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Abstract: Nosiheptide is a sulfur-containing peptide antibiotic, showing exceptional activity against
critical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant
Enterococci (VRE) with livestock applications that can be synthesized via fed-batch fermentation.
A simplified mechanistic fed-batch fermentation model for nosiheptide production considers
temperature- and pH-dependence of biomass growth, substrate consumption, nosiheptide production
and oxygen mass transfer into the broth. Herein, we perform dynamic simulation over a broad
range of possible feeding policies to understand and visualize the region of attainable reactor
performances. We then formulate a dynamic optimization problem for maximization of nosiheptide
production for different constraints of batch duration and operability limits. A direct method for
dynamic optimization (simultaneous strategy) is performed in each case to compute the optimal
control trajectories. Orthogonal polynomials on finite elements are used to approximate the control
and state trajectories allowing the continuous problem to be converted to a nonlinear program
(NLP). The resultant large-scale NLP is solved using IPOPT. Optimal operation requires feedrate
to be manipulated in such a way that the inhibitory mechanism of the substrate can be avoided,
with significant nosiheptide yield improvement realized.

Keywords: dynamic optimization; nosiheptide; fed-batch process; pharmaceutical manufacturing

1. Introduction

1.1. Nosiheptide

Antibiotics are essential pharmaceutical products in modern society [1], whose syntheses either
require complex multistep chemical routes [2,3] or make use of enzymatic pathways [4] to obtain their
complex molecular structures. Designing efficient antibiotic manufacturing processes is imperative.
Nosiheptide (Figure 1) is a sulfur-containing peptide antibiotic obtained through fermentation. It exerts
exceptional antibiotic activity in vitro and in a mouse model against critical Gram-positive pathogens
such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE) or
Clostridium difficile. Nosiheptide and other thiopeptides’ mechanisms of action are a result of binding
on the 50S ribosomal subunit which prevents selective protein synthesis. Shown non-toxic at high
dosages, nosiheptide is principally used for livestock applications [5]. Figure 2 shows sales volumes of
different antibiotic classes for livestock, with sulfur-containing antibiotics (including nosiheptide) being
one of the top sellers. Recently the first total synthesis of nosiheptide was reported, utilizing double
macro-cyclization of a fully-functionalized linear precursor [6]. Given low industrial yields, strong
motivation exists to dynamically-optimize the process for improved product yield while reducing
production time and cost to improve the industrial relevancy of manufacturing this antibiotic [7,8].
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Figure 1. Nosiheptide molecular structure skeletal (left) + 3D (right) structures [9]. 

1.2. Process Modeling and Optimization Studies 

Antibiotics are often produced via batch or fed-batch bioprocessing and frequently using 

enzymatic pathways. Dynamic modeling, simulation, and optimization are used for theoretical 

understanding of complex reaction networks inherent of biopharmaceutical production and to 

elucidate optimal control trajectories/operating policies to meet specific targets (e.g., maximize yield 

subject to purity constraints) [10]. Human antibiotic production, particularly β-lactams (whose broad 

applications and importance in global healthcare make them high priority), has received a lot of 

attention in process systems engineering in the past decade; a summary of pertinent literature 

examples on modeling and optimization of antibiotic production is provided in Table 1. 

 

Figure 2. Sales of livestock antibiotics for by antibiotic class (top) and animal type (bottom) [11]. 

Figure 1. Nosiheptide molecular structure skeletal (left) + 3D (right) structures [9].

1.2. Process Modeling and Optimization Studies

Antibiotics are often produced via batch or fed-batch bioprocessing and frequently using enzymatic
pathways. Dynamic modeling, simulation, and optimization are used for theoretical understanding
of complex reaction networks inherent of biopharmaceutical production and to elucidate optimal
control trajectories/operating policies to meet specific targets (e.g., maximize yield subject to purity
constraints) [10]. Human antibiotic production, particularly β-lactams (whose broad applications and
importance in global healthcare make them high priority), has received a lot of attention in process
systems engineering in the past decade; a summary of pertinent literature examples on modeling and
optimization of antibiotic production is provided in Table 1.
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Table 1. Select modeling and optimization studies for human β-lactam antibiotic production.

Antibiotic Application Study Reference

Amoxicillin

Tonsillitis
Bronchitis

Pneumonia
Gonorrhea

Sinus infections
UTIs

Application of artificial neural networks (ANNs) to
model complex reaction scheme for penicillin G

acylase (PGA)-catalyzed synthesis
[12]

Inclusion of additional experimental data to improve
ANN in reference [12] [13]

Maximization of API formation vs. different operating
conditions in either methanol/ethylene glycol as

reaction solvents
[14]

Sensitivity analysis on previous ANN study [12] [15]

Modeling and simulation of continuous reactive
crystallization in presence of substrates and impurities [16,17]

Dynamic optimization of non-isothermal batch reactor [18]

Ampicillin

UTIs
Pneumonia
Gonorrhea
Meningitis

Abdominal infections

Regression of nucleation and growth kinetics for pH
crystallization model [19]

Modeling and simulation of reactive crystallization in
presence of substrates and impurities [20]

Modeling and simulation of continuous reactive
crystallization in presence of substrates and impurities [16,17]

Multi-objective dynamic optimization of
pH crystallization [21]

Cephalexin

UTIs
Respiratory tract

infections
Ear infections
Skin infections

Non-isothermal modeling of enzymatic cephalexin
batch synthesis [22]

Optimization of synthesis pH, temperature,
and concentrations [23]

Non-isothermal modeling of enzymatic cephalexin
batch synthesis [24]

Modeling and simulation of reactive crystallization in
presence of substrates and impurities [16,17]

Regression of nucleation and growth kinetics for pH
crystallization model [25]

Modeling and optimization of fed-batch biopharmaceutical processes have also received significant
attention for a wide variety of products, literature examples of which are summarized in Table 2.
A variety of studies for the production of a range of products (including proteins, monoclonal antibodies
(mAbs), antibiotics, and amino acids) from different biomass sources (including Chinese hamster
ovary (CHO) cells for mAb production) have been carried out. Once reaction model parameters
have been regressed (the subject of many different studies in Tables 1 and 2 and beyond), process
model optimization subject to different design and operational constraints for different objectives can
be performed to realize the optimum design. Such studies have been implemented frequently for
batch/fed-batch process development (Table 2).
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Table 2. Select modeling and optimization studies for fed-batch pharmaceutical production.

