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Abstract: An inventory management problem is addressed for a make-to-order supply chain that
has inventory holding and/or manufacturing locations at each node. The lead times between
nodes and production capacity limits are heterogeneous across the network. This study focuses
on a single product, a multi-period centralized system in which a retailer is subject to an uncertain
stationary consumer demand at each time period. Two sales scenarios are considered for any
unfulfilled demand: backlogging or lost sales. The daily inventory replenishment requests from
immediate suppliers throughout the network are modeled and optimized using three different
approaches: (1) deterministic linear programming, (2) multi-stage stochastic linear programming,
and (3) reinforcement learning. The performance of the three methods is compared and contrasted
in terms of profit (reward), service level, and inventory profiles throughout the supply chain. The
proposed optimization strategies are tested in a stochastic simulation environment that was built
upon the open-source OR-Gym Python package. The results indicate that, of the three approaches,
stochastic modeling yields the largest increase in profit, whereas reinforcement learning creates more
balanced inventory policies that would potentially respond well to network disruptions. Furthermore,
deterministic models perform well in determining dynamic reorder policies that are comparable to
reinforcement learning in terms of their profitability.

Keywords: inventory management; supply chain; multi-echelon; stochastic programming; reinforce-
ment learning

1. Introduction

Modern supply chains are complex systems that interconnect the globe. Efficient
supply chains are able to control costs and ensure delivery to customers with minimal
delays and interruptions. Inventory management is a key component in achieving these
goals. Higher inventory levels allow for suppliers to maintain better customer service
levels, but they come at a higher cost, which often gets passed on to their customers and,
ultimately, to the end consumers. This is particularly the case for perishable items that
have a limited shelf life and can go to waste if the inventory exceeds demand. Thus,
every participant in the supply chain has an incentive to find the appropriate balance in
inventory levels to maximize profitability and maintain market competitiveness. Efficient
supply chains are able to coordinate material flows amongst its different stages to avoid the
“bullwhip effect”, whereby over corrections can lead to a cascading rise or fall in inventory,
having a detrimental impact on the supply chain costs and performance [1].

Extensive literature exists in supply chain and inventory management. Relevant
review papers in the area of inventory optimization include those of Eruguz et al. [2] and
Simchi-Levi and Zhao [3]. The inventory management problem (IMP) that is presented in
this work is built upon the problem structure presented in Glasserman and Tayur [4], which
presents a single-product, multi-period, serial capacitated supply chain with production and
inventory holding locations at each echelon. In their work, Glasserman and Tayur [4] use
infinitesimal perturbation analysis (IPA) in order to determine optimal base stock levels in
an order-up-to policy by optimizing over a sample path of the system.
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Other approaches for solving the IMP have been reported in the literature. Chu et al. [5]
use agent-based simulation-optimization on a multi-echelon system with an (r, Q) inven-
tory policy. Expectations are determined via Monte Carlo simulation. Improvements are
only accepted after passing a hypothesis test to mitigate the effect of noise on the improve-
ment. Two-stage stochastic programming (2SSP) is used to optimize small supply chains
in the works by Dillon et al. [6], Fattahi et al. [7], and Pauls-Worm et al. [8]. The studied
supply chains are either single or two-echelon chains with centralized or decentralized
configurations, a single perishable or unperishable product, and (r, S) or (s, S) policies.
Zahiri et al. [9] present a multi-stage stochastic program (MSSP) for a four-level blood
supply network with uncertain donation and demand. The model is reformulated and
solved while using a hybrid multi-objective meta-heuristic. Bertsimas and Thiele [10] apply
robust optimization to both uncapacitated and capacitated IMP. However, production
capacity is not explicitly included. Their models are solved with linear programming (LP)
or mixed-integer linear programming (MILP), depending on the usage of fixed costs. The
reader is referred to Govindan and Cheng [11] for a review of robust optimization and
stochastic programming approaches to supply chain planning.

Additionally, there have been a number of efforts to optimize multi-echelon supply
chain problems via dynamic programming (DP). A neuro-dynamic programming approach
was developed by Roy et al. [12] in order to solve a two-stage inventory optimization
problem under demand uncertainty to reduce costs by 10% over the benchmarked heuris-
tics. Kleywegt et al. [13] formulate a vendor managed inventory routing problem as a
Markov Decision Process (MDP) and develop an approximate dynamic programming
(ADP) method to solve it. Topaloglu and Kunnumkal [14] develop a Lagrangian relaxation-
based ADP to a single-product, multi-site system to manage inventory for the network
that outperforms a linear programming method used in the benchmark. Kunnumkal and
Topaloglu [15] use ADP to develop stochastic approximation methods to compute optimal
base-stock levels across three varieties of inventory management problems: a multi-period
news vendor problem with backlogs and lost sales, and an inventory purchasing prob-
lem with uncertain pricing. Cimen and Kirkbride [16] apply ADP to a multi-factory and
multi-product inventory management problem with process flexibility. They find that, in
most scenarios, the ADP approach finds a policy within 1% of the optimal DP solution in
approximately 25% of the time. Additional resources on supply chain management with
DP and ADP is provided by Sarimveis et al. [17].

