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Abstract: Graphite/polymer composites are brittle materials that are prone to producing cracks and
concavities on machined surfaces, and their surface quality shows greater randomness. This work
aims to overcome the large fluctuations in the machined surface quality of graphite/polymer com-
posites, realize the prediction of machined surface roughness under different machining conditions
and optimize the process parameters. A graphite/polymer composite material was cut orthogonally
using different machining parameters, and the machined surface roughness of the cut samples was
measured by a noncontact surface profiler to obtain training samples for Artificial Neural Network
(ANN). In this study, a trained radial basis function neural network was used to predict the machined
surface roughness, and the prediction accuracy was more than 93%. A Genetic Algorithm (GA)
was used to optimize the established ANN, and then grey relational analysis was used to compare
the accuracy of the GA optimization results. The ANN prediction after GA optimization showed
that the lowest machined surface roughness of the graphite/polymer composites was 1.81 µm, and
the corresponding optimal cutting speed, cutting depth, tool rake angle, and rounded edge radius
were 11.2 m/min, 0.1 mm, 6.85◦, and 11.16 µm, respectively. A verification experiment showed
that the lowest machined surface roughness was obtained when the above process parameters were
selected, which was only 1.95 µm, and the prediction error of the ANN was approximately 7%. The
combination of a GA and an ANN can accurately predict the surface roughness of graphite/polymer
composite materials and optimize the process parameters.

Keywords: graphite/polymer composites; orthogonal cutting; brittle materials; machined surface
quality; roughness prediction and optimization

1. Introduction

Graphite and its composite materials have been widely used in industrial applications
such as biomedical implants [1], fuel cell bipolar plates [2], EDM electrodes [3], semi-
conductor fixtures, diesel engine [4–6], and mechanical seals [7]. In most cases, graphite
and its composite materials must be mechanically processed to meet actual application
requirements. However, because graphite and its composite materials are brittle materials,
the machined surface often exhibits many concavities and cracks, and it is difficult to obtain
a good machined surface quality [8]. Therefore, research on the machined surface quality
of graphite and its composite materials has attracted widespread attention in academic and
engineering fields.

Wang et al. [9] conducted orthogonal cutting experiments on high-purity graphite.
They found that obvious cracks occurred during the cutting process, and the surface mate-
rial was removed in large pieces, thereby forming obvious concavities on the machined
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surface. Zhou et al. [10] found that the size of that concavity decreases with decreas-
ing cutting depth. When Huo et al. [11] micro-milled fine-grained graphite, they found
that the machined surface also exhibited a large number of concavities, and the surface
roughness fluctuated greatly, exceeding 20%. Yang et al. [12] studied the machinability
of graphite/polymer composites by orthogonal cutting, and their experimental results
showed that the surface roughness of the machined surface also fluctuated greatly, with
a fluctuation range of 25%. Obviously, such a large fluctuation range of roughness is
highly unsuitable for the selection of process parameters during an actual machining
process. Therefore, it is particularly important to achieve an accurate prediction of the
machined surface roughness before machining. Thus, to accurately predict the machined
surface roughness of high-purity graphite and obtain a better machined surface quality,
Yang et al. [13] obtained the milling parameters that minimized the machined surface
roughness when a Grey Relational Analysis (GRA) was used to optimize the milling
process parameters, and then a prediction model for the machined surface roughness of
high-purity graphite was established by a regression analysis method based on the experi-
mental data [14]. Shie et al. [15] established an ANN prediction model for the machined
surface roughness of high-purity graphite during the milling process. Compared with the
traditional Taguchi method and experimental design method, the prediction results were
much more accurate because of the superior robustness to noise.

To date, although there has been extensive research on the machined surfaces of
graphite and its composite materials, there remains a lack of research on the prediction
of machined surface roughness at specified process parameters. Graphite/polymer com-
posites exhibit a unique low crack growth during the machining process [8], and the
machined surface roughness can fluctuate greatly. It is necessary to establish a more accu-
rate prediction model and obtain process parameters that minimize the machined surface
roughness. In this study, an ANN prediction model for the machined surface roughness of
graphite/polymer composites was established based on the results of orthogonal cutting
experiments. Then, with the goal of minimizing the surface roughness of the machined
surface, a Genetic Algorithm (GA) was used to optimize the established ANN model, and fi-
nally, a comparative analysis and experimental verification for optimal process parameters
were conducted.