Product Biomass Substrate Objectives Observations Reference

Molecule Application

1 Podophyllotoxin Anticancer Podophyllum
hexandrum

Indoleacetic
acid,

glucose,
oxygen

Regress model
parameters from

batch data to
inform fed-batch

design

Increased
volumetric

productivity by
35.8%.

[26]

2 Unnamed
protein Unknown Unnamed Glucose,

oxygen

Application of
ANNs to model

bioprocess

ANN
formulated to

capture
industrial
process

behavior.

[27]

3 Fluoroleucine
ethyl ester

Pharmaceutical
intermediate

Candida
antarctica

Azlactone,
ethanol

Kinetic parameter
regression for

fed-batch process
optimization

400% increase in
fed-batch mode
productivity vs.
batch operation

[28]

4 Glutamine Amino acid CHO cells Glucose,
oxygen

Markov chain
Monte Carlo
method for

kinetics modeling

Fed-batch
process

modeling in
5000 L

bioreactor

[29]

5 Butyric acid Histamine
antagonist

Clostridium
tyrobutyricum

Glucose,
oxygen

Reaction kinetic
model parameter

regression for
fed-batch process

Increased
productivity
and growth

with fed-batch
operation

[30]

6 Penicillin Antibiotic Penicillium Glucose,
oxygen

Implementation of
design of dynamic

experiments for
process

optimization

Process
optimization

with few
experiments

[31]

7 mAb
Various

therapeutic
applications

GS-NS0 cell
line Glucose

Sensitivity
analysis and

dynamic
optimization

Increased
productivity [32]

8 EG2-hFc (mAb)
Various

therapeutic
applications

CHO cells Glucose,
oxygen

Reaction kinetic
parameter

regression and
sensitivity
analysis

Single set of
parameters

described state
trajectories

[33]

9 Unnamed mAb
Various

therapeutic
applications

CHO cells Glucose,
oxygen

Reaction kinetic
parameter

regression for
modeling

System
modeling on lab-
and production

scales

[34]

10 β-Carotene Vitamin A
precursor

Saccharomyces
cerevisiae

Glucose,
ethanol,
oxygen

Dynamic
optimization of
reaction scheme

Reduced
operating costs

of bioreactor
[35]

11 mAb
Various

therapeutic
applications

GS-NS0 cells Glucose,
glutanamine

Model
reformulation to

improve
computational

efficiency

Improved
structure and

increased
production from
optimal feeding

[36]

12 Immunoglobulin
G (mAb)

Various
therapeutic
applications

CHO cells Unspecified

Dynamic model
formulation for

optimal pH
control

Increased
productivity
from optimal

control

[37]

13 mAb
Various

therapeutic
applications

GS-NS0 cells Glucose,
glutanamine

Comparison of
simultaneous and

sequential
optimization

Sequential
approach attains

higher
productivity

[38]
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1.3. This Work

A fed-batch fermentation process dynamic model for nosiheptide production described by Niu
and colleagues (2013, 2016) [39,40] allows insight into the process design space and elucidation of
optimal feeding policies for enhanced productivity, which is yet to be done for this antibiotic; therein
lies the novelty of the work. This paper is structured as follows: first, the published dynamic fed-batch
model equations are described with model parameter estimation performed to improve process model
accuracy vs. published experimental data; next, dynamic simulation is performed to understand the
region of attainable fermentor performances; and then a dynamic optimization problem is formulated
and solved to elucidate the optimal reactor feeding policy to enhance the production of nosiheptide.
A critical discussion of the simulation and optimization methodologies vs. the available data used for
formulation and outlook on the field is also provided.

2. Dynamic Process Modeling, Simulation, and Optimization Methodology

2.1. Nosiheptide Fed-Batch Fermentation Model and Parameter Estimation

2.1.1. Dynamic Process Model

A schematic of the fed-batch fermentation process for nosiheptide is shown in Figure 3 [39,40].
The bioreactor/fermentor vessel has volume, VF = 100 L with biomass (Streptomyces actuosus) in broth
volume, V = 60 L at the start of the batch (time, t = 0). Varying the reactor feeding (F), temperature
(T), and pH alters state profiles over the batch duration, namely biomass (X), substrate (S), product
(P), and dissolved oxygen (CO) concentrations. The subsequent dynamic fed-batch process model
assumes ideal mixing and no lag with respect to changes in process conditions during the batch.

Processes 2020, 8, x FOR PEER REVIEW 5 of 22 

 

understand the region of attainable fermentor performances; and then a dynamic optimization 

problem is formulated and solved to elucidate the optimal reactor feeding policy to enhance the 

production of nosiheptide. A critical discussion of the simulation and optimization methodologies 

vs. the available data used for formulation and outlook on the field is also provided. 

2. Dynamic Process Modeling, Simulation, and Optimization Methodology 

2.1. Nosiheptide Fed-Batch Fermentation Model and Parameter Estimation 

2.1.1. Dynamic Process Model 

A schematic of the fed-batch fermentation process for nosiheptide is shown in Figure 3 [39,40]. 

