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Abstract: This study deals with wave-induced unsteady pressure on a ship moving with a constant 

forward speed in regular head waves. Two different numerical methods are applied to solve wave–

ship interaction problems: a Rankine panel method which adopts velocity potential, and a Carte-

sian-grid method which solves the momentum and mass conservation equations under the assump-

tion of inviscid and incompressible fluids. Before comparing l1ocal pressure distributions, the com-

putational methods are validated for global quantities, such as ship motion responses and added 

resistance, by comparison with available experimental data. Then, the computational results and 

experimental data are compared for hydrodynamic pressure, particularly focusing on the magni-

tude of the first-harmonic component in different sections and vertical locations. Furthermore, the 

Cartesian-grid method is used to simulate the various wave-amplitude conditions, and the charac-

teristics of the zeroth-, first-, and second-harmonic components of wave-induced pressure are in-

vestigated. The nonlinearity of pressure distribution is observed mostly from the pressure near the 

still-water-level of the ship bow and the normalized first-harmonic component of wave-induced 

pressure decreases as the wave steepness increases. Lastly, to understand the local characteristics 

of wave-induced unsteady pressure, the time-averaged added pressure and added local force are 

analyzed. It is found that the major contribution of the time-averaged added local force that occurs 

around the ship stem above the design waterline. 

Keywords: unsteady hull pressure; seakeeping analysis; added resistance; Cartesian-grid method; 

Rankine panel method 

 

1. Introduction 

An estimation of seakeeping performances is one of the important procedures in safe 

ship design. Thanks to rapid progress in computing power, many numerical methods, 

such as potential flow solvers and computational fluid dynamics (CFD), have been ap-

plied to estimate a ship’s behavior in various environmental conditions [1–3]. In addition 

to motion responses, the added resistance of a ship due to waves also becomes an im-

portant topic to estimate a ship’s performance in waves [4–8]. However, those quantities 

are global or integrated values, rather than local or primitive physical values. Thus, the 

validation of local physical variables is essential to establish reliable numerical methods 

for the prediction of ship performance in waves. Furthermore, based on the observation 

of local flows, physical understanding of the flow around a ship in waves can be deep-

ened, and numerical methods can be improved. 
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In an experiment, it is relatively easy to measure hydrodynamic forces acting on a 

ship by a dynamometer, whereas the measurement of local variables, such as hydrody-

namic pressure and velocity distribution around a ship, requires laborious work. Tani-

zawa et al. [9] conducted an experimental study of a very large crude carrier (VLCC) 

model ship in various wave headings and wavelengths with 15 strain-gage type pressure 

sensors, and Kashiwagi et al. [10] compared the experimental data of pressure with the 

enhanced unified theory (EUT). Chiu et al. [11] carried out a series of experiments for a 

high-speed vessel in regular head waves with 25 strain-gage type pressure sensors, and 

proposed an algorithm for finding frequency response functions in third-order Volterra 

models, to simulate the variation of pressure responses in regular waves. Tiao [12] con-

ducted further investigations for irregular waves. 

Recently, Iwashita et al. [13] compared the unsteady pressure distribution on the Re-

search Initiative on Oceangoing Ships (RIOS) bulk carrier in head sea condition between 

Rankine panel method (RPM) and experiment, and Iwashita and Kashiwagi [14] con-

ducted further systematic experimental studies. In the experiment, more than 230 Fiber 

Bragg Gratings (FBG) sensors were attached on the starboard side of the ship hull and 

ordinary pressure sensors of strain-gage type were installed in the port side of the ship. 

The corresponding results were also computed by RPM and EUT, and the distribution of 

added pressure was extracted from the measured data to investigate the added resistance 

due to waves in more detail. 

Orihara et al. [15] conducted a numerical study about the added resistance in waves 

and studied the characteristics of time-averaged pressure on the ship surface for different 

bow shapes using a CFD code Wave vIScous flow Difference Accurate Method-X (WIS-

DAM-X). Sadat-Hosseini et al. [16] also studied the added resistance in waves, experimen-

tally and numerically, and they showed the distribution of harmonic force components 

on the ship for different wavelengths. They concluded that high pressure acting on the 

upper bow is a major contribution to the added resistance, and the size of the high-pres-

sure region correlates with the bow relative motion. Recently, Yang and Kim [17] investi-

gated the distribution pattern of time-averaged added pressure in short waves using a 

Cartesian-grid method. The effects of wave steepness were also investigated and one of 

the findings in that study is that the time-averaged added pressure shows a similar distri-

bution shape even for different wave steepness. 

