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Abstract: Modeling of gas-solid fluidized systems has been a prevailing challenge over the last few
decades. With different approaches and implementing different sub-models to capture the essential
multiphase and multiscale phenomena in these systems, major advances have been achieved, even
though most models are only subject to a practical validation of macroscopic parameters. The current
description of fluidized beds through mathematical models relies on the inclusion of vast sub-models,
leading to an unquantifiable degree of uncertainty on the models’ applicability for extrapolation
studies. Furthermore, each closure and fitting parameter in the model represents a possible source
of deviation, and their optimization, hence, becomes another major challenge. The recent advances
in measurement techniques can enable us to troubleshoot and optimize the implemented models
and sub-models based on local scale measurements. Local multiphase hydrodynamic information
obtained by advanced measurement techniques can enable the validation of local predictions and
optimization of the coupled sub-models, leading to the development of simplified and highly
predictive models. Thus, pairing advanced experimental studies on these systems with insightful
modeling approaches is required to advance the shortcoming and enhance the predictive quality
of the models. In this work, an overview of the status of modeling and experimental measurement
techniques for gas-solid fluidized beds is presented; then, an overview on pairing both experimental
and modeling studies to improve the models’ local predictions for fluidized beds is presented.

Keywords: fluidized bed; CFD techniques; mathematical modeling; modulus of elasticity; advanced
measurement techniques

1. Introduction

Gas-solid fluidized bed systems are of great interest in industrial applications, such as
Fischer-Tropsch synthesis, CO2 capture, biomass combustion, gasification, drying and other
catalytic processes [1–5]. These systems have been desirable for such vast applications by
virtue of their high mass transfer rates due to the high gas-solid contact and intense solids
mixing, nearly isothermal temperature distributions even for highly exothermic reactions,
and low pressure drops [6–9].

Despite these vast industrial applications of fluidized beds, the local-scale phenomena,
such as the flow structures, mixing behaviors solids trajectories and recirculation inside
the bed, are poorly understood [10–14]. To a great extent, the lack of a deeper knowledge
of the local-scale phenomena on these systems lies on the complexity of the multiphase
and multiscale interactions, and the recognized scale dependency of these systems [15–17].
Remarkably, it has been reported on the literature that the gas-phase dynamics is scale-
dependent and is affected by textural characteristics of the bed, such as the column diameter
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to average the solid particle diameter ratio (DC/〈Dσ〉), the solid particles material and size,
and the presence of internal structures [6,8,18–21]. This disadvantageous characteristic of
the hydrodynamic behavior of fluidized beds will be prevalent in reactors of different length
scales, and will affect key parameters, such as bubble size, bubble rise velocity, bubble
trajectories, bubble growth and mass transfer of reactants from the bubbling gas-phase to
the disperse solids phase.

Vast experimental studies have been conducted to characterize the key hydrodynamic
and design parameters of fluidized beds, in order to identify the conditions and phenomena
that have adverse effects on the two-phase hydrodynamic phenomena, kinetic throughput,
and thermal behavior [22–24]. However, most of the applied experimental techniques have
important limitations in the level of detail and accuracy in the description of the local scale
phenomena and are limited to a restricted number of locations inside the bed [25], only
allowing us to measure macroscopic parameters, such as implementing absolute or differ-
ential pressure transducers [26], or fail to provide detailed time resolved measurements of
the local fields [14]. This represents a fundamental limitation when characterizing the hy-
drodynamics of chaotic fluidized systems, such as FB reactors where strong pointwise and
timewise variations of the local fields have been observed [20,27]. Furthermore, systematic
errors depending on the implemented measurement technique have been observed [11],
such as the disturbance of particle velocities when inserting optical fiber sensors [28]. Con-
sidering that the key hydrodynamic parameters in fluidized beds are interrelated gas-solid
parameters, such as holdups distribution and bubble properties, measurement techniques
that disturb the solids dynamics will also affect gas phase measurements.

