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Abstract: This paper presents a novel feature extraction and validation technique for data-driven
prediction of oxy-fuel combustion emissions in a bubbling fluidized bed experimental facility. The
experimental data were analyzed and preprocessed to minimize the size of the data set while
preserving patterns and variance and to find an optimal configuration of the feature vector. The
Boruta Feature Selection Algorithm (BFSA) finds feature vector’s configuration and the Multiscale
False Neighbours Analysis (MSFNA) is newly extended and proposed to validate the BFSA’s design
for emission prediction to assure minimal uncertainty in mapping between feature vectors and
corresponding outputs. The finding is that the standalone BFSA does not reflect various sampling
period setups that appeared significantly influencing the false neighborhood in the design of feature
vectors for possible emission prediction, and MSFNA resolves that.

Keywords: oxy-fuel combustion; Boruta Feature Selection Algorithm; Multiscale False Neigh-
bours Analysis

1. Introduction

In general, oxy-fuel combustion is one of the ‘carbon capture’ technologies that aim
to reduce COx emissions (mainly) from coal power plants [1] and also within other fuel
combustion systems such as biomass [2] that is still prospective for utilization and research.
The fuel is oxidized in almost pure oxygen, unlike the air in the traditional air combustion,
and therefore the flue gas consists primarily of carbon dioxide and water vapor [3,4].

Combustion processes are complex, nonlinear, and their measurements generate com-
plex data that requires proper analysis for further design of prediction and control systems.

Computational intelligence approaches with machine learning have been attractive
to study for combustion processes in the last decades, e.g., [5], where multilayer feed-
forward neural network with error back-propagation learning was used for approximation
of measured CO/lambda biomass combustion dependence and that shows a significant
variance in data that can be seen as a kind of uncertainty, and the neural network is used to
extract the prevailing dependence in data; further example of filtration with membership
function design can be found in [6]. Further computational intelligence techniques based on
immune systems and applied to biomass combustion and that highlights the nonlinearity
and complexity of the process can be found in [7]. Predictions of NOx emissions from
biomass-fired combustion process using experimentally established dataset of flame radical
images and deep learning was presented in [8], where also Morphological Component
Analysis and region-of-interest extraction were used to reduce the dataset size and improve
the clarity and unambiguity of the samples.

As equivalent inputs, digital flame images were used in [9], where the successful oper-
ation condition recognition was achieved by building a combined Principal Component
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Analysis and Random Weight Network model and estimating optimal model parameters
using cross-validation (PCA-RWN).

One of the traditional approaches to COx emission reduction is presented in [10],
where the emissions, caused by temporary fluctuations in fuel feed of the wood pellets,
were compensated by precise control of primary and secondary airflow (air staging).

Apart from emission prediction or process control itself, feature selection techniques
represent a significant part of research with a similar topic. A feature selection technique
evaluating the features by comparing the MAE (Mean Absolute Error) between the real
and predicted value of different subsets of primary and secondary variables from the
original dataset can be found in [11]. Selected features were used to build a model of
a brown coal-fired boiler to predict fresh steam properties for a suitable combination
of input parameters. An analogous approach was also used for short-term forecasting
of CO2 emission intensity [12], where a forward selection algorithm was applied after
removing highly correlated variables based on Pearson’s correlation coefficient and LASSO
regression. Apart from Pearson’s correlation coefficient, a statistic popular, especially for
large data, is MIC (Maximal Information Coefficient [13]) that can capture both functional
and nonfunctional relationships and gives similar scores to equally noisy relationships.
MIC was used by [14] for NOx emission prediction with Long Short-Term Memory (LSTM).

With prospects for future research and design of a machine-learning-based prediction
system of emissions from the oxyfuel system, we propose a technique that designs a feature
vector based on random forests in combination with further validation via uncertainty
analysis by Multiscale False Neighbour analysis (MSFNA) [15]. In this study, a feature
vector is proposed by Boruta Feature Selection Algorithm (BFSA) [16], which combines
two powerful tools for feature selection: decision trees and z-score.

