
	Backwashing		Em 365		Em 365		2.19
			Ex225		Ex275		
			Z32525		Z32090		
3. Final	AnMBR		Em 325		Em 310		1.92
			Ex225		Ex280		
			Z33416		Z33471		
	Permeate		- Em 315		Em 310		1.88
			Ex220		Ex280		
			Z3767.5		Z32029		

	Backwashing	 Em 360		Em 360	 1.87
		Ex225		Ex275	
		Z32591		Z32120	
4. Chemical	Pure water	 -			 2.67
Cleaning	NaOCl	 -			 1.81
	Citric acid	 Em 365	Em 410		 2.09
		Ex230	Ex230		
		Z3220	Z3387.3		

*Fluorescence Index FI= Where the FI is given as the ratio of the emission intensities measured at 450 nm and at 500 nm respectively with an excitation of 370 nm.FI>1.9 indicates that the dissolved organic matter are mainly dominated by microorganisms and algae (endogenous), FI <1.4 main source is exogenous.

Figure S5. Conceptual diagram for ceramic membrane microbial fouling by Dong et al, 2015.

Sample estimators	Sobs	Shannon	Simpson	Ace	Chao	Coverage
Pure water	229	1.51	0.43	327.21	312	0.99
NaOCl	1047	5.05	0.02	1053.25	1053.27	0.99
Citric acid	1019	4.53	0.33	1070.44	1054.90	0.99

Table S3. The effectiveness of the cleaning solutions on microbial fouling control.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).