Hence, a comprehensive and detailed characterization and prediction of the pointwise
and timewise hydrodynamic behavior of gas-solid fluidized systems is still required and
is of paramount importance for troubleshooting and optimization of current systems, as
well as for the design, scale up tasks and the implementation of new processes. There is
still a need to fulfill the shortcomings in the knowledge of the local-scale phenomena in
fluidized systems, as well as to develop tools to predict the macroscopic and pointwise
behavior of these systems and to optimize, troubleshoot, design, and scale-up. A promising
alternative to advance the knowledge of the local-scale phenomena is the application and
development of locally validated mathematical models, which enable the timewise and
pointwise analysis of hydrodynamics phenomena and extrapolation studies. However,
nowadays, the modeling of these systems requires simplifications, such as model order
reduction, since the purely theoretical (mechanistic) models are still too computationally
expensive, require an unpractical level of detail in the geometrical representation [29], or
result in ill-posed or highly stiff equations [30]. In order to avoid such complexity, the
common approach is to insert on the transport equations closure sub-models that capture,
to a certain extent, complex phenomena, such as the microscale multiphase interactions [31].
The drawback in relying on coupled sub-model lays is the fact that these closure terms
are usually a set of empirical or semi-empirical expressions, which lack a mechanistic
development and can, hence, constrain the applicability of the main mathematical model.
Furthermore, the coupled sub-models usually lack an independent validation, and are
instead usually tied to a practical validation by virtue of a validation procedure of the main
model [32].

Accordingly, despite the advantages that mathematical modeling can provide in
advancing the knowledge of local scale phenomena on these systems, there is still a
shortcoming in locally validated models. Furthermore, even though coupling sub-models
can enhance the predictive quality of the models, the applicability of a model can be
constrained by the applicability of the sub-models, so that a predictive model that relies on
a vast number of coupled sub-models could potentially be closer to a fitting of the model
against the presented experimental data, rather than being a predictive model. Hence,
in this work, an overview on pairing mathematical modeling studies with detailed local
experimental measurements in order to enhance the predictive quality of mathematical
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models, while keeping a reduced number of coupled sub-models, for a Fluidized Bed is
presented.

2. Overview of Mathematical Models for Gas-Solid Fluidized Beds

In the context of modeling gas-solid fluidized beds, two main different approaches can
be distinguished, which differ in the treatment of the solid phase. The first approach is con-
sidering an Euler-Lagrangian specification of the flow field, where the fluid phase follows
an Eulerian frame of reference, and the solid phase a Langrangian [33]. In these models, the
fluid phase is considered to be continuous, and is modeled by a Navier–Stokes equation,
while the solid phase is considered to be a discrete phase, where every solid particle is
resolved, and their movement is modeled by Newton’s Equation of Motion. The Eulerian
and Langrangian phases in this approach are coupled through boundary conditions set
at each solid surface; other multiphase interactions are incorporated though additional
interfacial momentum exchange closure sub-models [34,35]. It has been recognized that
Eulerian-Lagrange models, also known as CFD-discrete element models (CFD-DEM), best
describe the microscale dynamic behaviors of these systems [36]. However, these models
become computationally expensive when dealing with a large number of solid particles,
and are, thus, usually constrained to model systems of around 105 particles [34,35]. This
represents an important limitation, as the number of solid particles in lab-scale fluidized
systems can be around 109. Therefore, CFD-DEM models do not seem to be suitable to
model lab-scale or larger scale systems.