Mathematical notation of the variables is the following: small letters, such as “x”,
are for scalars, bold “x” for vectors and bold capital “X” for matrices. Lower indexes,
such as “xi ” usually indicate the position of the element in the vector x (except for u and
y), i in “xi” denotes ith row of a matrix, u stands for a process (control) input variable, y
denotes process output variables, and ui and yj denotes ith process input variable and
jth process variable respectively (see Table 1). Further in text, “x” denotes feature vector;
notice terms “feature vector”, “state vector”, and ”input vector” have the same meaning
and are used interchangeably in this paper. Capital "N" denotes the length of data (the
count of all processed data samples), and ”n” is generally used to denote other quantities
such as “nx” for the length of the vector x, or nc for the number of applied (principal)
components. Exclusively, rx and ry denote radii vectors in state space of state vectors x
and output variable y, respectively. At last, ui[k− nui : k− 1] denotes the vector of last
measured step delays of variable ui (the vector length is nui).

Table 1. Input and output variables used in the article were measured on the laboratory device, see Section 2.2. Notice,
the previous values of the output variables yi (i = 1− 5) can also be in the state vector.

Input Variables ui i Description Output Variables yi i Description

ψ f g [%] 1 volumetric fraction of flue gas ψCO [ppm] 1 volumetric fracion of CO

trun [s] 2 conveyor run ψSO2
[ppm] 2 volumetric fracion of SO2

td [s] 3 conveyor delay ψNOx
[ppm] 3 volumetric fracion of NOx

Vair,prim [Nm3 h−1] 4 primary air flow ψO2
[%] 4 volumetric fracion of O2

Vrec [Nm3 h−1] 5 recirculation flow ψCO2
[%] 5 volumetric fracion of CO2

vair,sec [ms−1] 6 secondary air velocity

VO2,prim [Nm3 h−1] 7 primary oxygen flow

VO2,sec [Nm3 h−1] 8 secondary oxygen flow
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2. Methods
2.1. Feature Selection

Feature selection is the very fundamental process for classification and prediction.
With the decreasing price of data acquisition systems, the amount of measured variables is
increasing and so is the need for feature selection and data reduction. Feature selection
methods are traditionally divided into three groups as follows [17,18]:

1. Filter methods use various techniques (correlation, Mutual Information, chi-squared
test, etc.) to score the variables and compare the scores against the threshold to filter
out features.

2. Wrapper methods apply different machine learning algorithms to get predictor per-
formance as an evaluation of variables. The main disadvantages are the high chances
of overfitting and longer computation time.

3. Embedded methods aim to reduce computation time by integrating feature selection
as part of a training process. Typical representatives are LASSO and Elastic Net.

In studies with similar topics regarding emission prediction, there are three most
common approaches:

• using Principal Component Analysis to reduce the size of an input data set [9,19] ,
• searching for statistical dependencies between features [20,21],
• filtering out the outliers and irrelevant data points [11,22,23].

The current state of art of feature selection algorithms is focused on static mapping
functions [24]. In this paper, we apply the BFSA algorithm to reduce the unnecessary
length of a state vector of a discrete-time dynamic system with constant sampling, so it also
identifies the optimal configuration of step-delayed variables. Furthermore, the feature
selection, performed by the BFSA, is proposed to verify the results via the MSFNA, where
MSFNA appears useful for the sampling period validation. The use of BFSA and the
MSFNA is recalled in the following subsections.

2.1.1. Boruta Feature Selection Algorithm (BFSA)

BFSA is a wrapper feature selection method presented in [16]. The algorithm searches
all important features in the existing data set using a random forest algorithm to identify
the importance of features.

The main idea behind the BFSA algorithm is as follows: if there exists a feature, that
scores lower than the best of the shadow features, the feature is not relevant for the system
(unsuccessful performance).

First, BFSA creates shadow features from the existing ones by randomly shuffling the
original values of a feature matrix X along the column, as follows

X =


xi=1
xi=2

...
xi=N

, (1)

Xshadow =


xj=1
xj=2

...
xj=N

 where xi 6= xj for some of i = j where i, j ∈ {1, 2, ..., N}, (2)

where x is a state (feature, input) vector composed of actual input variables, their step-
delayed values, and step-delayed output variables whose configuration is to be found
by BFSA and validated by MSFNA. A random forest classifier is used as a predictor
that creates a model extended by shadow features, i.e., by additional and irrelevant ones.
The random forest model is thereupon used for feature performance evaluation. For each
feature, z-scores are computed as the average accuracy loss of the prediction divided by its
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standard deviation [16]. Feature importance is estimated by comparing its z-score against
the smallest z-score value of the shadow features. This value is used as a threshold because
the shadow feature importance is nonzero only due to random fluctuations and is not
beneficial for the system at all.