Reinforcement learning has also been applied to IMPs in recent years. Mortazavi et al. [18]
use Q-learning for a four-echelon IMP with a 12 week cycle and non-stationary demand.
Oroojlooyjadid et al. [19] train a Deep Q-Network in order to play the Beer Game—a classic
example of a multi-echelon IMP—and achieve near optimal results. Kara and Dogan [20]
use Q-learning and SARSA to learn stock-based replenishment policies for an IMP with
perishable goods. Sultana et al. [21] use a hierarchical RL model to learn re-order policies
for a two-level multi-product IMP with a warehouse and three retailers.

We extend the problem in Glasserman and Tayur [4] to general supply networks
with tree topologies. Our focus is not on finding optimal parameters for static inventory
policies, but rather to determine and compare different dynamic policy approaches to the
IMP. We build on the previous works in the literature by exploring the IMP while using
different approaches and discuss their relative merits and drawbacks. The approaches
studied include

1. A deterministic linear programming model (DLP) that uses either the rolling horizon
or shrinking horizon technique in order to determine optimal re-order quantities for
each time period at each node in the supply network. Customer demand is modeled
at its expectation value throughout the rolling/shrinking horizon time window.

2. A multi-stage stochastic program (MSSP) with a simplified scenario tree, as described
in Section 2.7. Shrinking and rolling horizon for the MSSP model are both imple-
mented to decide the reorder quantity at each time period.
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3. A reinforcement learning model (RL) that makes re-order decisions based on the
current state of the entire network.

We build off of the work of Hubbs et al. [22] by extending the IMPs presented therein
in order to address multi-echelon problems with multiple suppliers at each echelon, and
contribute new environments to the open-source OR-Gym project (See https://www.github.
com/hubbs5/or-gym). The intial version of the IMP in the OR-Gym project was limited to
serial multi-echelon systems and it did not include multi-stage stochastic programming
models for reorder policy optimization. The library was thus generalized in order to
simulate and optimize supply networks with tree topologies under uncertain demand,
while using the dynamic reorder policies mentioned above.

2. Materials and Methods
2.1. Problem Statement

In this work, we focus on the multi-echelon, multi-period, single-product, and single-
market inventory management problem (IMP) in a make-to-order supply network with
uncertain stationary demand. The base case supply network has a tree topology with four
echelons, as shown in Figure 1. The different sets that are used for the nodes in the base
case network are designated in the figure’s legend (raw material, Jraw; main, J; retail, Jretail ;
distributor, Jdist; producer, Jprod; and, market nodes, Jmarket).

8

6

1 0

2

3

7

5

4

Sets

   Jraw = {7,8}

   J = {1,2,3,4,5,6}

   Jretail = {1}

   Jdist = {2,3}

   Jprod = {4,5,6}

   Jmarket = {0}

Figure 1. Supply Chain Network Schematic.

2.2. Sequence of Events

The sequence of events in each period of the IMP simulation environment occurs,
as follows,

1. Main network nodes (retailer, distributors, and producers) place replenishment orders
to their respective suppliers. Replenishment orders are filled according to available
production capacity and available feedstock inventory at the respective suppliers.
The supply network is assumed to be centralized, such that replenishment orders
never exceed what can be provided by the suppliers to each node.

2. The main network nodes receive incoming feedstock inventory replenishment ship-
ments that have made it down the product pipeline (after the associated lead times
have transpired). The lead times between stages include both production times and
transportation times.

3. Single-product customer demand occurs at the retail node and it is filled according to
the available inventory at that stage.

https://www.github.com/hubbs5/or-gym
https://www.github.com/hubbs5/or-gym
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4. One of the following occurs at the retailer node,

(a) Unfulfilled sales are backlogged at a penalty. Backlogged sales take priority in
the following period.

(b) Unfulfilled sales are lost and a goodwill loss penalty is levied.

5. Surplus inventory is held at each node at a holding cost. Inventory holding capacity
limits are not included in the present formulation, but they can be easily added to
the model, if needed. The IMP that is presented here is capacitated in the sense that
manufacturing at production nodes is limited by both the production capacity and the
availability of feedstock inventory at each node. Because the supply network operates
as a make-to-order system, only feedstock inventories are held at the nodes. All of the
product inventory is immediately shipped to the downstream nodes upon request,
becoming feedstock inventory to those nodes (or simply inventory if the downstream
node is a distributor/retailer). A holding (e.g., transportation) cost is also placed on
any pipeline inventory (in-transit inventory).

6. Any inventory remaining at the end of the last period (period 30 in the base case) is
lost, which means that it has no salvage value.

2.3. Key Variables

Table 1 describes the main variables used in the IMP model. All of the key variables
are continuous and non-negative.

Table 1. Main variables in the inventory management problem (IMP) Model.

Variable Description

at,j,k The reorder quantity requested to supplier node j by node k at the beginning of period t
(the amount of material sent from node j to node k)

Sd
t,j,k The amount retailer j sells to market k in period t− 1. Note: Retail sales are indexed at the

next period since these occur after demand in the current period is realized.
So

t,j The on-hand inventory at node j just prior to when the demand is realized in period t.
Sp

t,j,k The in-transit (pipeline) inventory between node j and node k just prior to when the demand
is realized in period t.

ut,j,k The unfulfilled demand at retailer j associated with market k in period t− 1. Note: indexing is
also shifted since any unfulfilled demand occurs after the uncertain demand is realized.