In order to deal with the limitation of computational resources, new computational
and model order reduction schemes for CFD-DEM models have been proposed in recent
years, commonly called unresolved CFD-DEM [37–42]. In this approach, there is a pseudo
coupling of the phases, by replacing the boundary resovled gas-solid superficial interactions
for effective volumetric momentum exchange closures. This allows to set a computational
mesh for the gas phase coarser than the solid particles size, where the effective volumetric
gas–solid interactions are estimated on each mesh element [41]. With unresolved CFD-
DEM models, systems of up to 50× 106 have been modeled [42]. However, this approach,
in contrast with the resolved CFD-DEM approach, required the coupling of additional
sub-models to account for effective multiphase interactions, such as drag force, virtual
mass force, and Shaffman and Magnus lift force sub-models [41,43,44]. Other model order
reductions for resolved CFD-DEM models have been recently proposed, such as the so-
called particle-in-cell (PIC) approach. PIC models consider that the solid particles in a
fluidized can be modeled as parcels composed of a finite number of particles, and that
the inter-parcel, intra-parcel (intraparticle) and fluid–parcel interactions can be accounted
for through the closures implemented on the governing equations [45]. Applying the PIC
approach, Ma et al. [46] and Yang et al. [47] reduced the number of resolved particles from
106 to 1.8 × 105 parcels, using parcels of around 60 particles, while Breault et al. [48] used
2.53× 105 parcels to model 4.63× 108 solid particles, using parcels of around 1830 particles.

The second approach in modeling these systems is considering an Euler–Euler spec-
ification of the flow field, where both phases are treated as continuum interpenetrating
phases, by considering the solid phase as a pseudo continuum phase [49]. This approach
has been recognized as a promising alternative to the CFD-DEM models, as it allows to
model large scale systems, while being computationally efficient, in terms of required
computational resources and computing times [36,50]. This approach relies on reducing
the model order by simplifying the description of the solid phase; however, such simplifi-
cation of considering the solid phase to behave as a pseudo-fluid, in essence, overlooks the
particle–particle interactions. Therefore, these models require the coupling of sub-models
that allow us to incorporate not only the multiphase interactions as in the CFD-DEM mod-
els, but also the multiscale particle–particle interactions. This adds further uncertainties in
the modeling of these systems, as there is an additional requirement to do a proper selection
of the sub-models and their coupling schemes. This approach generally results in models
with a vast number of coupled sub-models. The drawback in relying on coupled sub-model
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lies in the fact that these closure terms are usually a set of empirical or semi-empirical
expressions, which lack of a mechanistic development and can, hence, constraint the appli-
cability of the main mathematical model. Furthermore, the coupled sub-models usually
lack an independent validation, and are instead usually tied to a practical validation by
virtue of a validation procedure of the main model [32].

It can be seen that by either modeling approach, there is a need to model the multi-
phase and multiscale interactions through the inclusion of sub-models. Hence, developing
an insightful and useful mathematical model for fluidized bed systems depends on the
selection of the coupled sub-models. Furthermore, considering that each of the coupled
sub-models is intended to capture a specific phenomenon in the multiphase flow, each
sub-model has a corresponding representative physical length scale, and therefore, a proper
selection of the multiscale coupling scheme is needed. For example, the pressure gradient
(∇P) has a representative physical length scale corresponding to the reactor length (LC)
(Equation (1)), since the observable changes in the pressure profiles will be dominant along
the axial position of the column [26]; whereas if particle clustering is modeled

(
dnin
dt

)
(where nin is the number of particles captured by a cluster), the sub-model will have a rep-
resentative physical length scale corresponding to the effective collision volume between
particles (V) (Equation (2)) [36].

O(∇P) ∼ O(LC) (1)

O
(

dnin

dt

)
∼ O(V) ∼ O

(
D3

σ

)
(2)

In this sense, two different coupling approaches to incorporate the multiscale in-
teractions through sub-models can be recognized: daisy-chain coupling and centralized
coupling [51], (Figure 1). In the daisy-chain coupling, the coupled sub-models to incorpo-
rate the multiscale phenomena are simultaneously solved with the main model. In this
way, the information of each sub-scale phenomena or sub-model is continuously shared.
This kind of multiscale coupling is usually seen in Euler–Euler models that incorporate
a Kinetic Theory of Granular Flows (KTGF) approach. Verma et al. [12] implemented an
Euler–Euler model for a fluidized bed with two different configurations of internals. In
order to model the solid stress tensor, they incorporated a KTGF approach, where they
included sub-models to account for granular energy conservation, solids pressure, solids
viscosity, and interface momentum transfer.
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Figure 1. Schematic diagrams of common multiscale coupling schemes.