The process is repeated for a predefined number of trials and the number of successful
and unsuccessful performances of each feature is computed.

The total number of successful or unsuccessful performances, that each feature must
reach, is driven by the binomial distribution as follows

f (s, ε, p) =
(

ε

s

)
ps(1− p)ε−s, (3)

where ε is the number of trials, p ∈ 〈0, 1〉 is the success probability for each trial and s is
the total number of successful trials, so it defines confidence intervals as in the example
in Figure 1. The number of successful performances of a feature, that is to be labeled as
important for the data, is given only by the number of trials used. Successful features then
create a new data set.

Figure 1. Example of a decision-making process for 20 trials according to Equation (3).
Using 20 trials, the feature can be labeled as important if it scores higher than shadow
features at least 16 times.

2.1.2. Multiscale False Neighbours Analysis (MSFNA)

The MSFNA is a technique used for the uncertainty evaluation of the state vector’s
configuration as it evaluates the determinism for general input-output mapping f (x) = y,
i.e., the mapping f () between feature vectors x and corresponding outputs y [15]. Unlike
common false neighbor analysis, which requires precise knowledge about the neighbor-
hood radius, see [25,26], MSFNA uses a vector of several radii to scale the neighborhood
condition. If x is the state vector of the system, then system output y is unambiguously
determined by the input (state vector) x if the same input x results in different outputs y,
the state vector is not complete and other features must be included, these states are then
referred to as false neighbors (FN). Two states x1, x2 are FN if they meet the condition

i f ‖xi − xj‖ < rx AND ‖yi − yj‖ > ry =⇒ FN(i, j) = 1; else FN(i, j) = 0, (4)

where rx, ry are absolute radii that define the condition of state similarity. Because optimal
rx and ry is practically unknown, MSFNA utilizes the whole range of radii via heuristically
designed vectors rx = [rx1 , rx2 , . . . , rxα ], ry = [ry1 , ry2 , . . . , ryβ

] assuming that the optimal
radii lies within the ranges of radii of vectors rx, ry. The Areal Cumulative False Neighbors
ACFN is computed according to

ACFN =
N

∑
i=1

N

∑
j=i+1

FN(i, j), (5)

where ACFN is the sum of all false neighbors in the dataset that evaluates the uniqueness
of the state vector configuration for each data point. The higher ACFN gets, the less
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determinism, i.e., more false neighbors, is in the mapping of the designed feature vector
configuration and prediction outputs.

To compare datasets with a different number of samples, we introduce the Relative
ACFN (RACFN) that eliminates the dependence of ACFN on the number of samples in
the dataset by normalization via the total count of all neighbor pairs as follows

RACFN =
N

∑
i=1

N

∑
j=i+1

FN(i, j)
2

N2 − 2N
∈ 〈0, 1〉. (6)

Apart from the number of samples, a dimension of the input matrix (state vector)
is also a source of deceptive information arising from comparing euclidean distances of
variously long state vectors against the same radii vectors rx and ry.

While (6) resolves the issue of various lenght of data, it still suffers from various
lengths of feature vectors nx that BFSA can principally find for various datasets. Thus, we
propose to resolve the non-unique feature-vector-length problem by compressing (column-
wise) the matrix of state vectors X as in (1) using Principal Component Analysis (PCA)
into a customized number of components nc, i.e., the matrix X is compressed to a constant
number of columns (new features), and the MSFNA is then evaluated for state vectors of
the same length nc. The PCA compression into nc features is applied as follows

XPCA =


v1
v2
...

vnc

X, (7)

where v1, v2, . . . , vnc , are selected eigenvectors of covariance matrix CX = XXT .
It can be noted, that the PCA compression prior RACFN not only standardizes its

results by unifying the feature vector length for various feature setups, but it also naturally
increases the robustness of the MSFNA results as the PCA compression further removes
unique features because nc of the most significant components are used for compression.

2.2. Data and Preprocessing

The experimental device is a 30 kW laboratory-scale oxy-fuel BFB combustor, the scheme
is in the Figure 2. Sunflower pellets were used as biomass fuel.