The bioreactor/fermentor vessel has volume, VF = 100 L with biomass (Streptomyces actuosus) in broth 

volume, V = 60 L at the start of the batch (time, t = 0). Varying the reactor feeding (F), temperature 

(T), and pH alters state profiles over the batch duration, namely biomass (X), substrate (S), product 

(P), and dissolved oxygen (CO) concentrations. The subsequent dynamic fed-batch process model 

assumes ideal mixing and no lag with respect to changes in process conditions during the batch. 

 

Figure 3. Fed-batch nosiheptide production via fermentation. 

The fed-batch fermentation of Streptomyces actuosus to produce nosiheptide is a complex 

biochemical process. The dynamic process model makes various simplifications in order to formulate 

the model equations [39,40]. The model assumptions include: (1) ideal mixing such that pH, T, and 

concentrations (X, S, P, CO) are spatially uniform in the bioreactor at a given t; (2) biomass cell 

chemical compositions do not vary with t; and (3) there is negligible lag between the imposed 

fermentation process condition changes and process dynamics. 

The dynamic model for nosiheptide fermentation is that proposed by Niu and colleagues [39,40]. 

The main objectives of this study are parameter estimation to improve model discrepancy vs. 

reported experimental results by the same authors and to then perform dynamic optimization of the 

fed-batch fermentation process to elucidate possible improvements for nosiheptide production. 

Biomass (X) growth is defined by specific growth (μg) and death (μd) rates (functions of both pH 

and temperature, T). In Equation (1), the first term = cell growth, the second term = cell death, and 

third term = dilution by reactor feed, respectively. Here, F = reactor feed flow rate, V = culture volume, 

Ag and Ad = pre-exponents for growth and death terms, respectively, Eg and Ed = energy barriers to 

growth and death, respectively, R = universal gas constant, K1 and K2 = model constants, KS and KO = 

the substrate and oxygen Contois saturation constants, respectively, Kd = the Monod constant, CO = 

dissolved oxygen content, and XMAX = maximum biomass concentration. 

Feed

F(t)

V(t)

pH(t)

T(t)

CO(t)

X(t)

S(t)

P(t)

Fermentor

VF

Variable Type Description

F Control Bioreactor feed rate

V State Fermentation broth volume

pH Control Fermentation broth pH

T Control Fermentation broth temperature

X State Biomass (Streptomyces actuosus)

S State Substrate (Glucose)

P State Product (Nosiheptide)

CO State Dissolved oxygen content in broth

VF Design Fermentor volume

Figure 3. Fed-batch nosiheptide production via fermentation.

The fed-batch fermentation of Streptomyces actuosus to produce nosiheptide is a complex
biochemical process. The dynamic process model makes various simplifications in order to formulate
the model equations [39,40]. The model assumptions include: (1) ideal mixing such that pH, T, and
concentrations (X, S, P, CO) are spatially uniform in the bioreactor at a given t; (2) biomass cell chemical
compositions do not vary with t; and (3) there is negligible lag between the imposed fermentation
process condition changes and process dynamics.

The dynamic model for nosiheptide fermentation is that proposed by Niu and colleagues [39,40].
The main objectives of this study are parameter estimation to improve model discrepancy vs. reported
experimental results by the same authors and to then perform dynamic optimization of the fed-batch
fermentation process to elucidate possible improvements for nosiheptide production.

Biomass (X) growth is defined by specific growth (µg) and death (µd) rates (functions of both pH
and temperature, T). In Equation (1), the first term = cell growth, the second term = cell death, and
third term = dilution by reactor feed, respectively. Here, F = reactor feed flow rate, V = culture volume,
Ag and Ad = pre-exponents for growth and death terms, respectively, Eg and Ed = energy barriers
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to growth and death, respectively, R = universal gas constant, K1 and K2 = model constants, KS and
KO = the substrate and oxygen Contois saturation constants, respectively, Kd = the Monod constant,
CO = dissolved oxygen content, and XMAX = maximum biomass concentration.

dX
dt

=
(
µg − µd −

F
V

)
X (1)

µg =
Ag exp

(
−

Eg
RT

)
1+ K1

10−pH + 10−pH

K2

S
KSX + S

CO
KOX + CO

(
1 −

X
XMAX

)
(2)

µd= Ad exp
(
−

Ed

RT

)(
1 −

CO
Kd+CO

)
(3)

The substrate (S) is considered to have three actions, described by each term in Equation (4):
to provide nutrients for cell growth (first term), to produce metabolites (second term), and to maintain
bacteria culture activity (third term), with the fourth term describing dilution from the reactor feed.
Here, mS = the maintenance coefficient of substrate and YX/S and YP/S = the yield constants of biomass
and product vs. substrate, respectively.

dS
dt

= −mSX −
1

YX/S

dX
dt
−

1
YP/S

dP
dt
−

F
V

X (4)

The Luedeking–Piret model for microbial metabolite formation (i.e., nosiheptide production) is
considered, simplifying to account for the rate being uncoupled with cell growth (i.e., nosiheptide
production is independent of cell growth rate), giving Equation (5), where Kh = the equilibrium constant,
β = specific production rate (Equation (6)), µP = specific production rate, and KP and KI = production
rate inhibition constants.

dP
dt

= βX − KhP −
F
V

P (5)

β =
µPS

KP+S+ S2

KI

(6)

The fermentation broth volume, V, increases over time with the feedrate, F. The model assumes
a dilute fermentation broth with negligible volume changes due to biomass growth, substrate
consumption, or nosiheptide formation.

dV
dt

= F (7)

