

Supplementary Materials

Tetracycline Induces the Formation of Biofilm of Bacteria from Different Phases of Wastewater Treatment

Tereza Stachurová ^{1,*}, Kateřina Malachová ¹, Jaroslav Semerád ^{2,3}, Meta Sterniša ⁴, Zuzana Rybková ¹ and Sonja Smole Možina ⁴

- ¹ Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00 Ostrava, Czech Republic; katerina.malachova@osu.cz (K.M.); zuzana.rybkova@osu.cz (Z.R.)
- ² Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; jaroslav.semerad@biomed.cas.cz
- ³ Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic
- ⁴ Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; Meta.Sternisa@bf.uni-lj.si (M.S.); Sonja.Smole-Mozina@bf.uni-lj.si (S.S.M.)
- * Correspondence: stachurova.tereza@seznam.cz; Tel.: +420-732-676-234

Table S1. Concentration $(ng/\mu L)$ and purity (A260/A280) of DNA samples from the wastewater of the nitrification and sedimentation tanks of the wastewater treatment plant for the quantification of antibiotic resistance genes.

_	Wastewater				
Sample -	Nitrification tank		Sedimentation tank		
	Concentration	Purity	Concentration	Purity	
	(ng/µL)	A260/A280	(ng/µL)	A260/A280	
1	112.000	1.998	30.900	2.002	
2	98.000	2.000	14.800	1.833	
3	126.000	1.965	17.200	2.053	
4	89.000	1.876	21.600	2.100	
5	76.000	1.997	22.300	1.984	
6	107.000	2.005	34.100	1.937	

			PCR and qPCR conditions		
Primer	Gene	Sequence (5' to 3')	Annealing temp. (°C)	Cycles	Reference
F1048		GTG STG CAY GGY TGT CGT CA	(0)	40	Marti et al. 2013
R1194	165 IDNA	ACG TCR TCC MCA CCT TCC TC	60		
tet(A)-F	totA	CAG CCT CAA TTT CCT GAC GGG CTG	60	45	Boerjesson et al.2010
tet(A)-R	letA	GAA GCG AGC GGG TTG AGA G	60		
tet(B)-F	totB	CAG CAA GTG CGC TTT GGA TGC TG	60	45	Boerjesson et al.2010
tet(B)-R	letD	TGA GGT GGT ATC GGC AAT GA	00		
tet(M)-F	totM	GCA GAA TAT ACC ATT CAC ATC GAA GT	60	40	Rathnayake et al.2012
tet(M)-R	tetivi	AAA CCA ATG GAA GCC CAG AA	00		
tet(O)-F	totO	ACG GAR AGT TTA TTG TAT ACC	50	40	Marti et al. 2013
tet(O)-R	leiO	TGG CGT ATC TAT AAT GTT GAC	50		
tet(W)-F	totIAT	GAG AGC CTG CTA TAT GCC AGC		40	Marti at al 2012
tet(W)-R	leivv	GGG CGT ATC CAC AAT GTT AAC	00	40	Marti et al. 2013

Table S2. Primers sequences and PCR and qPCR conditions used for detection and quantification of *tet* genes in wastewater samples and selected bacterial isolates.

Figure S1. The growth curves of tetracycline-resistant isolates from the nitrification tank (NT) and the sedimentation tank (ST) of the wastewater treatment plant for the preparation of the hydrophobicity test. The growth curves measured every 30 min 24 h at 600 nm and 30 °C.

Table S3. The parameters of the growth curves of tetracycline-resistant isolates from the nitrification
tank (NT) and the sedimentation tank (ST) of the wastewater treatment plant for the preparation of
the hydrophobicity test. The growth curves measured every 30 min 24 h at 600 nm and 30 $^\circ\mathrm{C}.$