Many studies compared unsteady pressure at a few points on the ship surface or only 

provided numerical results of pressure distribution. In the present work, the characteris-

tics of wave-induced unsteady pressure, which is one of the primitive physical values in 

hydrodynamics, on whole ship surface is studied by experimentally and numerically in-

cluding fully nonlinear computations. To solve wave–ship interaction problems, two dif-

ferent numerical methods are applied. The first one is a Rankine panel method, which is 

based on potential flows and linearized free-surface boundary value problems. The other 

one is a Cartesian-grid method that can simulate highly nonlinear free-surface flows. Be-

fore comparing local pressure distribution, global quantities—ship motion responses and 

added resistance due to waves—are validated with experimental data. Then, comparisons 

between computational results and experimental data have been made for the magnitude 

of the first-harmonic component of wave-induced pressure on different sections and var-

ious vertical locations. In addition to the small steepness wave case, different amplitudes 

of incident wave are studied using the Cartesian-grid method, and the characteristics of 

the zeroth-, first-, and second-harmonic components of wave-induced pressure have been 

examined. Finally, the time-averaged added pressure and added local force have been 

investigated, to understand the physical characteristics of added resistance of a ship in 

head waves. 
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2. Mathematical Backgrounds 

2.1. Cartesian-Grid Method 

Air, water, and solid phases are considered to solve ship motion problems in the pre-

sent Cartesian-grid method, called Seoul National University-Marine Hydrodynamics La-

boratory-Computational Fluid Dynamics, or SNU-MHL-CFD, ver. 2.0. The details of the 

Cartesian-grid method can be found in Yang and Kim [17], and the numerical procedure 

is briefly summarized here. 

The right-handed coordinate system which is moving with the constant forward 

speed U of the ship is introduced and the origin is located at the center of gravity of the 

ship. The x-axis is parallel to the ship’s longitudinal direction pointing to the ship stern 

and the starboard side of the ship is the positive y-axis. The z-axis is normal to the other 

two axes, that means positive upward. Many wave–ship interaction problems are domi-

nated by the inertia effect. Thus, the fluid viscosity can be ignored, and the following con-

tinuity and Euler equations are solved: 

 


0,u  (1)




     



   1u
u u p b

t
 (2)

where 

u  is the velocity vector, ρ means the fluid density, p is the pressure, and b is the 

body-force vector. A fractional-step method is applied for velocity and pressure coupling 

and the finite-volume method with staggered variable allocation is used for the spatial 

discretization. The pressure Poisson equation is solved using a multi-grid algorithm to 

update the pressure in the fluid domain: 



 
      

 

1 1
p u

t
 (3)

where ∆t means the time step. The hydrostatic pressure was eliminated for the ship part 

that was initially submerged in the water, when calculating the time history of pressure. 

Thus, the pressure in the subsequent section includes both linear and nonlinear 

hydrodynamic pressure, and hydrostatic pressure above the still water level.  

An immersed boundary method is used and the volume fraction of each phase in 

each cell is calculated [18]. The tangent of hyperbola for interface capturing (THINC) and 

weighted line interface calculation (WLIC) methods [19,20] are applied to update the 

volume-fraction function of the water phase. In this formulation, incompressible fluid is 

assumed for both air and water phases and the free surface boundary conditions are 

implicitly satisfied. The volume fraction of a solid body is calculated by the transformation 

of a signed distance field between the ship surface and a grid point. The slip boundary 

condition is satisfied by a volume-weighted formula [17,21]: 

 
   

  

  

   
 

      

  

  




 
3 3 3

3 3 3

1 if 0.5
ˆ

1 if 0.5

u u u

body

u u u

body

u U
u

u U uN N I N
 (4)

where 
̂
u  indicates the updated fluid velocity, 


body

U  is the velocity of ship surface closest 

to the center of velocity-control volume, 


3

u  is the volume fraction of the ship in the 

corresponding velocity-control volume, I is the identity matrix, and N is the normal dyad. 

To generate the incident waves and eliminate reflecting waves from the ship, forcing 

terms are added in the momentum conservation equations. The forcing term is calculated 

using the difference between numerical solutions and Stokes analytic solutions of fluid 

velocities and wave elevation. Besides forcing terms, the boundary values for the velocity 

and the volume-fraction function of the liquid phase are fixed as Stokes analytic solutions. 

To reduce the transient time, the velocity field, that is a sum of uniform velocity and Stokes 

solution, is assumed as an initial condition. 
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The verification and validation of the present Cartesian-grid method for wave–body 

interaction problems have been made in Yang and Kim [17] and Yang et al. [21]. The sen-

sitivity of time steps is less than the grid sensitivity and almost ignorable if the Courant-

Friedrichs-Lewy (CFL) condition is satisfied. For the ship motion problems, the initial time 

step Δt0 = Te/400 and the CFL value 0.4 are recommended, where Te means the encounter 

wave period. Unlike implicit pressure-correction methods, the present Cartesian-grid 

method does not require so-called ‘outer’ iteration because the continuity equation is sat-

isfied by solving the pressure Poisson equation at the projection step. In general, the re-

sidual of pressure is less than order of 10−6 after three or five iterations using a multigrid 

method, while the velocity field is updated using explicit method and thus an iteration 

scheme is not necessary. A typical calculation using a single processor required about 3.5 

h per one encounter period and the simulation was conducted during 20 encounter peri-

ods. Grid resolution is the most critical factor to ensure the convergence of the present 

numerical solutions. Thus, a grid convergence test was conducted and is summarized in 

the next section based on the ‘grid convergence index’ concept [22]. 