A dissolved oxygen model is considered from a mass balance (Equation (8), [39,40]). The saturated
oxygen concentration, CO*, is a function of temperature and is reported with a value of 0.037 g L−1

in the fermentation broth in the original experimental demonstration [39,40]; it is assumed that this
value does not vary with changing state profiles over the course of the batch duration. The volumetric
transfer coefficient (KLa) is dependent on the tank and stirrer characteristics as defined by Equation
(10). In Equation (8), the first term (KLa (CO*−CO) = mass transfer of oxygen into the fermentation

broth, the second term (mOX) = biomass maintenance consumption, the third term
(

1
YX/O

dX
dt

)
=

oxygen consumption due to biomass growth, the fourth term
(

1
YP/O

dP
dt

)
= oxygen consumption in

product formation, and the fifth term
(

F
V CO

)
describes dilution from reactor feed. Here, CO* =

saturation dissolved oxygen concentration, mO = maintenance coefficient of dissolved oxygen, YX/O
and YP/O = yield constants of biomass and product vs. dissolved oxygen, respectively, d = agitator
diameter, n = agitator speed, Pi = input power under nonaerobic conditions, Q = ventilation volume,
and D = vessel volume.
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dCO
dt

= KLa(CO∗−CO) − mOX −
1

YX/O

dX
dt
−

1
YP/O

dP
dt
−

F
V

CO (8)

CO*(T = 29 ◦C) = 0.037 g L−1 (9)

KLa = 0.1322
d0.56n0.18P0.36

i Q0.3992

DV0.4
(10)

2.1.2. Model Parameter Estimation

Niu and colleagues (2013, 2016) performed a range of experimental campaigns, gathering state
data to facilitate parameter estimation of values which may not be directly measured [39,40]. It was
found that there was significant mismatch between certain presented state trajectories (namely product,
P and dissolved oxygen content, CO) and those resulting from simulating the model using the entire
published parameter set (29 parameters). As a result, a selective parameter re-estimation has been
performed for five parameters, which pertain to uptake ratios for oxygen consumption (mO and YX/O)
and product formation (µP, Kh, YP/O). MATLAB’s OPTI Toolbox and the fmincon function was used to
minimize the error between state trajectories and the experimental data (Equation (11)), solving for the
parameter vector, θ = [mO YX/O µP Kh YP/O], giving the best fit.

min
θ

∑
i

∑
j

(
data − model

datai

)2

(11)

The model fit to P and CO profiles vs. experimental data is greatly improved following parameter
regression of θ, as shown in Figure 4. The model kinetic parameter values (both fitted and taken from
the literature) are listed in Table 3. Design parameters of the bioreactor are taken as those considered in
the literature and are also summarized in Table 3. The improved model fit in product and dissolved
oxygen concentrations are also quantified by their corresponding mean squared error (MSE) and sum
of squared error (SSE) values for P and CO profiles.
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Table 3. Kinetic (published and regressed in this study) and fermentor design parameters.

Kinetic Parameters

Parameter Description Symbol Value Units Source

Growth pre-exponent Ag 0.1224 h−1 [40]
Growth energy barrier Eg 60 kJ mol−1 [40]

Death pre-exponent Ad 1.9 × 10−3 h−1 [40]
Death energy barrier Ed 340 kJ mol−1 [40]
Equation (2) constant K1 1 × 10−10 (–) [40]
Equation (2) constant K2 1.3 × 10−4 (–) [40]

Substrate Contois constant KS 0.1828 g L−1 [40]
Oxygen Contois constant KO 0.0352 g L−1 [40]

Maximum substrate concentration XMAX 0.87 g L−1 [40]
Monod constant Kd 0.0368 (–) [40]

Hydrolysis constant Kh 4.0 × 10−4 h−1 This study a

Substrate maintenance coefficient mS 0.0624 g g−1 h−1 [40]
Biomass/substrate yield constant YX/S 0.25 g g−1 [40]
Product/substrate yield constant YP/S 0.68 g g−1 [40]

Specific production rate µP 0.05 g g−1 h−1 This study a

Production inhibition constant KI 0.1 g L−1 [39]
Production inhibition constant KP 2 × 10−4 g L−1 [39]

Oxygen maintenance coefficient mO 4.0 × 10−3 g g−1 h−1 This study a

Biomass/oxygen yield constant YX/O 43.5 g g−1 This study a

Product/oxygen yield constant YP/O 253.3 g g−1 This study a

Design Parameters

Parameter Description Symbol Value Units Source

Fermentor volume VF 100 L [39,40]
Ventilation rate Q 3.0 m3 h−1 [39,40]
Agitation speed n 400 rpm [39,40]
Stirring power P 1500 W [39,40]

Agitator diameter d 0.01 m [39,40]
Vessel diameter D 0.5 m [39,40]

a Quality of Parameter Fit: Niu et al. (2013, 2016) [39,40] vs. this study

Variable MSE SSE
Niu et al. (2013,

2016) [39,40] This study Niu et al. (2013,
2016) [39,40] This study

Product, P 4.940 × 10–1 6.815 × 10–5 8.398 1.158 × 10−3

Dissolved Oxygen, CO 3.700 × 103 4.280 × 10−5 6.290 × 104 0.728 × 10−3

Various model parameters are taken from studies by Niu and colleagues (2013, 2016) on the same
experimental apparatus, where errors of their parameter fits on different species concentrations are also
reported [39,40]. Our parameter regression showed reduced discrepancy between the experimental
and model results. It is important to validate all results presented in this work (both model parameter
estimates and dynamic optimization runs) vs. further experimental runs on the apparatus used by Niu
and colleagues (2013, 2016) [39,40].