The variables used for the analysis are listed in Table 1. As input variables ui are
denoted features, that can be changed or indirectly influenced by the facility set-up. Output
variables yi consist of the volumetric fractions of the flue gas components.

The experiment was realized by measuring four states of the oxy-fuel mode defined

by secondary and primary oxygen flow ratios
VO2,sec

VO2,prim
. In each mode, there were 900 up to

1100 samples measured, as shown in Table 2. All oxy-fuel modes were measured at the
same environmental conditions in one day.



Processes 2021, 9, 1757 6 of 15

Figure 2. Scheme of the 30 kWth BFB experimental, (1) fluidized bed region, (2) distributor
of the fluidizing gas, (3) gas burner mount, (4) fluidized bed spillway, (5) fuel feeder,
(6) cyclone separator, (7) flue gas fan, (8) flue gas vent, (9) and (10) water coolers, (11)
condensate drain, (12) primary fan, (13) air-suck pipe, (14) vessels with oxygen, (sketch
based on [3]).

Table 2. Oxy-fuel modes measured during the experiment are defined by secondary and primary
oxygen flow ratios.

mode 1 1109 samples with sampling
period ∆Ts = 2 s

VO2,sec
VO2,prim

≈ 0

mode 2 930 samples with sampling
period ∆Ts = 2 s

VO2,sec
VO2,prim

≈ 0.35

mode 3 900 samples with sampling
period ∆Ts = 2 s

VO2,sec
VO2,prim

≈ 0.57

mode 4 900 samples with sampling
period ∆Ts = 2 s

VO2,sec
VO2,prim

≈ 0.91

Collected data were first checked for missing values and relevant data points were
removed and replaced with the previous value. Data were resampled with four different
sampling constants to compare the results: ∆T1 = 5 s, ∆T2 = 10 s, ∆T3 = 15 s and
∆T4 = 25 s. The new point is calculated as a mean value of previous points, which behaves
as a simple smoothing filter. In the next step, the data were normalized using the Min-Max
scaler as shown in (8) and (9).

XMinMax(i) = XS(i)(FRmax − FRmin) + FRmin (8)

XS(i) =
X(i)−min(X)

max(X)−min(X)
(9)

FRmax and FRmin is the upper, respectively lower interval limit of the desired feature range;
we used 〈0, 1〉. The last step is to design the state vector and matrix of states. The matrix of
all state vectors X is defined as follows

X =


xT(k = 1)
xT(k = 2)

...
xT(k = N)

, (10)
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where the full X before applying BFSNA for selecting optimal features is defined as follows.

x(k) = [u1
[
k− nu1 : k− 1], u2[k− nu2 : k− 1], . . .

y1[k− ny1 : k− 1]), y2[k− ny2 : k− 1]), . . .
]
,

(11)

where the maximum number of step delays nui and nyj are initialized heuristically, the mean-
ing of input and output process variables is defined in Table 1. The snapshot of measured
and min-max scored process variables ui and yj is shown in Figure 3.

Figure 3. Snapshot of normalized, preprocessed data from one of the real experiments, ui

are process input variables and yi are process output variables described in Table 1.

For further details of the real device and the experimental setup, please kindly see [3,4,27].

2.3. Algorithm Complexity

The computational complexity of the BFSA is O(nx · N), where nx is the number
of features and N is the number of samples [16]. The computational complexity of the
Multiscale False neighbor analysis is O(nr · N), where nr = α is the length of MSFNA
absolute radii vector, see the text bellow Equation (4).

3. Experimental Analysis and Results

In this section, experimental analysis on artificial data and then on real data is shown
for the algorithms described in Section 2.

3.1. Artificial Data

The first goal was to test the proposed algorithms on an artificial dataset of a simple
MISO (multiple-input, single-output) system given by equations

X[k,:] = [2k + sin(k) , (0.5 · k)2 +
k
2
− 1 , k3 + k2] , y(k) =

3

∑
k=1

X[k,i],

where k = 1, 2, ...N = 250. (12)
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Two additional variables X[:,3] and X[:,4] were added to test the BFSA, these columns
are a combination of a sine, resp. cosine curve and white noise. The artificial data from
(12) are plotted in Figure 4, where X[:,3] and X[:,4] are added to demonstrate that BFSA
eliminates them and MSFNA detects more false neighbors via higher RACFN.