Rt,j The profit (reward) in node j for period t.

2.4. Objective Function

The objective of the IMP optimization is to maximize the time-averaged expected profit
of the supply network (R, Equation (1)). The uncertain parameter vector that is associated
with the demand in period t is given by ξt . A specific realization of the uncertain parameter
is denoted with ξt. The sequence of uncertain parameters from period t through t′ is
represented with ξ[t,t′], with ξ[t,t] being a specific realization of that sequence (note: ξ[1,1]
refers to stage 1, which is deterministic). The present formulation assumes a single retailer–
market link with a single demand in each period. The profit in each period is the sum of
the profits in the main network nodes (R1 = ∑j∈J R1,j and Rt = ∑j∈J Rt,j(ξt) ∀t ∈ T). The
main network nodes include the production/manufacturing, distribution, and retail nodes.

max R =
1
|T| ·

(
R1 +Eξ[2,|T|] |ξ[1,1]

[max R2(ξ2) + ... +Eξ[|T|,|T|] |ξ[1,|T|−1]
[max R|T|(ξ|T|)]]

)
(1)

2.5. IMP Model

The dynamics of the IMP under demand uncertainty are modeled as a Linear Pro-
gramming (LP) problem using the linear algebraic constraints that are given below.

2.5.1. Network Profit

The profit in period t at node j (Rt,j, Equations (2a) and (2b)) is obtained by subtracting
procurement costs (PCt,j, Equations (4a) and (4b)), operating costs (OCt,j, Equations (5a)
and (5b)), unfulfilled demand penalties (UPt,j, Equation (6)), and inventory holding costs
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(HCt,j, Equations (7a) and (7b)) from the sales revenue (SRt,j, and Equations (3a) and
(3c)). The operating costs refer to production costs and, hence, do not apply to distribution
nodes, as no manufacturing occurs at these nodes. There is also no unfulfilled demand at
non-retail nodes, as all inter-network requests must be feasible.

In the equations shown below, the parameters pj,k, bj,k, and gk,j refer to the material
unit price, the unfulfilled unit demand penalty, and the unit material pipeline holding cost
(transportation cost) for the link going from node j to node k, respectively. oj, νj, and hj
refer to the unit operating cost, production yield (0 to 1 range), and on-hand inventory
holding cost at node j, respectively. The sets Jin

j and Jout
j are the sets of predecessors and

successors to node j, respectively.

R1,j = SR1,j − PC1,j −OC1,j −UP1,j − HC1,j ∀j ∈ J (2a)

Rt,j(ξt) = SRt,j(ξt)− PCt,j(ξt)−OCt,j(ξt)−UPt,j(ξt)− HCt,j(ξt) ∀t ∈ {2, ..., |T|}, j ∈ J (2b)

SR1,j = ∑
k∈Jout

i

pj,k · a1,j,k ∀j ∈ Jprod ∪ Jdist (3a)

SRt,j(ξt) = ∑
k∈Jout

i

pj,k · at,j,k(ξt) ∀t ∈ {2, ..., |T|}, j ∈ Jprod ∪ Jdist (3b)

SRt,j(ξt) = ∑
k∈Jout

i

pj,k · Sd
t,j,k(ξt) ∀t ∈ {2, ..., |T|}, j ∈ Jretail (3c)

PC1,j = ∑
k∈Jin

i

pk,j · a1,k,j ∀j ∈ J (4a)

PCt,j(ξt) = ∑
k∈Jin

i

pk,j · at,k,j(ξt) ∀t ∈ {2, ..., |T|}, j ∈ J (4b)

OC1,j =
oj

νj
· ∑

k∈Jout
j

a1,j,k ∀j ∈ Jprod (5a)

OCt,j(ξt) =
oj

νj
· ∑

k∈Jout
i

at,j,k(ξt) ∀t ∈ {2, ..., |T|}, j ∈ Jprod (5b)

UPt,j(ξt) = ∑
k∈Jout

j

bj,k · ut,j,k(ξt) ∀t ∈ {2, ..., |T|}, j ∈ Jretail (6)

HC1,j = hj · So
1,j + ∑

k∈Jin
j

gk,j · S
p
1,k,j ∀j ∈ J (7a)

HCt,j(ξt) = hj · So
t,j(ξt) + ∑

k∈Jin
j

gk,j · S
p
t,k,j(ξt) ∀t ∈ {2, ..., |T|}, j ∈ J (7b)

2.5.2. Inventory Balances

The on-hand inventory at each node is updated while using material balances that
account for incoming and outgoing material, as shown in Equations (8a)–(9c). The inventory
levels at each node are updated by adding any incoming inventory and subtracting any
outgoing inventory to the previously recorded inventory levels at the respective nodes. The
parameter So

0,j is the initial inventory at node j. The variable a′t,k,j is the pipeline inventory
that arrives at node j from node k in period t (Equation (10)). Outgoing inventory is the
inventory that is transferred to downstream nodes, at,j,k, or sold to the market at the retailer
node, Sd

t,j,k. At production nodes, the sales quantities are adjusted for production yields
(νj). For distribution nodes, νj is set to 1.
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So
1,j = So