On the other hand, in a centralized coupling scheme the sub-models are solved in
a separated computing step. Information, such as predictions of the flow fields, of the
main model are extracted and taken as inputs for the sub-model solver. The sub-models
are solved, and their predictions are then extracted and used as inputs to modify the
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predictions of the main model. This loop is repeated until convergence of the main model
is achieved. A clear example of this coupling scheme is seen in models that incorporate
a Population Balance Model (PBM). Hu and Liu [36] incorporated a PBM to predict the
clustering of solid particles for a fluidized bed. In their modeling scheme, the cluster
size distribution estimated by the PBM was used as a closure for the coupled drag force
sub-model. The modified estimated drag force improved the predictions of the radial solid
holdup distribution and particle velocities.

In every approach considered for gas–solid fluidized systems, there is an underlying
requirement of relying in the coupled sub-models and their coupling scheme. Hence, an
insightful multiphase flow model will rely on a proper selection of sub-models, which
should be based on the underlying assumptions for their derivation and their range of
applicability. This implies an added level of uncertainty in the mathematical modeling of
these systems that cannot be a priori assessed. Thus, there is a fundamental need to validate
the models’ overall and local predictions and assess their predictive quality, which can be
achieved by linking models with advanced reliable experiments, which allow us to measure
the local hydrodynamic variables. To a great extent, the validation of the models is aimed
to measure the deviations in the predictions of the models, rather than pretending to prove
the infallibility of the models [32]. The comparison of the local predictions against the local
measurements will only provide an outlook on how insightful the implemented model
under the tested conditions is. From a rigorous perspective, a model cannot be validated; it
can only be claimed that the model is consistent with all the data that its predictions were
confronted with [32]. This implies that a different or new set of experiments or data can
exhibit a deficiency or limitation in the predictive quality of the model, invalidating the
model, or constraining the applicability of the model. Thus, it must be assumed that the
validation status of a model may (and will) change over time, and that the models may
only be considered to have a practical validation [32,52].

3. Mathematical Modeling

When dealing with an Euler–Euler formulation, also often called two-fluid model
(TFM) or Euler-2-Phase (E2P), the most general governing equations for the gas (β− phase)
and solid (σ− phase) phases can be described by Equations (3)–(6) [53,54]

∂(ρβεβ)

∂t
+∇ · (ρβεβvβ) = 0 (3)

εβρβ

[
∂vβ

∂t
+ vβ · ∇vβ

]
= εβ[−∇P +∇ · τβ + ρβg] + Fd (4)

∂εσ
∂t

+∇ · (εσvσ) = 0 (5)

εσρσ

[
∂vσ

∂t
+ vσ · ∇vσ

]
= εσ[−∇P +∇ · τσ + ρσg]− Fd (6)

where Equations (4) and (6) correspond to the continuity equation for the gas and solid
phase, respectively. While Equations (4) and (6) are the momentum balances for the gas
and solid phase, respectively, which follow a Navier–Stokes formulation.

The gas phase stress tensor (τβ) is modeled straightforwardly, following Newton’s
law of viscosity, as shown in Equation (7). On some contributions for turbulent fluidization,
the gas phase stress tensor is modified, for example, following a k-ε formulation [55,56]

τβ = µβ

[
∇vβ + (∇vβ)

T − 2
3
(∇ · vβ)I

]
(7)

On the other hand, for the solid pseudo-phase, two main different approaches have
been explored through the last decades: (i) Kinetic Theory of Granular Flows (KTGF) and
(ii) Bed elasticity.
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3.1. Solids Stress Tensor

The model formulation shown in Equations (3)–(6) is based on considering that
the solid phase is a pseudo-phase that behaves like a fluid. The major complexity in
this assumption is modeling the solid stress tensor (τσ), as it should capture the solid–
solid interactions and multiscale phenomena. The most common approach nowadays to
model this tensor is by relying on the KTGF formulation [57–59]. This approach relies
on the kinetic gas theory [59,60] to model an effective solids stress tensor, which follows
Equation (8).