Figure 4. Artificial data for testing, x0, x1 and x2 together create an output y, x3 and x4 are
added to the system in order to test the feature selection and wrong feature elimination via
BFSA and its validation via MSFNA.

BFSA was applied on artificial data and features X[:,0], X[:,1] and X[:,2] were correctly
selected. In the next step, 15 combinations of possible input features were prepared as

a combinations of 3 and 4 out of five possible features;
(

5
3

)
+

(
5
4

)
= 15, compressed

with PCA and RACFNs were calculated according to (6). The results are in Figure 5.
The lowest value of RACFN was determined for the input state vector proposed by BFSA
RACFNBFSA = 0.0178, for the rest of the input vectors the RACFN values lie in the interval
〈0.0309, 0.036〉. The input combination proposed by BFSA was proven to have the lowest
count of RACFN following the expectations. The result is in the Figure 5.

Figure 5. MSFNA on artificial data, the orange column corresponds with the input vector
designed by BFSA, the rest of input combinations (blue) have a significantly higher number
of FN, the results are consistent with the hypothesis.

3.2. Experimental Data

For each output variable, a state vector x was designed. The maximum number of
history samples of each feature was set to 15, as in Equation (11). Results for sampling
periods ∆T = [5, 10, 15, 25] s for each output variable are shown in Tables 3–6; one can
notice, that variables u1 = ψ f g, u2 = trun and u3 = td were not selected by BFSA as input
features for any output variable yi. Primary air flow u4 = Vair,prim was used rather sparsely.
The total number of state vector features is listed in the last row of Tables 3–6.
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Table 3. Table of state vectors xi for outputs yi (listed in columns) proposed by Boruta Feature Selection Algorithm for
sampling period ∆Ts = 5 s. Features u1, u2, u3 were not picked by BFSA at all, u8 is not chosen for y5.

Variables y1 = ψCOy1 = ψCOy1 = ψCO y2 = ψSO2
y2 = ψSO2y2 = ψSO2

y3 = ψNOx
y3 = ψNOxy3 = ψNOx

y4 = ψO2
y4 = ψO2y4 = ψO2

y5 = ψCO2
y5 = ψCO2y5 = ψCO2

V
ar

ia
bl

es
us

ed
fo

r
th

e
in

pu
tv

ec
to

r

u1 = ψ f g - - - - -

u2 = trun - - - - -

u3 = td - - - - -

u4 = Vair,prim 4 7, 5 8, 2, 1 12, 10, 9, 8,
6, 5, 4

6

u5 = Vrec 15, 14, . . . , 1 15, 12, 11, 9,
8, 5, 1

15, 14, . . . , 1 15, 14, 13, 11,
10, . . . , 1

15, 14, 12, 9,
7, 5, 3

u6 = vair,sec 15, 14, . . . , 1 15, 13, 9,
8, 7, 3

15, 14, . . . , 1 15, 14, . . . , 1 15, 12, 9,
8, 5, 4

u7 = VO2,prim 15, 14, 13, 11,
9, 8, . . . , 1

15, 7, 6, 5,
3, 2, 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 4, 3, 1

u8 = VO2,sec
15, 13, 12, 11,

9, 8, 5,
3, 2, 1

10, 6 15, 14, . . . , 1 15, 14, . . . , 1 -

y1 = ψCO
15, 14, 13,

10, 9, 7,
5, . . . , 1

15, 14, 12, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1 15, 12, 10,
9, 7, 1

y2 = ψSO2 15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1 14, 1

y3 = ψNOx 15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1 9, 8, 3, 2, 1

y4 = ψO2 15, 14, . . . , 1 8, 5, 4,
3, 2, 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 13, 11,
8, 7, . . . , 1

y5 = ψCO2
15, 13, 12, 11,
7, 6, 5, . . . , 1

15, 13, 12, 10,
9, 8, 7, 5,

3, 2, 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 14, 12, 11,
9, 7, 6, . . . , 1

nx 121 84 138 141 54

Table 4. Table of state vectors xi for outputs yi (listed in columns) proposed by Boruta Feature Selection Algorithm for
sampling period ∆Ts = 10 s. Features u1, u2, u3 were not picked by BFSA at all, u4 is not chosen for y5 and u7 is not
included in state vector for y2.