0,j + ∑
k∈Jin

j

a′1,k,j −
1
νj
· ∑

k∈Jout
j

a1,j,k ∀j ∈ Jprod ∪ Jdist (8a)

So
2,j(ξ2) = So

1,j + ∑
k∈Jin

j

a′2,k,j −
1
νj
· ∑

k∈Jout
j

a2,j,k(ξ2) ∀j ∈ Jprod ∪ Jdist (8b)

So
t,j(ξt) = So

t−1,j(ξt−1) + ∑k∈Jin
j

a′t,k,j −
1
νj
·∑k∈Jout

j
at,j,k(ξt) t ∈ {3, ..., |T|}∀j ∈ Jprod ∪ Jdist (8c)

So
1,j = So

0,j + ∑
k∈Jin

j

a′1,k,j ∀j ∈ Jretail (9a)

So
2,j(ξ2) = So

1,j + ∑
k∈Jin

j

a′2,k,j − ∑
k∈Jout

j

Sd
2,j,k(ξ2) ∀j ∈ Jretail (9b)

So
t,j(ξt) = So

t−1,j(ξt−1) + ∑
k∈Jin

j

a′t,k,j − ∑
k∈Jout

j

Sd
t,j,k(ξt) ∀t ∈ {3, ..., |T|}, j ∈ Jretail (9c)

a′t,k,j =


0, if t− Lk,j < 1
a1,k,j, if t− Lk,j = 1
at−Lk,j ,k,j(ξt−Lk,j), if t− Lk,j > 1

∀t ∈ T, j ∈ Jretail , k ∈ Jin
j (10)

Equations (11a)–(11c) provide the pipeline inventory balances at each arc. Once again,
inventories are updated by deducting delivered inventory downstream and adding new
inventory requests to the previously recorded pipeline inventory levels. It is assumed that,
at t = 0, there is no inventory in the pipeline.

Sp
1,k,j = −a′1,k,j + a1,k,j ∀j ∈ J, k ∈ Jin

j (11a)

Sp
2,k,j(ξ2) = Sp

1,k,j − a′2,k,j + a2,k,j(ξ2) ∀j ∈ J, k ∈ Jin
j (11b)

Sp
t,k,j(ξt) = Sp

t−1,k,j(ξt−1)− a′t,k,j + at,k,j(ξt) ∀t ∈ {3, ..., |T|}, j ∈ J, k ∈ Jin
j (11c)

2.5.3. Inventory Requests

Upper bounds on the replenishment orders are set, depending on the type of node. For
the production nodes, downstream replenishment requests are limited by the production
capacity, cj, as given in Equations (12a) and (12b). The requests are also limited by the
available feedstock inventory at the production nodes that is transformed into products
with a yield of νj, as stated in Equations (13a) and (13b). Because distribution-only nodes
do not have manufacturing areas, the upper bounds on any downstream replenishment
requests are set by the available inventory at the distribution nodes, which is equivalent to
setting νj to 1 in Equations (13a) and (13b). These sets of constraints ensure that the reorder
quantities are always feasible, which means that the quantities requested are quantities
that can be sold and shipped in the current period.

∑
k∈Jout

j

a1,j,k ≤ cj ∀j ∈ Jprod (12a)

∑
k∈Jout

j

at,j,k(ξt) ≤ cj ∀t ∈ {2, ..., |T|}, j ∈ Jprod (12b)

∑
k∈Jout

j

a1,j,k ≤ So
1,j · νj ∀j ∈ Jprod ∪ Jdist (13a)
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∑
k∈Jout

j

at,j,k(ξt) ≤ So
t,j(ξt) · νj ∀t ∈ {2, ..., |T|}, j ∈ Jprod ∪ Jdist (13b)

2.5.4. Market Sales

The retailer node sells up to its available on-hand inventory in each period when the
demand is realized, as given in Equations (14a) and (14b). This includes the start-of-period
inventory plus any reorder quantities that arrive at the beginning of the period (before
the markets open). Sales at the retailer nodes do not exceed the market demand, dt,j,k(ξt),
as shown in Equation (15a). If backlogging is allowed, then any previous backlogged
orders are added to the market demand, as shown in Equation (15b). If unfulfilled orders
are counted as lost sales, then u is removed from Equation (15b).

∑
k∈Jout

j

Sd
2,j,k(ξ2) ≤ So

1,j ∀j ∈ Jretail (14a)

∑
k∈Jout

j

Sd
t,j,k(ξt) ≤ So

t−1,j(ξt−1) ∀t ∈ {3, ..., |T|}, j ∈ Jretail (14b)

Sd
2,j,k(ξ2) ≤ d2,j,k(ξ2) ∀j ∈ Jretail , k ∈ Jout

j (15a)

Sd
t,j,k(ξt) ≤ dt,j,k(ξt) + ut−1,j,k(ξt−1) ∀t ∈ {3, ..., |T|}, j ∈ Jretail , k ∈ Jout

j (15b)

Unfulfilled demand at the retailer is the difference between the market demand and
the actual retail sale in the current period (Equations (16a) and (16b). If the network
operates under the lost sales mode, then the u term in the right-hand side of Equation (16b)
is removed.