2.2. Rankine Panel Method 

A numerical program based on a time-domain Rankine panel method, called the 

computer program for linear and nonlinear Wave-Induced loads and SHip motion 

(WISH), was developed by Seoul National University under the support of several large 

shipbuilding companies. This program is used for the simulation of nonlinear ship mo-

tions in waves, and it has been extended and applied to the seakeeping problems for cruise 

ships and offshore structures, hydro-elasticity analysis such as springing, ship maneuver-

ing, and so forth [2]. 

The body-fixed coordinate system is introduced for a ship advancing with a constant 

forward speed U. Assuming the ideal fluid and irrotational flow, a velocity potential ϕ 

can be introduced. To linearize the boundary value problem, the velocity potential and 

the wave elevation are decomposed as follows:  

            
   

, , ,
I d

x t x x t x t  (5)

        
  

, , ,
I d

x t x t x t  (6)

where Φ is the double-body basis potential, subscript I is the component associated with 

the incident wave, and subscript d is the component associated with the disturbed wave. 

Then, by assuming that Φ is the order of O(1) and the others: ϕI, ϕd, ζI, and ζd, are the order 

of O(ε), the linearized boundary value problem can be summarized as follows: 

2 0   in fluid domain,   (7) 

   
2

2
  on 0,d d

d d I
U U z

t zz

 
  

  
        

 

 
 (8) 

   1
  on 0,

2
d

d d I
U g U U z

t t


  

   
                

  
 (9) 

6

1

  on .
jd I

j j j B
j

n m S
n t n

 




   
   

    
  (10) 

Here,       


1 2 3
, ,m m m n U  and          

 
4 5 6
, ,m m m n x U , ∂n 

means the spatial derivative in the normal direction to the ship surface, 
B

S  is the mean 

body surface, and g is the gravitational acceleration. Green’s second identity is applied to 

solve the above linearized boundary value problem. In the Rankine panel method, the 
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boundary surfaces are discretized into a grid of quadrilateral panels, and Rankine sources 

are distributed on each panel. Furthermore, the variables, such as the velocity potentials 

on the boundary surfaces, are represented by the bi-quadratic B-spline basis function, us-

ing the values in the neighboring panels. 

The first-order pressure about the mean body position can be obtained by Bernoulli’s 

equation and the perturbations of variables with respect to the mean body position, as 

follows: 

          
     

                   
    

  
1 1

2I d I d
p U U gz

t
 (11)

where, the linear displacement 


 is defined as          
   

,
T R

x t t t x , and 

T

 and 



R

 indicate linear translational and rotational displacement vectors. An artificial wave 

absorbing area is set near the truncated far-field boundary to satisfy the radiation 

condition. In the absorbing area, the damping term is added in the kinematic free-surface 

boundary condition and the damping strength gradually increases toward the far-field. 

The first-order pressure acting on the ship hull is integrated to calculate the resultant 

forces and moments. The added resistance in waves is calculated by integrating the sec-

ond-order pressure, which is obtained by perturbations of physical variables, such as the 

displacement, pressure, wave elevation, and normal vector with respect to the mean body 

position. The detailed derivation of the added resistance formula in the Rankine panel 

method can be found in Joncquez [23] and Kim and Kim [6]. 

3. Results and Discussion 

3.1. Ship Model and Test Case 

The RIOS bulk carrier, which was the target ship in an innovative experiment [14] to 

measure the unsteady pressure distribution on the whole ship surface, is considered in 

this study, and Table 1 gives its main particulars. The Froude number, Fn = U/(gL)1/2, is 

equal to 0.18. In the experiment [14], a total of 234 pressure sensors were attached on the 

RIOS bulk carrier. The Fiber Bragg Gratings (FBG) sensor was adapted, which is based on 

optical-fiber sensing technology. In this study, the wave-induced pressure for some rep-

resentative positions of the ship surface is compared with the experimental data. The dis-

tance between aft perpendicular (AP) and forward perpendicular (FP) is divided into 

evenly spaced ordinates, which are equal to 0.0 and 10.0 for AP and FP, respectively. In 

the present comparison, four sections—ordinate (Ord.) = 9.5, 9.0 (near bow), 5.0 (mid-

ship), and 0.5 (near stern)—are selected, and the position of pressure measurement in each 

section is represented as the angle θ from the keel line. That means 0° indicates the keel-

line, and 90° indicates the still-water-level, as shown in Figure 1. 

Figure 2 shows domain size and a sample of the triangular surface mesh for the Car-

tesian-grid method and panel model for the Rankine panel method. Because only head 

wave cases are considered in this study, half domain is used in both numerical calcula-

tions. It should be noted that the present Rankine panel method is based on the linear 

assumption, and thus the ship below the still-water-level is considered, while the full ship 

up to ship freeboard is modeled in the Cartesian-grid method.  