2.2. Dynamic Simulation

Exploring the entire dynamic operating design space with respect to attainable productivity and
reactor performance is useful in order to understand in depth the biochemical system behavior prior
to undertaking dynamic optimization [41]. We implement exhaustive dynamic simulation subject
to rules and constraints on the possible control (reactor feedrate) profiles over the batch duration to
limit the number of simulations and total computational effort [41]. A total possible batch duration
of tf = 96 h is considered (as per the experimental demonstrations [39,40]). The control profiles are
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considered piecewise constant (PWC) with six temporal elements (N = 6) considered, i.e., a time step
of ∆t = 16 h. The reactor feed can have initial values considered, F(t = 0) = 0.1:0.1:0.9 L h−1, i.e.,
nine (9) possible starting values. After each ∆t, the change in reactor feed, ∆F = {0, ±0.1, ±0.2, ±0.3,
±0.4} L h−1. Profiles which result in F(t) < 0 or F(t) > 1 (= feedrate bounds), as well as cases where
V(t) > 100 (= fermentation vessel volume) are not considered to respect the bounds imposed as per
the experimental demonstration [39,40]. Figure 5 shows an example of two possible reactor feedrate
profiles considered within the dynamic simulation, with all of the abovementioned restrictions met.
The resulting number of feed profiles considered for dynamic simulation = 625,331. The effects of
different feed profiles on state variables and different trade-offs therein are then considered. Thereafter,
mathematical dynamic optimization is performed in order to elucidate the optimal reactor feedrate
policy to maximize nosiheptide production.
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2.3. Dynamic Optimization

2.3.1. Problem Statement

Determining how any industrial production process shall be operated efficiently typically involves
mathematical optimization of some form [42]. Often this will include an optimal control problem,
where a system of state variables [x] are influenced by an externally-manipulated control variable,
u, so the optimal control vector u(t) is sought to minimize an objective, ϕ. Considering a generic
problem where no running payoff is considered (the objective, Equation (12), evaluated at terminal
time only), the dynamic optimization problem can be defined as follows [43,44].

min
u(t), tf

ϕ(x(tf), tf) (12)

dx
dt

= f (x(t), u(t)) (13)

x(t0) = x0 (14)

h (x(t), u(t)) = 0, g (x(t), u(t)) ≤ 0 (15)

hf (x(tf)) = 0 (16)

gf (x(tf)) ≤ 0 (17)

uL ≤ u(t) ≤ uU (18)

xL ≤ x(t) ≤ xU (19)
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The ordinary differential equations (ODEs) which dictate the state trajectories (Equation (13))
are influenced at any time by the current control (u) value, with initial state conditions given by
Equation (14). Equation (15) represents equality and inequality constraints across the entire time
horizon, t ∈ [t0, tf], with terminal constraints given by Equations (16) and (17). Lastly, the state and
control boundaries are constrained within permissible bounds by Equations (18) and (19).

2.3.2. Solution Method

A wide range of methodologies exist for solving an optimal control trajectory problem, including
variation methods and finite approximation methods [41,45]. In the former, exploiting Pontryagin’s
maximum principle allows the resulting two-point boundary value problem to be solved, while
the latter uses predefined functional forms to represent the control profile [46]. Finite formulations
may be tackled with simultaneous, sequential, or multi shooting strategies which are extensively
reviewed in the literature [43]. The sequential strategy involves discretization of the control profile with
the ODE system (process model), requiring regular re-integration during the algorithm to compute
corresponding state trajectories, an approach effective for problems with few decision variables
and constraints [47], which has been widely applied to engineering problems [48–50]. In contrast,
simultaneous strategies require the ODE system to also be discretized on the time horizon to produce a
large-scale nonlinear programming (NLP) problem requiring no further integration of the differential
algebraic equation (DAE) system, generally using orthogonal collocation techniques. The latter offers
numerous benefits, being faster to solve and able to handle problems with a greater number of decision
variables and constraints [51,52].

A direct method for dynamic optimization (simultaneous strategy) is performed. Orthogonal
polynomials on finite elements are used to approximate the control and state trajectories, allowing
the continuous problem to be converted to NLP form. The DAE system is converted to a system of
algebraic equations (AEs), where decision variables of the derived NLP problem are the coefficients of
the linear combinations of these AEs. Precision varies with collocation point locations and step sizes
used [53,54].

Consider the general problem with N elements (i = 1, . . . , N), each of which has K collocation
points (j = 1, . . . , K). The differential profiles (Equation (13)) can be approximated by Equation (20),
where ∆ti is the length of element i and dx/dti,j is the derivative of the state variable in element i at
the jth collocation point. Ωj is a jth order polynomial satisfying Equation (21). Continuity of the state
trajectories is ensured by Equation (22). The control profile is approximated by Equation (23), where ψj
is a Lagrange polynomial of degree K that satisfies ψj (ρj) = δj for j = 1, . . . , K. It is shown in Figure 6
how control variables may have discontinuities at element boundaries, while continuity in states at
these same boundaries is produced. In doing so, the continuous general problem has been reduced to
a discreet DAE system, which can be solved by a suitable NLP subroutine.

xi= xi−1 + ∆ti

K∑
j=1

Ω j

(
t − ti−1

∆ti

)
dx

dti, j
(20)

Ω j(0) = 0, Ω′j
(
ρ j

)
= δ j for j = 1, . . . , K (21)

x(t)= xi−1 + ∆ti

K∑
j=1

Ω j(1)
dx

dti, j
(22)

u(t) =
K∑

j=1

ψ j

(
t − ti−1

∆ti

)
ui, j (23)
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2.3.3. Optimization Objectives and Strategy

There are two obvious objectives for optimal fermentation: reduced batch duration and maximum
productivity (even if this requires later dilution, it is desirable to enhance yield). A bi-objective problem
is considered, defined by Equations (24)–(26). Multiple optimization objectives can also be formulated
as a single objective function by considering a sum of weighted individual objectives as in other studies
by our group [21,41]; however, such methods can be used in studies considering full-scale industrial
operation with ample experimental and dynamic production data acquisition, whereas for comparison
of modeling and optimization results vs. a relatively small experimental dataset (as is the case here),
a bi-objective problem defined as a product of individual objectives is more appropriate. Constraints
impose bounds on the control profiles (Equations (27)–(29) as well as the broth volume being limited
by the reactor size (Equation (30)).

min
T(t), pH(t), F(t)

f1 f2 (24)

f 1 = tf (25)

f 2 = −V(tf) P(tf) (26)