u2,j,k(ξ2) = d2,j,k(ξ2)− Sd
2,j,k(ξ2) ∀j ∈ Jretail , k ∈ Jmarket

j (16a)

ut,j,k(ξt) = dt,j,k(ξt) + ut−1,j,k(ξt−1)− Sd
t,j,k(ξt) ∀t ∈ {3, ..., |T|}, j ∈ Jretail , k ∈ Jmarket

j
(16b)

2.5.5. Variable Domains

R1,j ∈ R1 ∀j ∈ J (17a)

Rt,j(ξt) ∈ R ∀t ∈ {2, ..., |T|}, j ∈ J (17b)

So
1,j ≥ 0 ∀j ∈ J (18a)

So
t,j(ξt) ≥ 0 ∀t ∈ {2, ..., |T|}, j ∈ J (18b)

a1,k,j, Sp
1,k,j ≥ 0 ∀j ∈ J, k ∈ Jin

j (19a)

at,k,j(ξt), Sp
t,k,j(ξt) ≥ 0 ∀t ∈ {2, ..., |T|}, j ∈ J, k ∈ Jin

j (19b)

Sd
t,j,k(ξt), ut,j,k(ξt) ≥ 0 ∀t ∈ {2, ..., |T|}, j ∈ Jretail , k ∈ Jout

j (20)

2.6. Scenario Tree for Multistage Stochastic Programming

Equations (1)–(20) describe a multistage stochastic inventory management problem.
In principle, continuous or discrete probability distributions can be used to model the uncertain
demands in the stochastic process (ξ1, ξ2, . . . , ξt, . . . , ξ|T|). However, in most applications, a
scenario-based approach is assumed for ease of computation, i.e., there are a finite number
of realizations of the uncertain parameter. For illustration purposes, Figure 2 shows a
scenario tree that corresponds to a three-stage stochastic programming problem. At stage
one, the decision-maker does not know the realizations of the uncertain parameters in
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the future time periods. At stage two, there are two different realizations of the uncertain
parameters. The decision-maker can take different actions, depending on the realization
of the uncertainty at stage two. For each realization at stage two, there are two different
realizations at stage three. Therefore, the scenario tree that is presented in Figure 2 has four
scenarios in total.

It is easy to observe that the number of scenarios grows exponentially with respect
to the number of stages. For example, in the IMP, if we consider three realizations of
the demand per stage, the total number of scenarios will be 329 for a 30 period problem.
Moreover, a Poisson distribution is assumed for the distribution of the demand. In principle,
there is an infinite number of realizations per stage. We introduce an approximation of the
multistage stochastic programming problem in the next subsection in order to reduce the
computational complexity.

Stage t=1

Stage t=2

Stage t=3

Scenarios: ω! ω" ω# ω$

Figure 2. The scenario tree for a three-stage stochastic program with two realizations per stage.

2.7. Approximation for the Multistage Scenario Tree

In order to make the multistage stochastic IMP tractable, we make the following
two simplifications.

First, the Poisson(λ) distribution (as shown in Equation (21)) is approximated by a
discrete distribution with three realizations.

p(x = k) =
λke−λ

k!
(21)

Note that the mean and variance of Poisson (λ) are both λ. The values of the three real-
izations are chosen to be λ− d

√
λe, λ, λ + d

√
λe. The probabilities of the three realizations

are chosen, such that the Wasserstein-1 distance to the original Poisson(λ) is minimized.
In other words, for all k = 1, 2, . . . , ∞, the probability of x = k in Poisson (λ) is assigned
to the realization of the new distribution that is closest to k. The probabilities for this new
distribution are given in Equations (22a)–(22c).

p(x = λ− d
√

λe) =
λ−d

√
λ

2 e

∑
k=1

λke−λ

k!
(22a)

p(x = λ) =
λ+d

√
λ

2 e−1

∑
k=λ−d

√
λ

2 e+1

λke−λ

k!
(22b)

p(x = λ + d
√

λe) =
+∞

∑
k=λ+d

√
λ

2 e

λke−λ

k!
(22c)

This scenario generation approach, where the values of the realizations are fixed and
the probabilities of each realization are chosen to minimize the Wasserstein-1 distance
between the probability distribution of the scenario tree from the “true distribution”, has
been reported in [23].

Second, even with three realizations per stage, the number of scenarios for T = 30
becomes 329. Because the decisions in the later periods have a smaller impact on the
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decisions here-and-now, we only consider three realizations per stage until stage 6. After
stage 6, the demands are assumed to be deterministic and they take the mean value λ.

With these two simplifications, Figure 3 shows the scenario tree for the approximate
multistage stochastic IMP. The size of the scenario tree grows exponentially until stage 6
and it only grows linearly after stage 6. In total, 35 = 243 scenarios are considered. With
slight abuse of notation, we still denote the problem that is shown in Figure 3 as MSSP.

Stage t=1, 1 realization

Stage t=2 , 3 realizations

……

.

.

.

.

Stage t=7 , 243 realizations

Stage t=6 , 243 realizations

……

…………………………………………………

Stage t=T , 243 realizations ……

.

.

.

.
…………………………………………………

Figure 3. An approximation of the multistage stochastic program.