Table 1. Main particulars of the RIOS (Research Initiative on Oceangoing Ships) bulk carrier. 

Particulars Values 

L (m) 2.400 

B (m) 0.400 

T (m) 0.128 

∇ (m3) 0.098 

CB 0.800 
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Figure 1. Body plan and location of pressure measurement. 

 

 

 

 

(a) (b) 

Figure 2. Domain size (upper) and body surface mesh (lower): (a) Rankine panel method, and (b) Cartesian-grid 

method. 

3.2. Motion Responses and Added Resistance 

To check the grid convergence in the Cartesian-grid method, the calculating proce-

dure of grid convergence index (GCI) suggested by Celik et al. [22] was applied for three 

different grids. The subscripts 1, 2, and 3 indicate the finest grid, medium grid, and coars-

est grid, respectively. The average grid spacing h  for each grid is defined as follows: 
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C

N

i j k
i j k I

h x y z
N 

     (12)
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  , , | / 2 / 2,0 , .
c i j k

I i j k L xc L yc B T zc A          (13)

where N indicates the number of elements in the index set Ic. (i, j, k) is the index pair of the 

i-th, j-th, and k-th grid point in the x-, y-, and z-direction, respectively. L is the ship length, 

B is the ship beam, T is the ship draught, A is the amplitude of incident wave, xci, ycj, and 

zck are the center positions, and ∆xi, ∆yj, and ∆zk are the size of the i-th, j-th, and k-th cell, 

respectively. The grid spacing outside of the range in Equation (13) remains the same to 

generate the incident wave with the same grid resolution, while the inside grid is system-

atically refined, which has the ratio of the average grid spacing larger than the square root 

of two. The total number of grids varied from about two million to five million and the 

GCI can be obtained using the following procedure: 

 32 21
1 sgn /s     (14)

 
   32 21 21 32

21

1
ln / ln /

ln

q qq h s h s
h

      
 

 (15)

1 2

121

1.25

1q

V V
GCI

Vh





 (16)

Here, sgn means sign function, /
ij i j

h h h ,
ij i j

V V   , and Vi indicates a physical 

variable in the i-th grid. Table 2 summarizes the ratio of average grid spacing and the 

resultant GCI values for the magnitudes of heave and pitch motions and added resistance 

in waves. The heave and pitch motion amplitudes are almost identical, even for different 

grid spacing, whereas the added resistance is quite sensitive to the grid. The uncertainty 

of the grid in the added resistance using the Cartesian-grid method is about 10–20% for 

the resonance case, and about 26% and 38% for the short-wave case. The uncertainty of 

the grid in the smaller wave amplitude case is larger than that in the large-wave amplitude 

case. To generate an accurate incident wave in the Cartesian-grid method, the aspect ratio 

of the grid is important, as well as the number of grids in wave height and wavelength. 

Thus, it becomes difficult to generate an accurate incident wave for small-wave steepness 

and short wavelength cases, and the inaccuracy of the incident wave is reflected in the 

grid uncertainty. However, the maximum difference between the computed added re-

sistance and experimental result is 18% for the resonance case (λ/L = 1.25), with H/λ = 

1/125, and the corresponding grid uncertainty is 17%, which is an acceptable range of un-

certainty. 

Table 2. Ratio of average grid spacing and grid convergence index (GCI) of amplitude of vertical motions and added 

resistance. 

λ/L H/λ h32 h21 
GCI of Heave 

Amplitude (%) 

GCI of Pitch 

Amplitude (%) 

GCI of Added 

Resistance (%) 

0.50 1/80 1.4642 1.5132 - - 37.7 

0.50 1/40 1.4642 1.5132 - - 26.0 

1.25 1/125 1.4967 1.4828 0.0001 0.4632 17.5 

1.25 1/80 1.5100 1.4828 0.0120 0.0359 16.5 

1.25 1/40 1.4967 1.6438 0.6311 0.0134 12.4 

Figure 3 shows the magnitude of the wave-induced heave and pitch motions of the 

RIOS bulk carrier. The normalized motion magnitudes are defined as follows: 

' '

3 3 5 5
/ and / .A kA      (17)

Here, k means the wave number of the incident wave and the horizontal axis in the 

figure represents the normalized encounter frequency ωe(L/g)1/2 as well as the normalized 
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wavelength λ/L. The numerical computations using the Cartesian-grid method were con-

ducted with H/λ = 1/80 and 1/40, where H and λ are the wave height and wavelength of 

the incident wave. In addition, the smaller wave steepness condition (H/λ = 1/125) was 

simulated for the cases where the wavelength is 1.25 times longer than the ship length. In 

References [13,14], the wave steepness was varied from H/λ = (1/200 to 1/56). It is difficult 

using the Cartesian-grid method to generate the incident wave accurately with small-

wave steepness in short-wave cases for both experiment and numerical simulation, while 

in the Rankine panel method, the linearized free-surface and body boundary conditions 

were applied. The overall magnitude of heave and pitch motions are similar to each other, 

whereas for the Cartesian-grid method, smaller heave response can be found near the res-

onance region (λ/L = 1.25). However, if the amplitude of the incident wave decreases, the 

magnitude of heave motion becomes close to the others. This nonlinearity is known to be 

responsible for the cross-coupling damping of heave and pitch if the ship has a large flare 

angle. 