Variables y1 = ψCOy1 = ψCOy1 = ψCO y2 = ψSO2
y2 = ψSO2y2 = ψSO2

y3 = ψNOx
y3 = ψNOxy3 = ψNOx

y4 = ψO2
y4 = ψO2y4 = ψO2

y5 = ψCO2
y5 = ψCO2y5 = ψCO2

u1 = ψ f g - - - - -

u2 = trun - - - - -

u3 = td - - - - -

u4 = Vair,prim 3 3 11, 2, 1 12, 4 -
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Table 4. Cont.

Variables y1 = ψCOy1 = ψCOy1 = ψCO y2 = ψSO2
y2 = ψSO2y2 = ψSO2

y3 = ψNOx
y3 = ψNOxy3 = ψNOx

y4 = ψO2
y4 = ψO2y4 = ψO2

y5 = ψCO2
y5 = ψCO2y5 = ψCO2

V
ar

ia
bl

es
us

ed
fo

r
th

e
in

pu
tv

ec
to

r

u5 = Vrec 14, 13, . . . , 10,
5, 4, . . . , 1

15, 12, 11, 9,
8, 5, 1

15, 14, . . . , 1 15, 14, . . . 1 13, 11, 10, 8,
4, 2, 1

u6 = vair,sec 15, 14, . . . , 1 9, 2 15, 14, . . . , 1 15, 14, . . . , 1 14, 13, . . . 7,
3, 2

u7 = VO2,prim 15, 14, . . . , 1 - 15, 14, . . . , 1 15, 14, . . . , 1 15, 12, 11, 9,
8, 6, 5, 3

u8 = VO2,sec 15, 14, 10,
9, 6

14, 13 15, 14, . . . , 1 15, 14, . . . , 1 13, 10, 9, 6, 1

y1 = ψCO 15, 14, . . . , 1 15, 5, 4, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1 15, 13, 12, . . . , 8,
5, 4, 2, 1

y2 = ψSO2 15, 14, . . . , 1 15, 14 8,
7, . . . , 5, 2, 1

15, 14, . . . , 1 15, 14, . . . , 1 14, 12, 11, 10,
5, 3, 2, 1

y3 = ψNOx 15, 14, . . . , 1 13, 8, 7,
6, . . . , 3, 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 14, 12, . . . , 7,
5, 3, 1

y4 = ψO2
15, 13, 12,
11, . . . , 5,

3, 2, 1

5, 4, 3, 2 15, 14, . . . , 1 15, 14, . . . , 1 15, . . . , 12,
10, . . . , 8,

5, . . . 1

y5 = ψCO2 15, 14, . . . , 1 8, 7, . . . , 4,
2, 1

15, 14, . . . , 1 15, 14, . . . , 1 14, 13, 11, 10,
9, 8, 6, 4,

3, 2, 1

nx 117 45 138 136 83

Table 5. Table of state vectors xi for outputs yi (listed in columns) proposed by Boruta Feature Selection Algorithm for
sampling period ∆Ts = 15 s. Features u1, u2, u3 were not picked by BFSA at all, u4 is not chosen for y3.

Variables y1 = ψCOy1 = ψCOy1 = ψCO y2 = ψSO2
y2 = ψSO2y2 = ψSO2

y3 = ψNOx
y3 = ψNOxy3 = ψNOx

y4 = ψO2
y4 = ψO2y4 = ψO2

y5 = ψCO2
y5 = ψCO2y5 = ψCO2

V
ar

ia
bl

es
us

ed
fo

r
th

e
in

pu
tv

ec
to

r

u1 = ψ f g - - - - -

u2 = trun - - - - -

u3 = td - - - - -

u4 = Vair,prim 15, 14,
10, 2

1 - 15, 7, 2 8, 7, 6

u5 = Vrec 15, 14, . . . , 8,
6, 5, 1

14, 13, 11,
9, 8, . . . , 5,

3, 1

15, 14, 13, 9,
8, 6, 3, 2, 1

15, 14, . . . 1 15, 14, . . . , 1

u6 = vair,sec 15, 14, . . . , 1 10, 8, 5 15, 14, 12, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

u7 = VO2,prim 15, 14, . . . , 1 15, 7, 5, 4, 2 15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

u8 = VO2,sec 15, 13, 10, 6,
4, 3, 1

14, 13, 12, 6 15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

y1 = ψCO 15, 14, . . . , 1 15, 13, 11, 10,
4, 2, 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

y2 = ψSO2 15, 14, . . . , 1 15, 14, . . . , 10,
8, . . . , 3, 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

y3 = ψNOx
15, 14, 12,
11, . . . , 11

15, 14, 13, 5,
3, 2, 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1
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Table 5. Cont.