2. Experimental Methodologies
2.1. Experimental Method

The dry orthogonal cutting experiment was carried out on a BC6063B planer. During
the cutting process, the machining parameters that affect the surface roughness of the
machined mainly include cutting speed (vc), cutting depth (ac), tool rake angle (γo), and
rounded edge radius (rε). To reduce the number of experiments while ensuring sufficient
training samples for the ANN, the above four process parameters were first arranged in or-
thogonal experiments according to four factors and three levels during the cutting process,
for a total of 9 groups, as shown in Table 1. In addition, 8 groups of experiments with other
different cutting parameters were added, and the machined surface roughness obtained by
the orthogonal experiment was used as the training sample for the ANN. The prediction
samples for the ANN were set to 5 groups, so there were 22 groups of experiments.

Table 1. Factors and levels of orthogonal test.

A vc/m·min−1 B ac/mm C γo/◦ D rε/µm

1 3 0.05 0 10
2 7 0.15 10 50
3 12 0.30 20 90
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The experimental setup is shown in Figure 1, and the dimensions of the workpiece
are 70 × 45 × 5 mm. The experimental materials were purchased from the market, and
the main mechanical properties are shown in Table 2. The tool material was high-speed
steel, and the tool clearance angle ao was 10◦, as shown in Figure 1b. The tool rake angle
and clearance angle were obtained by grinding with an MQ6025A universal tool grinder,
which can reduce the error of the tool angle within 1◦.
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Figure 1. Orthogonal cutting experiment device that (a) is clamping method and (b) is the schematic drawing of tool. 
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Table 2. Mechanical properties of graphite/polymer composites.

Performance Density Shore Hardness Tensile Strength Compressive Strength Elastic Modulus Porosity

Parameter 1.9 g/cm3 75 17.3 MPa 107.2 MPa 15.9 GPa 0.5%

A noncontact BMT Expert 3D surface profiler was used to measure the surface rough-
ness of the workpieces. To ensure the accuracy of the measurement results, 5 workpieces
were machined for each group, and each workpiece was randomly measured 15 times.
Therefore, 75 roughness data points were measured for each group, and then the average
of all measurement data was taken as the machined surface roughness for each group.

2.2. Machined Surface Roughness at Different Cutting Parameters

The machined surface roughness of graphite/polymer composites at different process
parameters is shown in Table 3. The first 9 groups are the part of ANN training samples
obtained by an orthogonal experiment design with 4 factors and 3 levels, the 10th to 17th
groups are the added ANN training samples, and the 18th to 22nd groups are the ANN
prediction samples.
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Table 3. Machined surface roughness at different cutting parameters.

No. vc/m·min−1 ac/mm γo/◦ rε/µm Ra/µm Sample Description

1 3 0.05 0 10 3.09

Orthogonal
experiments

ANN train-
ing samples

2 3 0.15 10 50 4.83
3 3 0.30 20 90 8.13
4 7 0.05 10 90 6.99
5 7 0.15 20 10 5.80
6 7 0.30 0 50 7.75
7 12 0.05 20 50 4.29
8 12 0.15 0 90 5.57
9 12 0.30 10 10 8.53

10 3 0.05 0 50 4.38
11 3 0.15 20 90 5.54
12 7 0.30 20 50 7.34
13 7 0.15 0 90 5.92
14 12 0.15 0 10 5.00
15 10 0.10 10 10 3.38
16 5 0.20 10 10 4.56
17 5 0.25 10 10 4.96

18 7 0.10 10 10 3.81

ANN prediction samples
19 3 0.10 10 10 3.42
20 12 0.10 10 10 3.15
21 5 0.10 10 50 5.26
22 5 0.10 10 90 6.43

3. Establishment of the Roughness Prediction Model
3.1. The Selection of the ANN

A Radial Basis Function (RBF) neural network often uses a Gaussian function as
the excitation function. It is a three-layer static feedforward ANN that is characterized
by simple structure and efficient learning and training and can approximate arbitrary
nonlinear functions with arbitrary accuracy [16]. Therefore, an RBF neural network was
used as the ANN in this study.

3.2. The Structure of the ANN

In this study, there were four main factors that affect the machined surface roughness
of graphite/polymer composites, including cutting speed, tool rake angle, cutting depth,
and rounded edge radius. The above four factors were used as independent variables, so
there were 4 neurons in the input layer of the artificial nerve network. Since the dependent
variable in this study was only roughness, there was only 1 neuron in the output layer. The
number of neurons in the hidden layer was automatically determined by the RBF neural
network during the training process. The topological structure of the ANN is shown in
Figure 2.