Figure 4 shows the added resistance of the RIOS bulk carrier. The normalized added 

resistance is defined as follows: 

 2 2 /

AW
AW

R
C

gA B L
  (18)

where RAW means the dimensional added resistance. Both numerical codes provide similar 

results to the experiment in the overall wavelength range. Likewise, in the motion 

responses, the normalized added resistance decreases as the wave steepness increases in 

the computational results of the Cartesian-grid method. It should be noted that the present 

Cartesian-grid method solves Euler equations, which means the fluid viscosity is ignored. 

The ship motion and added resistance in waves are known as inertia-dominant problems 

and the viscous effects are secondary. But, the viscosity cannot be ignorable depending 

on the local Keulegan-Carpenter number. This is beyond the scope of the present study 

and further studies are required using a flow solver of Navier-Stokes equations with a 

suitable turbulence model. 

The difference between experimental data (D) and numerical results (S) is defined as 

follows: 

 
 

% 100.
D S

D
D


   (19)

Thus, if the value of numerical results is larger than that of experimental data, the 

difference becomes negative. The difference values for the amplitude of heave and pitch 

motions and added resistance are summarized in Table 3. The difference of motion am-

plitude is smaller than that of added resistance in waves. In general, added resistance in 

waves is a small quantity to measure from the model tests and thus the uncertainty is also 

higher than that of motion amplitude.  

Table 3. Difference between experiment and numerical results for amplitude of heave and pitch motion and added re-

sistance. 

λ/L 

WISH (Wave-Induced loads and SHip Mo-

tion) 
SNU-MHL-CFD 

ξ3 (%D) ξ5 (%D) CAW (%D) ξ3 (%D) ξ5 (%D) CAW (%D) 

0.50 - - −1.96 - - −39.39 

1.00 −6.24 14.84 13.62 10.25 7.71 3.96 

1.25 −10.25 2.99 −43.55 6.40 4.06 −29.97 

1.50 −3.92 −4.81 25.80 5.55 8.35 −24.07 

2.00 −0.30 0.05 - −0.21 7.03 - 
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Figure 3. Motion amplitude (upper) and phase angle (lower) of the RIOS bulk carrier: (a) heave, (b) pitch. 

 

Figure 4. Added resistance of the RIOS bulk carrier in waves. 

To investigate the dependency of wave steepness more clearly, Figure 5 plots the 

magnitude of heave and pitch motions and the added resistance in waves using the Car-

tesian-grid method for different wave steepness. Figure 5 also represents the correspond-

ing uncertainty of grid spacing as an error bar. As discussed before, the vertical motions 

and the added resistance decrease as the wave steepness increases, especially for the res-

onance case (λ/L = 1.25). If the steepness of incident wave increases, the bow wave be-

comes easily broken, and thus the variation of wetted area is not proportional to the wave 

amplitude. Moreover, the nonlinearity of bow geometry is one of the reasons that the 

added resistance in waves is not proportional to the square of the wave amplitude. 

e (L/g)
1/2

 / L

 3
'

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

WISH
SNU-MHL-CFD (H/=1/125)
SNU-MHL-CFD (H/=1/80)
SNU-MHL-CFD (H/=1/40)
Exp. (Iwashita et al., 2016)

H/<1/100 (Exp.) H/>1/80 (Exp.)

1.5 1.252.0 1.0 0.75 0.5


e
(L/g)

1/2

H
ea
ve
P
h
as
e

1 2 3 4 5 6










e (L/g)
1/2

 / L

 5
'

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

H/<1/100 (Exp.) H/>1/80 (Exp.)

1.5 1.252.0 1.0 0.75 0.5


e
(L/g)

1/2

P
it
ch
P
h
as
e

1 2 3 4 5 6











e
(L/g)

1/2

 / L

C
A
W

1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

WISH
SNU-MHL-CFD (H/=1/125)
SNU-MHL-CFD (H/=1/80)
SNU-MHL-CFD (H/=1/40)
Exp. (Iwashita et al., 2016)

H/<1/100 (Exp.) H/>1/80 (Exp.)

1.5 1.252.0 1.0 0.75 0.5



Processes 2021, 9, 171 10 of 21 
 

 

  

(a) (b) 

  

(c) (d) 

Figure 5. Dependency of wave steepness and grid uncertainty in the Cartesian-grid method: (a) Magnitude of heave mo-

tion (λ/L = 1.25), (b) magnitude of pitch motion (λ/L = 1.25), (c) added resistance in waves (λ/L = 1.25), and (d) added 

resistance in waves (λ/L = 0.5). 