Variables y1 = ψCOy1 = ψCOy1 = ψCO y2 = ψSO2
y2 = ψSO2y2 = ψSO2

y3 = ψNOx
y3 = ψNOxy3 = ψNOx

y4 = ψO2
y4 = ψO2y4 = ψO2

y5 = ψCO2
y5 = ψCO2y5 = ψCO2

y4 = ψO2 15, 14, . . . , 1 7, 6, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

y5 = ψCO2 15, 14, . . . , 1 15, 12, 11,
6, 5, . . . 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

nx 126 67 127 138 138

Table 6. Table of state vectors xi for outputs yi (listed in columns) proposed by Boruta Feature Selection Algorithm for
sampling period ∆Ts = 25 s. Features u1, u2, u3 were not picked by BFSA at all, u4 is not included in state vector for y5.

Variables y1 = ψCOy1 = ψCOy1 = ψCO y2 = ψSO2
y2 = ψSO2y2 = ψSO2

y3 = ψNOx
y3 = ψNOxy3 = ψNOx

y4 = ψO2
y4 = ψO2y4 = ψO2

y5 = ψCO2
y5 = ψCO2y5 = ψCO2

V
ar

ia
bl

es
us

ed
fo

r
th

e
in

pu
tv

ec
to

r

u1 = ψ f g - - - - -

u2 = trun - - - - -

u3 = td - - - - -

u4 = Vair,prim 14, 10, 9, 2 9, 5, 1 10, 7, 21 4 -

u5 = Vrec
15, 14, 12, 10,

9, 7, 6,
5, . . . , 1

14, 8, 6, 4,
3, 2, 1

15, 13, . . . , 4,
3, 1

15, 14, . . . 11,
9, 8, . . . , 1

15, 13, . . . , 10,
8, . . . , 4, 2, 1

u6 = vair,sec 15, 14, . . . , 1 15, 10, 9 15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

u7 = VO2,prim 15, 14, . . . , 1 12, 11, . . . , 7 15, 14, 13, 12,
10, 9, . . . , 1

15, 14, . . . , 1 15, 14, . . . , 1

u8 = VO2,sec 15, 14, . . . , 7,
8, 3

15, 14, 13, 11,
10, 9, 6

15, 14, 12, 9,
8, 7, . . . , 1

15, 14, . . . , 1 13, 10, 8, 7,
6, 4, 3, 2, 1

y1 = ψCO 15, 14, . . . , 1 14, 13, . . . , 9,
6, 5, 1

15, 13, . . . , 10,
8, 7, . . . , 1

15, 14, . . . , 1 15, 14, . . . , 1

y2 = ψSO2 15, 14, . . . , 1 15, 14, 12,
11, . . . , 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 9,
7, 6, 4, . . . , 1

y3 = ψNOx 15, 14, . . . , 1 12, 11, 2, 1 15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

y4 = ψO2 15, 14, . . . , 1 13, 10, 3,
2, 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

y5 = ψCO2 15, 14, . . . , 1 11, 10, 9,
3, 1

15, 14, . . . , 1 15, 14, . . . , 1 15, 14, . . . , 1

nx 130 63 129 135 124

The Multiscale False Neighbours analysis was performed with the same configuration
for all samplings ∆T = [5, 10, 15, 25] s. The step delays nui and nyj were set as [5, 10, 15],
resulting to 3 state vector configurations with 3 different numbers of features; nx =
[65, 130, 195]. The fourth examined state vector is proposed by BFSA. Results are shown
in Figures 6–9. The RACFN was chosen as a comparative quantity due to the ability to
compare the examined state vectors’ data variance and graphically express the results.