299 ≤ T(t) ≤ 305 for t ∈ [t0, tf] (27)

6 ≤ pH(t) ≤ 8 for t ∈ [t0, tf] (28)

0 ≤F(t) ≤ 1 for t ∈ [t0, tf] (29)

V(t) ≤ 100 for t ∈ [t0, tf] (30)

To elucidate the sensitivity of the model states on manipulated controls (F, T, pH), a sensitivity
analysis was performed. Figure 7 shows the effect of varying constant reactor pH on state profiles,
showing negligible variation over the applicable pH(t) = 6–8 (Equation (28)); this is due to the
pH-dependent model term (Equation (2)) varying weakly vs. pH for the given model parameters
(K1 and K2). Similarly, the sensitivity of states vs. isothermal reactor temperature (T(t) = 26–32 ◦C) is
compared in Figure 8. The variation in states vs. temperature is also negligible due to biomass cell
growth and death (numerators of first terms in Equations (2) and (3), respectively,) varying weakly vs.
temperature within the applicable range. The model dependence of both temperature and pH is as
presented in the literature [39,40].



Processes 2020, 8, 587 12 of 23
Processes 2020, 8, x FOR PEER REVIEW 12 of 22 

 

 

Figure 7. Effect of varying pH(t) = constant (a) on (b) biomass, (c) substrate, and (d) product 

concentrations. 

 

Figure 8. Effect of varying T(t) = constant (a) on (b) biomass, (c) substrate, and (d) product 

concentrations. 

We illustrate effects to justify selection of only reactor feeding as manipulation variable for 

dynamic optimization. It is possible that the growth peak occurs at a higher temperature than the 

range of values considered here (bounds chosen to ensure model parameters are commensurate with 

experiments), which should be confirmed via experiments in the same apparatus as that described 

by Niu and colleagues (2013, 2016) [39,40]. 

The results of the sensitivity analysis imply that it is logical to remove temperature and pH 

profiles from the optimization problem to reduce the problem size compared to optimizing all three 

controls simultaneously. Reactor temperature and pH are fixed as per the literature (see Table 4) to 

Figure 7. Effect of varying pH(t) = constant (a) on (b) biomass, (c) substrate, and (d) product concentrations.

Processes 2020, 8, x FOR PEER REVIEW 12 of 22 

 

 

Figure 7. Effect of varying pH(t) = constant (a) on (b) biomass, (c) substrate, and (d) product 

concentrations. 

 

Figure 8. Effect of varying T(t) = constant (a) on (b) biomass, (c) substrate, and (d) product 

concentrations. 

We illustrate effects to justify selection of only reactor feeding as manipulation variable for 

dynamic optimization. It is possible that the growth peak occurs at a higher temperature than the 

range of values considered here (bounds chosen to ensure model parameters are commensurate with 

experiments), which should be confirmed via experiments in the same apparatus as that described 

by Niu and colleagues (2013, 2016) [39,40]. 

The results of the sensitivity analysis imply that it is logical to remove temperature and pH 

profiles from the optimization problem to reduce the problem size compared to optimizing all three 

controls simultaneously. Reactor temperature and pH are fixed as per the literature (see Table 4) to 

Figure 8. Effect of varying T(t) = constant (a) on (b) biomass, (c) substrate, and (d) product concentrations.

We illustrate effects to justify selection of only reactor feeding as manipulation variable for
dynamic optimization. It is possible that the growth peak occurs at a higher temperature than the
range of values considered here (bounds chosen to ensure model parameters are commensurate with
experiments), which should be confirmed via experiments in the same apparatus as that described by
Niu and colleagues (2013, 2016) [39,40].

The results of the sensitivity analysis imply that it is logical to remove temperature and pH profiles
from the optimization problem to reduce the problem size compared to optimizing all three controls
simultaneously. Reactor temperature and pH are fixed as per the literature (see Table 4) to ensure
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healthy biomass and allowing the feed profile to be optimized in isolation. Initial conditions for state
variables are assumed to be as in the literature and are also summarized in Table 4.

Table 4. Fixed operating and initial state conditions as per the original experimental study [39,40].

Operating Variable

Variable Symbol Initial Value Units

Temperature T(t0) = T(t) 30 ◦C
pH pH(t0) = pH(t) 7 (–)

State Initial Condition

Variable Symbol Initial Value Units

Biomass loading X (t0) 0.05 g L−1

Substrate concentration S (t0) 40 g L−1

Product concentration P (t0) 0 g L−1

Culture volume V (t0) 60 L
Dissolved oxygen

content CO (t0) 0.037 g L−1

Any multi-objective problem, such as that defined by Equation (24), will not have a single solution,
but rather an entire optimal front upon which no single objective can be improved without sacrificing
another, i.e., a Pareto front. Numerous approaches can be used to modify a multi-objective problem
for compatibility with single objective methods such as that proposed in Section 2. Commonly, a
weighted sum objective is used to combine the competing objectives into a single term with weights
defining the relative importance of each. However, weights assigned to the multiple process targets to
produce a single objective function may be considered arbitrary, with decision-makers not necessarily
able to quantify a priori the relative importance of the competing objectives. Rather, we elect to
consider an ε-constraint approach. One of the objectives can be considered as a constraint in the
problem formulation, solving the other to optimality. This is repeated by incrementally increasing the
ε-constraint value across the entire span of permissible values for that objective. Here, the batch time is
treated as the secondary objective and converted to a constraint (Equations (31) and (32)).

min
F(t)
−V(tf) P(tf) (31)

tf = ε (32)

Solving this modified problem across a range of values for ε produces a Pareto front of optimal
solutions, allowing the trade-off to be visualized and used for process design and operation decisions.
Generally, Equation (32) would be an inequality constraint in the ε-constrained multi-objective method;
however, so as to visualize the performance drop observed in excessively long batches an equality term
is used. Doing so enforces the specific batch time in each case, in place of converging to the optimal
batch length with little indication of the responsible mechanism. We consider ε = {120, 200, 205, 275,
390} h and N = 20.