3.3. Distribution of Unsteady Pressure 

The first harmonic amplitudes of the wave-induced pressure distribution over the 

whole ship surface for three different wavelengths are compared in Figure 6. The first 

harmonic amplitude of unsteady pressure is normalized with the maximum value of lin-

ear dynamic pressure of the incident wave ρgA. In each figure set, the left column is the 

side view and the right column is the front view. The upper figure in the left column is 

the result of the Rankine panel method (WISH), while the lower figure is the result of the 

Cartesian-grid method (SNU-MHL-CFD). For the short-wave case (λ/L = 0.5), the ship mo-

tions can be ignored, and the incident wave is passing through the mid-ship section. Thus, 

the magnitude of first harmonic pressure is similar to that of the incident wave. On the 

other hand, the first harmonic amplitude of unsteady pressure is almost zero at the mid-

ship for the long-wave condition (λ/L = 2.0) because the ship is surf-riding on the incident 

wave. The amplitude of the first harmonic from the Rankine panel method near the still-

water-level is larger than that from the Cartesian-grid method, especially in the ship bow 

region, because of the linear assumption. Near the bulbous bow and the ship stern, a slight 

difference can be observed, whereas the overall patterns below the still-water-level are 

similar to each other. In the bulbous bow and the ship tern, the aspect ratio of the panel is 

higher than that in the other parts, and this gives an inaccurate solution. 
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(a) 

 

(b) 

 

(c) 

Figure 6. Distribution of the first-harmonic component of wave-induced pressure, side view (left) and front view (right): 

(a) λ/L = 0.5, (b) λ/L = 1.25, (c) λ/L = 2.0. 

Figure 7 shows the time history of unsteady pressure for Ord. = 9.5. The left column 

is the resonance case (λ/L = 1.25), while the right column is the short-wave condition (λ/L 

= 0.5). The pressure is again normalized with the maximum value of linear dynamic pres-

sure of the incident wave ρgA. The magnitude of normalized pressure is more than three 

for the resonance case, while it is approximately 1.5 for the short-wave condition. The 

Rankine panel method provides harmonic time series, while the results of the Cartesian-

grid method show the half-sine shape for θ = 90, 82.5, and 75° in the resonance case. Those 

positions are near the still-water-level, and thus the measuring positions are regularly ex-

posed to the air, because of large ship motion. On the other hand, the exposed time to the 

air becomes shorter in the short-wave condition, because in this condition, the ship motion 

can be ignored. The pressure time histories at the other positions show similar magnitude 

and oscillation period between the two numerical computations. 
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(d) 

 

(e) 

Figure 7. Time histories of wave-induced pressure distribution on the RIOS bulk carrier, ordinate (Ord.) = 9.5, λ/L = 1.25 

(left) and λ/L = 0.5 (right): (a) θ = 90°, (b) θ = 82.5°, (c) θ = 75°, (d) θ = 60°, (e) θ = 45°. 

In the case of stern flow (Ord. = 0.5), the two numerical computations show different 

magnitudes of wave-induced pressure for the resonance case, even for deeply submerged 

positions, as shown in Figure 8. In particular, the pressure magnitudes around the crest 

are different, whereas those around the trough region show similar values to each other. 

This implies that there are higher harmonic components in the results of the Cartesian-

grid method. The magnitude of the unsteady pressure is very small in the stern region for 

the short-wave condition because of shadowing effects. It should be noted that the time 

histories of pressure in the Cartesian-grid method show slightly oscillatory behavior. It is 

known that an immersed boundary method suffers spurious oscillation in pressure fields, 

especially when a solid body moves, and a grid point is abruptly changed from one phase 

to another [24]. 
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(e) 

Figure 8. Time histories of wave-induced pressure distribution on the RIOS bulk carrier, ordinate (Ord.) = 0.5, λ/L = 1.25 

(left) and λ/L = 0.5 (right): (a) θ = 90°, (b) θ = 80°, (c) θ = 68°, (d) θ = 30°, (e) θ = 11°. 

The wave-induced pressure of the Cartesian-grid method and experiment can be de-

composed into the Fourier components. Figures 9–11 show the magnitude of the first-

harmonic component p(1) for different wavelengths. The incident wave steepness is differ-

ent in the experiment, and it varies from H/λ = (1/200 to 1/56) (λ/L = 2.0 to 0.5), while H/λ 

= (1/125 and 1/40) cases are simulated using the Cartesian-grid method. The uncertainty 

of the grid in the Cartesian-grid method is represented as an error bar. The maximum grid 

uncertainty is 15% near the still-water-level of the bow region in the short-wave condition. 

Other positions and conditions show less than 5% grid uncertainty. 