2.8. Perfect Information and Deterministic Model

We benchmark the MSSP model with a perfection information model and a determinis-
tic model. In the perfect information model, it is assumed that the demand realizations from
t = 1 to t = T are known beforehand. Equation (1) reduces to Equation (23) in a perfect
information model, where we assume that we know the realization of (ξ2, . . . , ξt, . . . , ξ|T|)
and optimize over this given realization.

max R(ξ) = max
1
|T| ·

R1 + ∑
t∈{2,...,|T|}

Rt(ξt)

 (23)

In the deterministic model (DLP), we optimize over the expected value of ξt, which is
denoted as ξ̄t. This means that the demand is assumed to be λ (the mean of the Poisson
distribution) for all periods.

2.9. Reinforcement Learning Model

Reinforcement learning (RL) is a machine learning method whereby an agent learns to
maximize a reward via interactions with an environment. The feedback the agent receives
from the reward allows it to learn a policy, which is a function that directs the agent at each
step throughout the environment. Because of the data-intensive and interactive nature
of RL, agents are typically trained by interacting with Monte Carlo simulations to make
decisions at each time step.

To this end, we formulate the IMP as a Markov Decision Process (MDP)—a stochastic,
sequential decision making problem. At each time period t, the agent observes the current
state of the system (St), and then selects an action (at) that is passed to the system. The
simulation then advances to the next state (St+1) based on the realization of the random
variables and the selected action, and it returns the associated reward (Rt), which is simply
the profit function that is given in Equation (2a) summed over all nodes j (Rt = ∑j∈J Rt,j).

The state consists of a vector with entries for the current demand at the retail node,
the inventory levels at each node in the network, and the inventory in the pipeline along
every edge in the network. In terms of the model notation from the previous subsection,
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St = {dt,j,k, So
t,j, Sp

t,k′ ,j|j ∈ J, k ∈ Jout
j , k′ ∈ Jin

j }. The action at each period is a vector with all

of the reorder quantities in the network (at = {at,k,j|j ∈ J, k ∈ Jin
j }).

In this work, we rely on the Proximal Policy Optimization (PPO), as described in
Schulman et al. [24]. This has become a popular algorithm in the RL community, because it
frequently exhibits stable learning characteristics. PPO is an actor-critic method that uses
two neural networks that interact with one another. The actor is parameterized by θπ and
it learns the policy, while the critic is parameterized by θv and it learns the value function.
The policy the actor learns is probabalistic in nature and yields a probability distribution
over actions during each forward pass. For our IMP, the action space consists of re-order
values for each node in the network. These are discrete values that range from 0 to the
maximum order quantity at each individual node. If the actor chooses an action that is
greater than the quantity that can be supplied – for example, if the maximum re-order
quantity is 100, but only 90 units are available – then the minimum of these two values will
be supplied.

The critic learns the value function, which allows it to estimate the sum of the dis-
counted, future rewards available at each state. The difference between the actual rewards
and the estimated rewards supplied by the critic is known as the temporal difference er-
ror (TD-error, or δT). This difference is summed and discounted in order to provide the
advantage estimation of the state, Âk, as given in Equation (24),

Âk =
t

∑
T=1

γt−T+1δT (24)

where γ is the discount factor used to prioritize current rewards over future rewards. This
value is then used in the loss function, L(θ), whereby the paramaters of the networks
are updated while using stochastic gradient descent to minimize the loss function. PPO
has shown to be effective in numerous domains, exhibiting stable learning features, as
discussed in Schulman et al. [24]. PPO achieves this by penalizing large policy updates
by optimizing a conservative loss function given by Equation (25), where rk(θ) is the
probability ratio between the new policy πk(θ) and the previous policy, πk−1(θ). Here,
we use k to denote each policy iteration, since the parameters have been initialized. The
clip function reduces the incentive for moving rk(θ) outside the interval [1− ε, 1 + ε]. The
hyperparameter ε limits the update of the policy, such that the probability of outputs does not
change more than ±ε at each update. For more detail, see the work by Schulman et al. [24].

L(θ) = min
(
rk(θ)Âk, clip

(
rk(θ), 1− ε, 1 + ε

)
Âk
)

(25)

In the present work, we rely on the implementation of the PPO algorithm found in
the Ray package [25]. A two-layer, 256-node feed-forward network is trained with over
70,000 episodes—simulated 30-day periods, whereby the agent learns to maximize the
expected reward by interacting with the environment. Given that this is a model-free
approach, the agent must learn through this trial-and-error approach. The initial policy
consists of randomly initialized weights and biases, so the output actions are on par with
random decisions. After each episode, the results are collected and the weights and biases
are updated in order to minimize the loss function according to the PPO algorithm, as
discussed in Section 2.9. As one would expect, this initial policy performs poorly, with the
agent losing roughly $300 per episode. However, as shown in the training curve presented
in Figure 4, the agent is able to improve on the policy with additional experience and learn
a very effective policy to control the inventory across the network.
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Figure 4. Training curve for the reinforcement learning (RL) model.