3. Results and Discussion

3.1. Dynamic Simulation and Design Space Visualization

Figure 9 presents trade-offs between different state variables from the range of reactor feedrate
profiles for dynamic simulation purposes. The following comparisons are made: product vs. remaining
biomass, volume vs. biomass, product and biomass vs. dissolved oxygen, and product vs. fermentation
broth volume and total amount of fed material during fed-batch production (= Σ F(t)∆t). Various
trade-offs and trends between states are observed.
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Figure 9. Trade-offs at the end of batch duration for different reactor feedrate profiles (tf = 96 h):
(a) product vs. biomass concentrations, (b) culture volume vs. biomass concentration, (c) product
vs. dissolved oxygen concentrations, (d) biomass vs. dissolved oxygen concentrations, (e) product
concentration vs. culture volume, and (f) product concentration vs. amount of fed material.

Observing the attained product concentrations vs. biomass at the end of the batch duration shows
that the highest productivities are attained from intermediate biomass values, not necessarily from
the highest. It is also observed that many of the considered feedrate profiles achieve comparably
low productivities for their given biomass present, highlighting the need for process optimization.
Resulting broth volumes are also highest at the low to intermediate range of biomass concentrations;
it should be noted that the model assumes that biomass growth does not affect broth volume, i.e., that
the system is relatively dilute. For adaptation to systems with higher biomass loading, Equation (7)
should contain a term that describes volumetric changes due to biomass growth.

Biomass concentrations are highest when the system is near oxygen saturation due to cells
requiring oxygen for growth. Most of the considered reactor feedrate profiles approach oxygen
saturation; however, the maximum productivities are obtained for profiles with lower dissolved
oxygen content. The highest product concentrations are observed for intermediate values of reactor
feedrates/final broth volumes. Banding is observed in the product vs. volume/fed material plots due to
the discrete initialized values and step changes employed for dynamic simulation (see Section 2.2).

Figure 9 shows that the highest nosiheptide product concentrations are attained with very
particular reactor feedrate profiles, i.e., the system performance is very sensitive to the considered
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reactor feedrate profiles. This design space investigation and visualization via dynamic simulation
provides an incentive for dynamic optimization to systematically establish the optimum feed profile.
Dynamic simulation results show performances attained for tf = 96 h (the batch duration as per
experimental studies [39,40]); the effect of varying batch time is another dynamic optimization goal.

3.2. Optimal Reactor Reactor Feedrate Policy

The resultant large-scale NLP problem from DynOpt is solved for each instance using IPOPT
(Interior Point OPTimizer) [51,52] and global optimality is ensured with a multi-start search via Latin
hypercube sampling of the input space for initialization. Analytical state and control Jacobians,
in addition to the objective gradients, are explicitly defined and provided to the solver which drastically
improves runtime due to far fewer function evaluations being required. The problem defined by
Equations (31) and (32) has been solved for a range of instances, considering an array of initialization
strategies (initial control profile ‘guesses’) as well as for increasing time domain discretization, defined
by the number of control segments, N. Solution attainment is robust with little sensitivity to the
initialization strategy employed, as has been in the case in other dynamic simulation and optimization
studies on biochemical systems implemented by our group [55]. The performance of the IPOPT NLP
solver was compared to the default solver within MATLAB’s OPTI Toolbox (fmincon), with IPOPT
equaling or outperforming in all instances. The single objective solution is shown in Figure 10 where
N = 12 and batch time tf = 120 h.
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Figure 10. Optimal feedrate profile (a) and corresponding model states, ε = 120 h: (b) culture volume,
and concentrations of (c) biomass, (d) substrate, (e) product, and (f) dissolved oxygen.

It is demonstrated that optimal feed trajectory computed is a novel parabolic form. This efficient
strategy initially feeds substrate at a high rate, assisting with the biomass development towards its
maximum value. Lowering this over the first portion of the process prevents restrictive dilution of
both the biomass and the early product formation. After sustaining a feedrate near 0.2 g L−1 until the
maximum biomass concentration is approached, the feedrate is increased exponentially towards the
end of the process, capitalizing on the reduced inhibition given that less substrate is now present in the
broth. It is noteworthy that the solution suggests the reactor should only be entirely full (V = 100 L)
at the very end of the process. The multi-objective Pareto front of optimal solutions is presented in
Figure 11 where batch time as a secondary objective was constrained by increments of 5 h between 100
and 400 h according to Equation (32).
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Three distinct regions on the Pareto plot (Figure 11) can be identified. In the left-most region
(100–200 h) a near linear relationship exists between attainable product mass and permitted batch
time. At batch time, tf > 200 h, a dramatic shift is observed, whereby a much larger product mass is
produced. This continually increases at a less than linear rate until a maximum production is observed
when tf ≈ 330 h. After this a dramatic drop in production is shown when batch time is excessively long.
To better understand these observed trends, solution profiles of the model states corresponding to
the solutions on the Pareto plot can be inspected. Figure 12 represents the solution for the scenario
tf = 200 h, with the same for tf = 205 h shown in Figure 13.
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Figure 12 shows similar behavior to Figure 10: initially promoting biomass growth before lowering
the feedrate for the intermediate batch portion, prior to increasing substrate feed to capitalize on the
favorable reactor state. The large transition in Figure 10 may be understood from the tf = 205 h solution
(Figure 13). This represents the first time at which the initial reactor substrate content is completely
consumed. This allows the substrate to deplete (feeding biomass growth and maintenance), and the
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moment that the substrate concentration approaches zero the feedrate is drastically increased. In doing
so there is essentially no inhibitory mechanism and extremely efficient fermentation may be performed
for the remainder of the batch, generating an elevated mass of product. This is similarly observed
in Figure 14 for ε = 275 h, with a sustained feed period at the end of the process at a precise level to
prevent accumulation while still feeding rapid product growth.Processes 2020, 8, x FOR PEER REVIEW 17 of 22 
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Figure 15 highlights the mechanism for the performance drop once the batch time becomes
excessively long. Here the batch time is too long for the finite reactor volume and substrate mass that
may be fed. Now the product hydrolysis becomes prohibitive with the nosiheptide produced earlier
being later consumed, where overfilling the reactor would be necessary to maintain a production
rate greater than the hydrolysis rate in the late stages of the process. As such, a critical batch time is
identified, after which yield is reduced. This also highlights that the product state must be rapidly
changed once the maximum production is observed, to prevent undesirable product losses.Processes 2020, 8, x FOR PEER REVIEW 18 of 22 
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Figure 15. Optimal feedrate profile (a) and corresponding model states, ε = 390 h: (b) culture volume,
and concentrations of (c) biomass, (d) substrate, (e) product, and (f) dissolved oxygen.