Processes 2021, 9, 1757 12 of 15

Figure 6. Relative Areal Cumulative False Neighbors for sampling periods ∆T = 5 s.
Orange columns are state vectors proposed by BFSA and blue columns are state vectors
created according to (11) with nui = nyj = [5, 10, 15]. Axis x represents the number of
features nx for specified yi.

Figure 7. Relative Areal Cumulative False Neighbors RACFN for sampling periods ∆T =

10 s. Orange columns are state vectors proposed by BFSA and blue columns are state
vectors created according to (11) with nui = nyj = [5, 10, 15]. Axis x represents the number
of features nx for specified yi.

Figure 8. Relative Areal Cumulative False Neighbors RACFN for sampling periods ∆T =

15 s. Orange columns are state vectors proposed by BFSA and blue columns are state
vectors created according to (11) with nui = nyj = [5, 10, 15]. Axis x represents the number
of features nx for specified yi.
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Figure 9. Relative Areal Cumulative False Neighbors RACFN for sampling periods ∆T =

25 s. Orange columns are state vectors proposed by BFSA and blue columns are state
vectors created according to (11) with nui = nyj = [5, 10, 15]. Axis x represents the number
of features nx for specified yi.

4. Discussion

The major outcome of the feature selection by BFSA and its newly proposed valida-
tion of MSFNA is demonstrated via Figures 6–9, where the different sampling periods
(∆T = [5, 10, 15, 25] s) results in various levels of uncertainty (RACFN) between by-BFSA-
designed feature vectors and process outputs. In Figures 6 and 7, where the sampling
is chosen faster (than in Figures 8 and 9), the BFSA proposes such feature vector config-
uration that displays more uncertainty via RACFN than other merely heuristic manual
feature selections (Figures 6 and 7). For longer sampling period (Figures 8 and 9), the by-
BSFNA-designed feature vectors already displays lowest uncertainty via RACFN as well.
Recall, that all RACFN for all various feature vector configurations were evaluated by PCA
compression of feature vectors to the equal length nc and that even naturally increases the
robustness of the method as already discussed in Section 2.1.

Primary airflow Vair,prim, recirculation flow Vrec, and secondary air velocity vair,sec
were selected by BFSA less often and differently for each sampling frequency that indicates
their lower importance for emission prediction.

BFSA results, further validated by MSFNA, supports the assumption that the flue
gas composition is strongly dependent on previous values of process output variables
yi, and this corresponds to the high complexity of the combustion dynamics where the
measured values provide us only with a minimum necessary information about the actual
process, so the emission prediction is still a challenge.

With a specific sampling frequency, a shape similarity can be observed across all
output variables. It is the result of the strong sampling frequency dependence of the
dynamic systems.

A minimum RACFN was reached for the state vector designed by BFSA for longer
sampling periods ∆T = 15 s and ∆T = 25 s. This finding corresponds to the assumptions
of slower dynamical behavior of important phenomena in the real process for which we
intend to predict the emissions (but in the following research as it would exceed the scope
of this paper). It can be observed, that the uncertainty of the by-BFSA-designed features
became improved for longer sampling of ∆T = 15 s (Figure 8), and it did not improve for
longer samplings further (Figures 8 vs. 9). Thus, the combination of BFSA and MFSNA
not only selects features but also suggests a proper shortest sampling (for which RACFN
became the smallest out of the other non-BFSA feature designs).

5. Conclusions

The feature selection algorithm (BFSA) was studied for mapping between available
measurements (features) and emissions (outputs) of bubbling fluidized bed oxy-fuel com-
bustion data. Newly, the original uncertainty analysis (MFSNA) was extended (PCA &



Processes 2021, 9, 1757 14 of 15

RACFN) and proposed to validate the BFSA in terms of uncertainty via false neighbors.
The proposed technique is promising for the automatic configuration of feature vectors
from measured data (for future prediction systems with machine learning). Furthermore,
the combination of conventional BFSA with MSFNA appeared capable to clearly validate
and propose a proper sampling period that is computationally difficult with standalone
BFSA otherwise.
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3. Vodička, M.; Haugen, N.E.; Gruber, A.; Hrdlička, J. NOX formation in oxy-fuel combustion of lignite in a bubbling fluidized

bed—Modelling and experimental verification. Int. J. Greenh. Gas Control 2018, 76, 208–214. [CrossRef]
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