3.3. ANN Training

Table 3 shows that the data between the input and output exhibit a large distribution
range. To avoid output distortion and network paralysis due to the inhomogeneity of input
parameters and to reduce the training time of the ANN, the sample data were normalized.
The mapminmax function in MATLAB software was used to normalize the sample data.
The normalization formula is as follows:

y =
(ymax − ymin)(x − xmin)

xmax − xmin
+ ymin (1)

where ymin and ymax are the minimum and maximum values of the output, respectively,
and xmin and xmax are the minimum and maximum values of the input, respectively.
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Figure 2. Schematic of artificial network topological structure.

The ANN toolbox in MATLAB software was used to simulate and train the ANN.
The experimental data from the 1st to 17th groups in Table 3 were selected as the training
samples for the ANN, and the experimental data from the 18th to 22nd groups were used
as the prediction samples for the ANN. The ANN control error was set as 10−5, and the
expansion speed of the RBF was set as 1. The training result of the ANN is shown in
Figure 3. The model error after training reaches 10−30, and the training result fully meets
the expected requirements.
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The trained ANN was used to predict the machined surface roughness at the machin-
ing parameters according to the 18th to 22nd groups in Table 3. The differences between
the predicted results and the experimental results are shown in Figure 4. It can be seen in
the figure that the prediction accuracy of the ANN for the machined surface roughness
exceeded 93%.

It should be noted that although the prediction error of No. 20 sample is the largest,
which is 6.98%, and the prediction error of sample No. 22 is the smallest, which is 1.40%, it
cannot be considered that the ANN has a certain law for the prediction of the machined
surface roughness of samples with different groups. In fact, the predicted values of the five
groups of samples in Figure 4 all use the same ANN model. Theoretically, the prediction
errors of each group should be very close, and the predicted values should also be greater
or less than the actual values. However, the prediction error range in this article is from
1.40% to 6.98%, and some predicted values are greater than the actual values, while others
are less than the actual values. This is mainly caused by the significant fluctuation of the
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machined surface quality caused by the brittleness of the graphite/polymer composites.
This is also the main reason why it is difficult to obtain a good surface quality during the
machining of graphite/polymer composites.
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4. Optimization of the ANN Prediction Model

Although the machined surface roughness of the workpiece can be controlled by
optimizing the process parameters during the actual cutting process, the machined surface
roughness and the cutting parameters are nonlinear, and it is difficult to establish a specific
functional relationship between these features. A GA is a computational model that
simulates biological evolution; it does not require a specific functional relationship between
design variables and objective functions. A GA was used to optimize the ANN model in
this section and then obtain the cutting parameters that minimize the machined surface
roughness of the graphite/polymer composite material.

4.1. Optimization Model

The machined surface roughness y can be calculated for different cutting parameters
x according to Formula (2) and the parameters x are subject to (s.t.) numerical range.
Therefore, combined with the cutting parameters of the experiments in Table 1, the op-
timization model for the machined surface roughness of graphite/polymer composites
during orthogonal cutting process can be defined as:

min y
s. t.

3 ≤ x1 ≤ 12
0.05 ≤ x2 ≤ 0.3
0◦ ≤ x3 ≤ 20◦

10 ≤ x4 ≤ 90

(2)

where x1/m·min−1 is the cutting speed, x2/mm is the cutting depth, x3/◦ is the tool rake
angle, and x4/µm is the rounded edge radius.

4.2. Solving Process

The solving steps of the GA are shown in Figure 5. The main solution parameters
were set as follows: the initial population size p was 100, the maximum number of gene
generation MAXGEN was 200, the crossover probability PC was 0.6, and the mutation
probability PM was 0.01. The real number coding was selected during the solution process.
Since the optimization function contained 4 input parameters, the individual length L was
4. The genetic algebra counter was set as gen = 0.
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The predicted value of the machined surface roughness by the RBF neural network
was taken as the individual fitness value. The larger the fitness value is, the stronger
the chromosome and the better the individual. Therefore, the fitness can be defined as
e = 10− y [17]. According to the degree of fitness, roulette was used to select individuals
from the current population to the next step.

Processes 2021, 9, 1858 7 of 12 
 

 

min y 

s. t. 

3 ≤ x1 ≤ 12 

0.05 ≤ x2 ≤ 0.3 

0° ≤ x3 ≤ 20° 

10 ≤ x4 ≤ 90 

(2)

where x1/m·min−1 is the cutting speed, x2/mm is the cutting depth, x3/° is the tool rake angle, 
and x4/μm is the rounded edge radius. 