The magnitude of the first-harmonic component of wave-induced pressure is higher 

near the ship bow than for the other parts of the ship, and the maximum value is about 

1.5 times the maximum value of linear dynamic pressure of the incident wave ρgA for the 

short-wave (λ/L = 0.5) and long-wave (λ/L = 2.0) cases. In the resonance condition (λ/L = 
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1.25), the maximum of the first-harmonic pressure is about four times larger than the lin-

ear dynamic pressure, because of bow submergence. Near the still-water-level, pressure 

sensors are regularly exposed to the air, because of the relative motion between ship and 

water surface, and at those positions, the pressure becomes zero. Thus, the first-harmonic 

component of pressure near the still-water-level from the Cartesian-grid method and ex-

periment is smaller than that of the Rankine panel method, in which the pressure was 

calculated for the mean body position. The magnitude of the first-harmonic components 

of the wave-induced pressure gradually decreases to zero above the still-water-level in 

the results of the Cartesian-grid method.  

A similar tendency can be found in the results at the mid-ship section for the short-

wave case (λ/L = 0.5), whereas the value is very small for the resonance condition (λ/L = 

1.25) and the long-wave case (λ/L = 2.0). All those results are different from the linear wave 

theory that the linear dynamic pressure is exponentially decaying in the vertical direction 

with the factor of kz, where k is the wave number. The discrepancy implies that in these 

cases, the scattered waves—radiation and/or diffraction waves—are equally important to 

the incident wave. The first-harmonic component of wave-induced pressure is distributed 

almost uniformly along the vertical direction in the stern region, and its magnitude is less 

than or equal to half of the linear dynamic pressure. 

  

(a) (b) 

  

(c) (d) 

Figure 9. Magnitude of the first-harmonic pressure component for the RIOS bulk carrier in waves, λ/L = 0.5.: (a) Ord. = 9.5 

(bow region), (b) Ord. = 9.0 (bow region), (c) Ord. = 5.0 (mid-ship), (d) Ord. = 0.5 (stern region). 
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(c) (d) 

Figure 10. Magnitude of the first-harmonic pressure component for the RIOS bulk carrier in waves, λ/L = 1.25.: (a) Ord. = 

9.5 (bow region), (b) Ord. = 9.0 (bow region), (c) Ord. = 5.0 (mid-ship), (d) Ord. = 0.5 (stern region). 

  

(a) (b) 

  

(c) (d) 

Figure 11. Magnitude of the first-harmonic pressure component for the RIOS bulk carrier in waves, λ/L = 2.0.: (a) Ord. = 

9.5 (bow region), (b) Ord. = 9.0 (bow region), (c) Ord. = 5.0 (mid-ship), (d) Ord. = 0.5 (stern region). 
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Figures 12–14 compare the magnitude of the zeroth-, first-, and second-harmonic com-

ponents of wave-induced pressure for λ/L = (0.5, 1.25, and 2.0), based on the results of the 

Cartesian-grid method. The steady pressure ps in calm water condition is subtracted from the 

zeroth-harmonic component. This quantity is closely related to the added resistance in waves 

and has been defined as the time-averaged added pressure. In the case of ship bow (Ord. = 

9.5), it is a positive value near the still-water-level because of wave inertia and this effect is 

exponentially decaying in the vertical direction. There exists negative added pressure due to 

suction pressure, which is corresponding to the velocity square term in Bernoulli’s equation. 

However, if the relative ship motion becomes negligible (λ/L = 0.5 and 2.0), the difference of 

inertia and suction effects is small, which means the added resistance becomes small. In con-

trast, the added pressure shows relatively large magnitude in the resonance condition, as 

shown in Figure 13a, and this implies that the added resistance is larger than that in the short-

wave or long-wave conditions. It is also clearly observed that the positive added pressure oc-

curs near the still-water-level, while the negative value exists below the still-water-level. More-

over, the vertical distribution range of positive added pressure increases with increasing wave 

amplitude. 

The normalized values of first-harmonic component for the short-wave condition are less 

sensitive to wave steepness than that for the resonance condition. In other words, the first-

harmonic component is proportional to the wave amplitude for the short-wave condition. On 

the contrary, if the wave amplitude increases, the first-harmonic component decreases for the 

resonance condition, as shown in Figure 13b. It implies that the first-harmonic component is 

proportional to the lower order, rather than to the first order of the wave amplitude for this 

condition. The nonlinear effect of the incoming wave amplitude can be clearly seen in the bow 

region, whereas this effect is diminished near the stern section. In the stern section, the non-

linear effects of the hull geometry and viscosity are more important than the incoming wave 

itself. The magnitudes of the second-harmonic components in both the bow and stern regions 

are very small, compared with that of the first-harmonic component in the bow region. In the 

long-wave condition, the zeroth- and second-harmonic components are close to zero, and the 

first-harmonic component is slightly reduced as the incident wave steepness increases. How-

ever, the degree of change according to the amplitudes of incident wave is smaller than that 

in the resonance condition because the relative wave height is different. 