2.10. Case Study

A 30-period system is used for the case study in order to represent one month’s worth
of inventory management in a supply network. A time step of one day is used, such that
demand is received on a daily basis. Figure 5 depicts the network structure of the base case
system used. Major parameters and their values are included in the figure. Parameters that
are next to nodes are specific to the node (initial state or on-hand inventory, S0; unit holding
costs, h; unit operating costs, o; production yield ν; and, production capacity, c), whereas
those next to links are specific to that link (unit sales price, p; unfulfilled unit demand
penalty, b; market demand distribution, d; unit pipeline holding costs, g; and, lead times, L).
Node and link subscripts in the schematic are dropped for clarity. In order to compare the
performance of the three modeling approaches (DLP, MSSP, and RL), 100 unique sample
paths were generated. Each sample path consists of 30 demand realizations, one for each
period in the simulation horizon, sampled from a Poisson distribution with a mean of 20.

The execution of the 100 simulations follows the sequence of events for each time
period that is described in Section 2.2. At the beginning of each period and prior to Step 1
in the event sequence, each optimization model is called to obtain the reorder quantities for
each node in that period. The models have no knowledge of the demand realizations that
will occur in the current and future periods, but they can rely on the variables/states from
previous periods. The reorder quantities for the current period obtained by the models are
then passed as the actions in Step 1 of the sequence of events. Subsequently, the subsequent
events for that period unfold, with the demand realization for that given period being
taken from the respective sample path that is assigned to that simulation instance. The
process is repeated for the next period, re-solving the models at the beginning of each time
period, until the 30 periods are complete.

The three modeling approaches are benchmarked against a perfect information model
(also referred to as the Oracle). 10-period windows are used for the rolling horizon (RH)
modes in the DLP and MSSP models. However, towards the end of the simulation, the RH
becomes a shrinking horizon (SH), since the window does not roll past period 30.
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Figure 5. Supply Chain Network Schematic with Network Parameters used in the Case Study.

3. Results

The DLP and MSSP models were solved while using Gurobi (version 9.1). The DLP
models are quite small, with the largest one being the DLP-SH solved at t = 1 in the
simulations (1231 constraints and 1291 variables). The DLP-RH with a 10-period window
size has 411 constraints and 431 variables. The shrinking and rolling horizon DLP models
both have CPU solve times that are below 0.3 s on average. The largest MSSP model solved is
the MSSP-SH solved at t = 1 (263,958 constraints and 299,941 variables), which has an average
CPU solve time of 119 s. The MSSP-RH with a 10-period window size has 64,698 constraints
and 71,521 variables. The average CPU time to solve the MSSP-RH model is 12 s.

Table 2 summarizes the performance results from each solution method. Figure 6
shows the total inventory profiles at each node for the lost sales case. The total inventory
includes both on-hand inventory and pipeline inventory incoming from a node’s suppliers.
Similar results (not shown) were observed for the backlogging case. Figures 7 and 8 show
sample network flow plots for the RL and MSSP-RH models, respectively. The cumulative
network flow plots for both DLP instances and MSSP-SH are not shown as they are similar
to that of MSSP-RH. The edge thickness is proportional to the average total amount of
material requested through that link. These network flows indicate the suppliers that are
prioritized by the different model policies. Figure 9 shows the average unfulfilled market
demand at the retailer node (lost sales), which gives an indication of the service levels of
the supply network. A similar result is obtained for the backlogging case.

Table 2. Total reward comparison for the various models used to solve the IMP. Performance Ratio
is defined as the ratio of the final cumulative profit of the perfect information model to that of
the model used. DLP = Deterministic linear program; MSSP = Multi-stage stochastic program;
RL = Reinforcement Learning; RH = rolling horizon; SH = shrinking horizon; Oracle = perfect
information LP.

DLP-RH DLP-SH MSSP-RH MSSP-SH RL Oracle

Backlog
Mean Profit 791.6 825.3 802.7 847.7 737.2 861.3

Standard Deviation 52.5 37.0 56.3 49.4 24.8 56.4
Performance Ratio 1.09 1.04 1.07 1.02 1.17 1.00

Lost Sales
Mean Profit 735.8 786.9 790.6 830.6 757.8 854.9

Standard Deviation 31.2 30.8 47.8 37.7 33.1 49.9
Performance Ratio 1.16 1.09 1.08 1.03 1.13 1.00
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Figure 6. Average total inventory at each main network node (lost sales mode). Shaded areas denote ±1 standard deviation
of the mean value.

Figure 7. Average network flow with the RL policy (lost sales mode). Total flow is proportional to
the edge thickness.
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Figure 8. Average network flow with the MSSP-RH policy (lost sales mode). Total flow is proportional
to the edge thickness.

Figure 9. Average unfulfilled demands at the retailer node (lost sales mode).

4. Discussion

The results shown in Table 2 indicate that the rolling horizon DLP model outperforms
the RL model when backlog is included, but it is outperformed by the latter when unful-
filled demands become lost sales. When backlogging is allowed, unfulfilled demand can
be satisfied at a later period with a penalty, which reduces the need for high service levels.
However, the service levels become more important in the lost sales case, where, not only
is a goodwill penalty assessed, but potential profit from the sales is lost. Because the RL
does a better job at maintaining on-hand inventories it displays the higher service levels
shown in Figure 9 and superior performance in the lost sales case. It should be noted that
the differences between the two approaches are rather small (7% and 3%, respectively),
and within 15% of the perfect information model.