τσ = µσ,sh

[
∇vσ + (∇vσ)

T − 2
3
(∇ · vσ)I

]
+ λσ I (8)

µσ,sh = µσ,col + µσ,kin + µσ,fr (9)

µσ,col = 0.8ρσDσεσg0(1− e)
(

Θσ

π

)1/2
(10)

µσ,kin =
10ρσDσ(Θσπ)1/2

96(1 + e)εσg0

[
1 +

4
5
(1 + e)εσg0

]2
(11)

µσ,fr =
ps sin(θ)

2I1/2
2D

(12)

λσ =
4
3

εσρσDσg0(1− e)
(

Θσ

π

)2
(13)

Here, µσ,sh is the solid shear viscosity, which is generally modeled as an addition of a
collision, a kinetic and a frictional contribution, as shown in Equation (9). These constitutive
relations are sub-models, and are commonly modeled according to Equations (10)–(12)
for both fluidized beds and spouted beds [36,61,62]. In these, g0, e, ps and I2D are the
solid radial distribution function, particle restitution coefficient, solids pressure and second
invariant of the deviatoric stress tensor, for which, further closure terms, sub-models or
constitutive relations are needed. λσ is the solid bulk viscosity, which is another sub-
model, commonly modeled according to Equation (13) [63]. Θσ is a so-called granular
temperature, which captures the fluctuation of the kinetic energy of the particles. The most
common approach to model the granular temperature is through inclusion of an additional
conservation equation (Equation (14)).

3
2

[
∂

∂t
(εσρσΘσ) +∇ · (εσρσvσΘσ)

]
= (−ps I + εστσ) : ∇vσ +∇ · (k∇Θσ)− γ− φβσ (14)

where further closure terms and sub-models are required, namely the diffusivity of granular
temperature (k), collisional energy dissipation (γ) and the kinetic energy transfer between
phases (φβσ). Another approach, not as commonly seen for estimating Θσ, is considering
a local equilibrium of the dissipated and generated energy, leading to a quadratic algebraic
expression, which is solved directly for Θσ (Equations (15)–(20)).

Θ1/2
σ =

−K1σεσDσ,ii +
(

K2
1σε2

σD2
σ,ii + 4K4σεσ

[
K2σD2

σ,ii + 2K3σ

(
Dσ,ijDσ,ij

)])1/2

2εσK4σ
(15)

K1σ = 2(1 + e)ρσg0 (16)

K2σ =
4(1 + e)Dσρσg0

3π1/2 − 2
3

K3σ (17)

K3σ =
Dσρσ

2

[
π1/2

3(3− e)

(
1
2
(3e + 1) +

2
5
(1 + e)(3e− 1)εσg0

)
+

8(1 + e)ρσg0

5π1/2

]
(18)

K4σ =
12
(
1− e2)ρσg0

Dσπ1/2 (19)
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Dσ,ij =
1
2

(
∂vσ,i

∂xj
+

∂vσ,j

∂xi

)
(20)

The KTGF approach requires a vast number of closure sub-models and constitutive
relations to model the solids stress tensor. Despite the fact this model has been used
successfully in the literature, a vast number of coupled sub-models, and their required
closure terms, introduce major uncertainties when modeling gas–solid fluidized systems.
Furthermore, the validation of most of these sub-models is a practical validation, which
implies that the validation of the models is tied together, and hence, the validation status
of each of the sub-models cannot be shown.