 

(a) 

 

(b) 

Figure 12. Magnitude of the harmonic components of wave-induced pressure for the RIOS bulk carrier in waves, λ/L = 

0.5, 0th harmonic (left), 1st harmonic (middle), and 2nd harmonic (right): (a) Ord. = 9.5, (b) Ord. = 0.5. 
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(b) 

Figure 13. Magnitude of the harmonic components of wave-induced pressure for the RIOS bulk carrier in waves, λ/L = 

1.25, 0th harmonic (left), 1st harmonic (middle), and 2nd harmonic (right): (a) Ord. = 9.5, (b) Ord. = 0.5. 

 

(a) 

 

(b) 

Figure 14. Magnitude of the harmonic components of wave-induced pressure for the RIOS bulk carrier in waves, λ/L = 

2.0, 0th harmonic (left), 1st harmonic (middle), and 2nd harmonic (right): (a) Ord. = 9.5, (b) Ord. = 0.5. 

To investigate the characteristic of added resistance in head waves more clearly, Fig-

ure 15 plots the time-averaged added pressure and the added local force in the longitudi-

nal direction obtained using the Cartesian-grid method. In the previous study [17], the 

added pressure Δpk was defined as follows: 
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where pk(t) is the unsteady pressure at the k-th triangular surface mesh and superscript ‘0′ 

indicates the steady pressure for the calm-water condition, and Nface is the total number of 

triangular surface mesh. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 15. Distribution of the time-averaged added pressure and added local force in the x-direction for the RIOS bulk 

carrier, H/λ = 1/40: side view (left) and front view (right): (a) λ/L = 0.5, (b) λ/L = 1.0, (c) λ/L = 1.25, (d) λ/L = 2.0. 
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The added pressure is a meaningful quantity only for a fixed ship or a ship in short 

waves, where the ship motion can be neglected. In the present study, the added local force 

k
F


 is defined by considering the variation of surface normal vector in time, as follows: 

      0 0 ; 1, 2, ,
k k k k k face

F t p t n t p n k N   
  

  (21)

where  k
n t


 is the surface normal vector of the k-th triangular surface mesh and superscript 

‘0′ indicates the mean value of surface normal vector for the calm-water condition. It should 

be noted that the surface area is assumed to be unity, because in the present Cartesian-grid 

method, the change of wetted area is automatically reflected in the pressure value. In this 

study, only the x-component of added local force is considered, because it is directly related 

to the added resistance in waves. 

As the wavelength increases, the ship motion becomes large, and thus the time-averaged 

added pressure increases and the considerable added pressure is occurred in the wide range 

of the bow. If the wavelength is longer than that for the resonance condition (λ/L = 1.25), the 

ship tends to move up and down following the incoming waves. Thus, the relative wave ele-

vation would decrease and consequently, the added pressure becomes smaller. The added 

local force shows much more clearly the contribution of the ship bow to the added resistance 

in waves. Because the variation of the surface normal vector in time is also reflected in the 

added local force, the contribution from the ship shoulder becomes less significant, whereas 

the ‘hot spot’ is observed around the ship stem above the design waterline. This result also 

indicates why the sharp bow, such as the Ax-bow type, reduces the added resistance even in 

the resonance condition, compared with the conventional bow shape. 

4. Conclusions 

This study compared the computational and experimental results of heave motion, pitch 

motion, and added resistance of the RIOS bulk carrier in head waves. Moreover, it investi-

gated the distribution of unsteady, wave-induced pressure on the ship surface. The results 

show that the overall accuracy of both numerical methods is acceptable, and the following 

conclusions can be drawn: 

 The nonlinearity of pressure distribution was observed mostly from the pressure near 

the still-water-level of the ship bow, where the measurement position was regularly 

exposed to the air. Consequently, the pressure time history near the still-water-level 

showed half-sine shape, and the first-harmonic component was smaller than that from 

the Rankine panel method, in which the linearized boundary value problem is solved. 

 The time-averaged added pressure, which is defined as the difference between the 

zeroth-harmonic component of the wave-induced pressure and the steady pressure in 

calm-water condition, tended to show positive value near the still-water-level of the bow, 

whereas negative value was observed below the still-water-level. This tendency can be 

clearly seen for the resonance wave condition in this study, and the vertical distribution 

range of positive added pressure became wider as the amplitude of incident wave 

increased. 

 The normalized first-harmonic component of wave-induced pressure decreased as the 

wave steepness increased, especially in the ship bow section for the resonance wave 

condition. This nonlinearity indicates that the variation of wetted surface is not 

proportional to the amplitude of the incident waves, and it also affects the added 

resistance due to waves for different wave steepness. 

 The added local force, which includes the variation of pressure and surface normal vector 

in time due to the ship motion, was introduced. The major contribution of the time-

averaged added local force that occurs around the ship stem above the design waterline 

and the distribution of the added local force in the longitudinal direction will provide 

useful information to understand the added resistance in waves in more detail. 
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