4.2. Solving Process 
The solving steps of the GA are shown in Figure 5. The main solution parameters 

were set as follows: the initial population size p was 100, the maximum number of gene 
generation MAXGEN was 200, the crossover probability PC was 0.6, and the mutation 
probability PM was 0.01. The real number coding was selected during the solution pro-
cess. Since the optimization function contained 4 input parameters, the individual length 
L was 4. The genetic algebra counter was set as gen = 0. 

The predicted value of the machined surface roughness by the RBF neural network 
was taken as the individual fitness value. The larger the fitness value is, the stronger the 
chromosome and the better the individual. Therefore, the fitness can be defined as 푒 =
10 − 푦 [17]. According to the degree of fitness, roulette was used to select individuals 
from the current population to the next step. 

Start 

Encoding the  
initial value 

Initial RBF neural 
network threshold 

Set the neural network 
training error as fitness 
 value 

Input data 

Data  
preprocessing 

Selection 

Crossover 

Mutation 

Evaluate the fitness 

Stop criteria met ? Y End N 

 
Figure 5. The solving process of the GA. 

The adaptability variation curve during the process of optimizing the cutting speed, 
cutting depth, rake angle, and rounded edge radius is shown in Figure 6. 

Figure 5. The solving process of the GA.

The adaptability variation curve during the process of optimizing the cutting speed,
cutting depth, rake angle, and rounded edge radius is shown in Figure 6.
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It can be seen from Figure 6 that convergence was reached after approximately
140 iterations. The obtained minimum roughness of the machined surface was 1.81 µm,
and the corresponding cutting speed, cutting depth, rake angle, and rounded edge radius
were 11.2 m/min, 0.1 mm, 6.85◦, and 11.16 µm, respectively.

5. Comparative Analysis and Experimental Verification

To verify the prediction accuracy of the ANN for the machined surface roughness
of graphite/polymer composites, it is necessary to perform further comparative analysis.
GRA, which was originally proposed in the 1980s, has been widely used in the field of
multiobjective optimization because of its high prediction accuracy [18–20]. This section
will use GRA to compare and analyze the optimal process parameters obtained by the GA.

5.1. Grey Relational Analysis (GRA)

The existing literature shows that when using the results obtained by the orthogonal
experimental design to perform the GRA, the optimal process parameters could be obtained
by 9 groups of data [21–23]. The 1st to 9th groups of experimental data in Table 3 are selected
for analysis. According to the GRA step, the experimental data need to be transformed to
eliminate their dimensions and make the data comparable. During the machining process
of graphite/polymer composites, a lower machined surface roughness is preferable, which
can be characterized by miniaturization. Referring to [24], the experimental data are
transformed according to Formula (3). The data transformation results are shown in
Table 4.

x∗i (k) =
x0

i (k)−minx0
i (k)

maxx0
i (k)−minx0

i (k)
(3)

where x∗i (k) represents the transformed data sequence, x0
i (k) represents the original data

sequence, i represents the experimental times, k represents the optimization target, namely,
the machined surface roughness, and max x0

i (k) and min x0
i (k) represent the maximum

and minimum values of the original data sequence, respectively.

Table 4. Data processing result and grey relational grade.

No.
Factor

Data Processing Result Grey Relational Grade
A B C D

1 1 1 1 1 1.000 1.000
2 1 2 2 2 0.680 0.610
3 1 3 3 3 0.074 0.351
4 2 1 2 3 0.283 0.411
5 2 2 3 1 0.502 0.501
6 2 3 1 2 0.143 0.368
7 3 1 3 2 0.779 0.693
8 3 2 1 3 0.544 0.523
9 3 3 2 1 0.000 0.333

The grey relational coefficient needs to be solved when the data transformation is
completed. Since the optimization goal in this study was only the machined surface
roughness, the grey relational grade could be directly obtained after calculating the grey
relational coefficient, as shown in Table 4. The grey relational coefficient was solved
according to Formula (4).

ξi =
∆min + ρ∆max

∆oi(k) + ρ∆max
(4)

where ∆oi(k) = |yo(k)− yi(k)| represents the absolute difference, yo(k) represents the refer-
ence sequence, which is 1, ∆min

i oi
(k)min represents the minimum difference, ∆max

i oi
(k)max

represents the maximum difference, and ρ is 0.5.
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It is necessary to calculate the average grey relational degree of each process parameter
at different levels to obtain the optimal cutting parameters. The calculation results are
shown in Table 5. The cutting parameter with the maximum grey relational grade was
selected as the optimal cutting parameter, see (*) in Table 5, so the optimal cutting parameter
combination was A1B1C1D1, that is, the cutting speed was 3 m/min, the cutting depth was
0.05 mm, the rake angle was 0◦, and the rounded edge radius was 10 µm. Obviously, this
cutting parameter was the No. 1 experiment in Table 3.