Care must be taken when interpreting these results. The optimal scenario appears to be to promote
biomass growth prior to depleting the substrate concentration entirely, after which further substrate
additions may be instantly converted to nosiheptide in the absence of an accumulated inhibitory
substrate content in the reactor. While the model authors do not suggest the model is not valid under
these conditions, the portion of their data used in the parameterization, which is presented in the
corresponding publications, do not show such behavior. The model validity under these conditions
(no substrate accumulated) must first be ensured. The considered dynamic fed-batch fermentation
model for nosiheptide production was developed by Niu and colleagues (2013, 2016) and based on their
experimental setup [39,40]. While experimental runs are out of the scope of this study, it is important
to validate regressed model parameters and corroborate dynamic optimization results presented here
with experimental campaigns of the pilot fermentation process.

4. Conclusions

The fed-batch production of nosiheptide is considered to circumvent mass transfer inhibition
at excessive substrate concentrations in the fermentation broth, where the reactor is only partially
filled initially and substrate supplemented over time. Design space investigation and visualization via
dynamic simulation of a large set of possible reactor feedrate profiles illustrated trade-offs and the
need for systematic dynamic optimization due to the high process sensitivity to the chosen reactor
feedrate policy. Dynamic optimization has been performed for minimization of batch time and inverse
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yield (for maximization). An ε-constraint approach has been implemented, treating batch time as a
secondary objective which is converted to an inequality constraint that is gradually relaxed as the
problem is re-solved to maximize nosiheptide production. Orthogonal polynomials on finite elements
are used to approximate the control and state trajectories allowing the continuous problem to be
converted to NLP form. Optimal operation requires the feedrate to be manipulated in such a way that
the inhibitory mechanism of the substrate can be avoided; however, the model validity under these
conditions (no substrate accumulated) must first be ensured to realize these results.
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Nomenclature

Acronyms
AE Algebraic equation
ANN Artificial neural network
API Active pharmaceutical ingredient
CHO Chinese hamster ovary
DAE Differential algebraic equation
IPOPT Interior point optimizer
mAb Monoclonal antibody
MRSA Methicillin-resistant Staphylococcus aureus
NLP Nonlinear programming
ODE Ordinary differential equation
PGA Penicillin G acylase
UTI Urinary tract infection
VRE Vancomycin-resistant Enterococci
Variables
Latin Letters
Ad Death pre-exponent (–)
Ag Growth pre-exponent (–)
CO Dissolved oxygen concentration (g L−1)
CO* Saturation dissolved oxygen concentration (g L−1)
D Fermentation vessel diameter (m)
d Agitator diameter (m)
Ed Energy barrier to death (J mol−1)
Eg Energy barrier to growth (J mol−1)
F Reactor feeding rate (L h−1)
g Inequality constraint vector
gf Terminal inequality constraint vector
h Equality constraint vector
hf Terminal equality constraint vector
K Number of collocation points
K1, K2 Constants in Equation (2)
Kd Monod constant (g L−1)
Kh Equilibrium constant (h−1)
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Variables
Latin Letters
KO Contois saturation constant of dissolved oxygen (–)
KS Contois saturation constant of substrate (–)
KLa Volumetric oxygen transfer coefficient (h−1)
mO Maintenance coefficient of dissolved oxygen (g g−1 h−1)
mS Maintenance coefficient of substrate (g g−1 h−1)
MSE Mean squared error
N Number of control elements
n Stirring rate (rpm)
P Product concentration (g L−1)
Pi Stirring power (W)
Q Fermentor ventilation volume (m3 h−1)
R Universal gas constant (= 8.314 J mol−1K−1)
S Substrate concentration (g L−1)
SSE Sum of squared errors
T Temperature (K)
t Time (h)
∆t Time step (h)
tf Final time (h)
t0 Initial time (h)
u Control variable vector
uL Control variable lower bound vector
uU Control variable upper bound vector
V Fermentation broth volume (L)
VF Fermentor volume (L)
X Biomass concentration (g L−1)
x State variable vector
XMAX Maximum biomass concentration (g L−1)
xL State variable lower bound vector
x0 State initial condition vector
xU State variable upper bound vector
YP/O Yield constant of product vs. dissolved oxygen (g g−1)
YP/S Yield constant of product vs. substrate (g g−1)
YX/O Yield constant of biomass vs. dissolved oxygen (g g−1)
YX/S Yield constant of biomass vs. substrate (g g−1)

Greek Letters
β Specific production rate (g g−1 h−1)
ε Batch duration constraint (h)
θ Parameter vector
ϕ Objective function
Ωj jth-order polynomial
ψj jth-order Lagrange polynomial
µd Specific death rate (h−1)
µg Specific growth rate (h−1)
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