As expected, the shrinking horizon DLP exhibits superior performance relative to its
rolling horizon counterpart, because it looks further ahead in time during the optimization.
In the rolling horizon approach, the short-sighted model tends to drop inventory levels
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at the top tier suppliers (nodes 4–6) sooner in an attempt to reduce the inventory holding
costs towards the end of the optimization window. However, since the simulation horizon
extends beyond the 10-period optimization window, that inventory ends up accumulating
in the medium tier suppliers (nodes 2–3), driving up holding costs overall. From a service
level standpoint, the shrinking horizon DLP maintains higher inventory levels at the retailer
than its rolling horizon counterpart, allowing it to achieve higher service levels (see Figure 9).
However, it is interesting to note that the opposite is observed in the MSSP model, which,
despite having a higher profit, has lower service levels in the shrinking horizon case (higher
unfulfilled demand). The greater profit is a result of the shrinking horizon reducing holding
costs by 13% overall, which has a greater impact on profit than the unfulfilled demand
penalties. Just at the retailer node, the holding cost to demand penalty ratio is 3:1, which
incentivizes the model to sacrifice some demand satisfaction to reduce the holding costs.
Overall, the MSSP model yields superior performance in all cases, coming in within 8% and
3% of the best possible outcome (Oracle), on average, for the rolling horizon and shrinking
horizon modes, respectively.

From an operational standpoint, the Oracle and shrinking horizon models prioritize
inventory flow to the retailer via nodes 5 and 2, which have a lower holding cost than
the alternatives as shown in the timing of inventory transfers in Figure 6 and the flow
patterns in Figure 8. The transportation cost for this path is 0.015, with a lead time of
14 days, whereas the other paths have transportation costs in the range 0.017–0.021, with
lead times in the 13–16 day range. Once inventory at node 5 is depleted, the other top
level suppliers (nodes 4 and 6) begin to send inventory downstream. On the other hand,
the rolling horizon models send inventory from all of the top level suppliers from the
start due to the myopic effects of the reduced optimization window. In general terms, the
inventory profiles that are shown in Figure 6 for the rolling horizon models are similar to
their shrinking horizon counterparts, except that the inventory changes are shifted to earlier
times. All of the mathematical programming models also take advantage of the fact that
the pipeline inventory costs are lower than holding costs at the supplier nodes. Therefore,
they trigger sending more inventory to node 3 from nodes 4 and 6 than is needed so as
to reduce costs. This additional inventory ends up accumulating in node 3 for the most
part, as it is cheaper to source the retailer from node 2 than node 3. Although the DLP and
MSSP models exhibit similar inventory profiles, the superiority of the MSSP model arises
from the fact that, unlike the DLP model, it accounts for uncertainty in the demand, which
enables it to target superior service levels and reduce holding costs.

In contrast to the mathematical programming models, the RL model avoids drastic
changes in the inventory positions, maintaining levels throughout the simulation. This
is supported not only by the inventory levels in Figure 6, but also by the flow pattern
shown in Figure 7, which indicate that, contrary to the mathematical programming models,
the RL model distributes requests more evenly amongst the suppliers of each node. This
conservative approach explains why the profits obtained with the RL model are lower
than those that were obtained by most of mathematical programming models. In practice,
the policy from the RL model is preferred as it reduces shocks to the inventory levels.
Furthermore, the RL policy manages the supply network with potentially greater resiliency
to disruptions as a result of the balanced load distribution within the network. Unlike
the other models that have virtually no flow between the raw material nodes to the
top tier suppliers and rely solely on the initial inventory at these nodes, the RL model
gradually replenishes inventories at the top tier nodes in order to avoid their depletion.
This conservative behavior of the RL is observed as a result of the PPO algorithm used,
which penalizes large policy changes.

A drawback from the current implementation of the supply network is that all of the
models exhibit end-of-simulation effects, in which the inventory drops to zero or near zero
at the end of the simulation to avoid excess holding costs. In a real application, this could
be avoided by imposing penalties on the models in order to avoid depleting inventories
near the end of the simulation, adding terminal inventory constraints (Lima et al. [26]), or
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running the models for longer simulation horizons, since most of the applications extend
beyond 30 periods. The latter option would not be viable for the stochastic programming
models as it would affect their tractability. Despite these limitations, the three approaches
show promise in obtaining dynamic reorder policies that improve the supply network
performance to within 3% to 15% of perfect information dynamic policies, which do not
exist in practice.

5. Conclusions

The present work extends to the open-source package OR-Gym for general single-
product, multi-period make-to-order supply networks with production and inventory
holding sites throughout the network. The work introduces additional tools for solving
inventory management problems within the OR-Gym framework (e.g. multi-stage stochas-
tic programming and rolling horizon implementations for deterministic and stochastic
models). The inventory management policies that are obtained via deterministic linear
programming, stochastic linear programming, and reinforcement learning are compared
and contrasted in the context of a four echelon supply network with uncertain stationary
demand. The results show that the stochastic model yields superior results in terms of
supply network profitability. However, the reinforcement learning model manages the
network in a way that is potentially more resilient to network disruptions, showing promise
in using AI for supply chain applications. Although deterministic linear models ignore the
stochastic nature of the supply network, they rapidly solve in fractions of a second, while
providing solutions that are comparable to the profitability of the reinforcement learning
policies. Extensions to this work may include studying the effects of non-stationary de-
mand on the models used and mitigating the end-of-simulation effects that have been
discussed previously.
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