Sample	Growth rate (h)	lag phase (h)	Doubling time (h)
NT-S-1	0.220 ± 0.013	3.120 ± 0.114	3.157 ± 0.181
NT-S-2	1.949 ± 0.063	9.236 ± 0.101	0.356 ± 0.076
NT-S-3	1.356 ± 0.361	3.830 ± 0.293	0.534 ± 0.129
NT-S-4	0.115 ± 0.028	3.476 ± 0.497	6.287 ± 0.534
NT-S-5	0.252 ± 0.001	2.906 ± 0.211	2.752 ± 0.016
NT-S-6	2.424 ± 0.053	4.739 ± 0.153	0.286 ± 0.006
NT-S-7	1.094 ± 0.093	12.269 ± 0.334	0.637 ± 0.057
NT-S-8	2.089 ± 0.142	5.802 ± 0.142	0.333 ± 0.023
NT-S-9	0.392 ± 0.013	0.983 ± 0.750	1.768 ± 0.059
NT-S-10	0.410 ± 0.008	1.177 ± 0.713	1.692 ± 0.035
ST-S-1	0.717 ± 0.068	1.950 ± 0.421	0.972 ± 0.088
ST-S-2	1.998 ± 0.046	3.012 ± 0.132	0.347 ± 0.008
ST-S-3	0.633 ± 0.015	1.907 ± 0.295	1.096 ± 0.026
ST-S-4	0.702 ± 0.013	5.621 ± 0.165	0.987 ± 0.018
ST-S-5	0.228 ± 0.003	3.244 ± 0.124	3.034 ± 0.043
ST-S-6	1.079 ± 0.322	11.532 ± 0.108	0.691 ± 0.247
ST-S-7	0.405 ± 0.006	1.221 ± 0.508	1.711 ± 0.024
ST-S-8	0.225 ± 0.003	3.386 ± 0.206	3.075 ± 0.034
ST-S-9	0.430 ± 0.163	9.512 ± 0.169	1.750 ± 0.544
ST-S-10	0.247 ± 0.004	2.996 ± 0.112	2.806 ± 0.047
NT-W-1	0.425 ± 0.027	0.744 ± 0.804	1.636 ± 0.108
NT-W-2	1.539 ± 0.051	8.402 ± 0.077	0.451 ± 0.015
NT-W-3	2.290 ± 0.025	3.749 ± 0.059	0.303 ± 0.003
NT-W-4	0.824 ± 0.026	6.960 ± 0.268	0.842 ± 0.027
NT-W-5	0.358 ± 0.003	0.807 ± 0.558	1.934 ± 0.017
NT-W-6	0.744 ± 0.128	4.693 ± 0.176	0.950 ± 0.157
NT-W-7	2.618 ± 0.181	3.250 ± 0.179	0.266 ± 0.018
NT-W-8	0.872 ± 0.050	2.756 ± 0.343	0.796 ± 0.048
NT-W-9	0.384 ± 0.011	3.531 ± 0.254	1.808 ± 0.053
NT-W-10	0.517 ± 0.021	3.956 ± 0.277	1.343 ± 0.053
ST-W-1	0.534 ± 0.066	1.520 ± 0.785	1.313 ± 0.172
ST-W-2	0.569 ± 0.005	7.681 ± 0.146	1.218 ± 0.011
ST-W-3	0.922 ± 0.084	12.902 ± 0.415	0.752 ± 0.014
ST-W-4	1.300 ± 0.010	4.807 ± 0.113	0.533 ± 0.004
ST-W-5	0.616 ± 0.003	5.762 ± 0.156	1.125 ± 0.005
ST-W-6	1.245 ± 0.071	4.379 ± 0.061	0.557 ± 0.062
ST-W-7	0.553 ± 0.014	4.881 ± 0.124	1.254 ± 0.032
ST-W-8	1.384 ± 0.078	2.754 ± 0.143	0.502 ± 0.028
ST-W-9	1.288 ± 0.078	4.145 ± 0.355	0.540 ± 0.033
ST-W-10	0.976 ± 0.077	4.041 ± 0.234	0.713 ± 0.057

Table 4. Efficiency of qPCR assays retrieved from standard curves.

qPCR assay	Efficiency (%)	R ²	Limit of quantification (copy number)
rDNA	97.470	0.996	24.280
tetW	99.050	0.998	23.400
tetB	97.390	0.998	27.710