Table 5. Average grey relational grade at different cutting parameters.

Factor
Average Grey Relational Grade

Level 1 Level 2 Level 3

A 0.654 * 0.427 0.516
B 0.701 * 0.545 0.351
C 0.630 * 0.451 0.515
D 0.611 * 0.557 0.428

5.2. Verification Experiment

The optimal cutting parameters obtained by the two methods of GRA and the GA opti-
mizing ANN are shown in Table 6. The cutting parameters obtained by the GA optimizing
the ANN take their close integer values according to actual working conditions. Although
the optimal cutting parameters obtained by GRA were included in Table 3, to eliminate the
potential impact of different experimental batches, orthogonal cutting experiments were
performed together with the cutting parameters obtained by GA optimization. To mini-
mize the error, 5 workpieces were machined for each group of cutting parameters, and the
average roughness was taken as the machined surface roughness at the cutting parameters.

Table 6. Optimal cutting parameters and machined surface roughness at different optimization
methods.

vc/m·min−1 ac/mm γo/◦ rε/µm
Surface Roughness/µm

Optimal Experimental

GA optimization 11 0.10 7 10 1.81 1.95
GRA 3 0.05 0 10 3.09 3.11

Figure 7 shows the typical machined surface morphology of graphite/polymer com-
posites at different cutting parameters. The machined surface morphology at the optimal
cutting parameters obtained by the GA optimizing the ANN is shown in Figure 7a. The
workpiece surface was relatively intact, and there were no obvious concavities on the
machined surface.

The surface morphology machined at the cutting parameters optimized by the grey
relational method is shown in Figure 7b. It can be seen in the figure that there are a
few tiny concavities on the machined surface. Obviously, the surface quality is not as
good as that shown in Figure 7a. Figure 7c shows the machined surface morphology of
experiment No. 5 in Table 3, which is also a typical machined surface morphology obtained
by graphite/polymer composites without cutting parameter optimization. Figure 7c shows
that there are many concavities with different sizes on the machined surface. Comparing
Figure 7a,b, it can be seen that the surface quality of Figure 7c is very poor. It should be
noted that although the machined surface quality of Figure 7b is not as good as that of
Figure 7a, compared with Figure 7c, number of concavities of Figure 7b is significantly
reduced, while the average size of concavities is also significantly shortened. Obviously, the
machined surface quality of Figure 7b has been much improved compared with Figure 7c,
which shows that the method of optimizing machining parameters of graphite/polymer
composites by GRA is feasible.
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A noncontact 3D surface profiler was used to measure the surface roughness of the
machined workpieces and the measurement results are shown in Table 6. It can be seen
from the Table that the machined surface roughness obtained by the ANN and GRA was
1.95 and 3.11 µm, respectively, and the prediction error of the ANN was approximately 7%,
which verifies the accuracy of the optimal cutting parameters obtained by optimizing the
ANN using the GA.
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6. Conclusions

(1) The machined surface roughness data of graphite/polymer composites in orthogonal
cutting process were used as training samples of ANN, and then a machined surface
roughness prediction model for graphite/polymer composites was established based
on RBF ANN. The prediction accuracy of the trained ANN exceeds 93%.

(2) The prediction results of the ANN optimized by the GA showed that the lowest
machined surface roughness of graphite/polymer composites was 1.81 µm, and the
corresponding cutting speed, cutting depth, tool rake angle, and rounded edge radius
after decoding were 11.2 m/min, 0.1 mm, 6.85◦, and 11.16 µm, respectively. It should
be noted that some of the data in the above process parameters are difficult to apply
in reality, such as rake angle and rounded edge radius. In actual applications, they
can be taken as integers close to the computational process parameters. Therefore, the
recommended optimal process parameters are cutting speed of 11 m/min, cutting
depth of 0.1 mm, tool rake angle of 7◦, and rounded edge radius of 10 µm.

(3) The verification experiment showed that the machined surface roughness of graphite/
polymer composites during the orthogonal cutting process was 3.11 µm, when the
optimal parameters obtained by the GRA were used. The machined surface roughness
was only 1.95 µm at the cutting parameters obtained by the optimized ANN, and the
corresponding prediction error of the ANN was approximately 7%.
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