The second alternative to model the solids stress tensor is the bed elasticity ap-
proach [64,65]. This approach, widely used in the early contributions on mathematical
modeling of fluidization, is based on considering that the solid pseudo-phase behaves
as an elastic body, which can be compressed and expanded [49]. The compression and
expansion of the pseudo-phase is considered to be reflected in changes to the solid holdup
(εσ). This proportionality can be mathematically expressed by applying the chain rule on
the main diagonal components of the solids stress tensor (Equation (21)).

∇ · τσ =
∂τxx

∂εβ

∂εβ
∂x

+
∂τyy

∂εβ

∂εβ
∂y

+
∂τzz

∂εβ

∂εβ
∂z

= ∑
i

∂τii
∂εβ

∂εβ
∂xi

; ∑
i

∂εβ
∂xi

= ∇εβ (21)

∑
i

∂τii
∂εβ

= −G(εβ) (22)

Using the definition of Equation (22), a modulus of elasticity (−G(εβ)) is defined,
which captures the changes in the solids stress tensor with respect to the changes in the
local gas holdup εβ. Several moduli of elasticity have been proposed, generally for fine
particles [66–70], and follow the generalized form described in Equation (23) [49,71,72].

G(εβ)/G0 = exp
[
−c
(

εβ − ε′β

)]
(23)

where G0 is a unit normalization factor; c is the compaction modulus; and ε′β is the
compaction gas phase volume fraction.

Table 1 shows several moduli of elasticity sub-models reported in the literature.
Most of these sub-models were developed for fluidized beds, based on separate effect
experiments. No specific contributions for other systems dealing with larger particles, such
as spouted beds, can be usually found.

Table 1. Commonly reported Modulus of Elasticity sub-models.

Model Author System

G
(
εβ
)
= exp

[
−600

(
εβ − 0.376

)]
Bouillard et al. [71] Fluidized bed with immersed obstacle

G
(
εβ
)
= −10−10.5εβ+9.0 Gidaspow [73] Fluidized bed

G
(
εβ
)
= exp

[
−500

(
εβ − 0.422

)]
Gidaspow and Syamlal [70] Fluidized bed

G
(
εβ
)
= exp

[
−20

(
εβ − 0.62

)]
Ettehadieh and Gidaspow [67] Fluidized bed with a jet

G
(
εβ
)
= exp

[
−100

(
εβ − 0.45

)]
Kuipers et al. [74] Numerical model of a fluidized bed

G
(
εβ
)
= 5× 106 exp

[
−2.03εβ

]
Kaae [69] Fluidized bed with pyrolytic carbons,

fluidized with helium and hydrocarbon gas.

G
(
εβ
)
= 1.5× 10−3 exp

[
500
(
0.4− εβ

)]
Syamlal and O’Brien [75] Multiparticle liquid fluidized bed

G
(
εβ
)
= exp

[
−750

(
εβ − 0.38

)]
Uribe et al. [49] Numerical model of a spouted bed
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As suggested by Uribe et al. [49] and show in Figure 2, the modulus of elasticity
sub-models generally makes a strong contribution in the dense regions of the fluidized
systems, and tends to zero as the beds get diluted. Hence, an additional pseudo-viscous
contribution is included in the solids stress tensor approximation to model the solid–solid
interactions in the diluted regions of the bed. Considering this, the solids stress tensor on
the bed elasticity approximation is usually modeled according to Equation (24),

εσ∇ · τσ = −G(εβ)∇εβ + εσ∇ ·
[
µeff

(
∇vσ + (∇vσ)

T
)]

(24)

where µeff is an effective solid pseudo-phase viscosity, for which a sub-model is required.
Several models have been proposed since the early contributions on fluidization in order to
account for phenomena that might affect the apparent viscosity of the pseudo-phase, such
as the model of Frankel and Acrivos that accounts for the proximity effect (Equation (25)),
which is suitable for dense bubbling fluidized beds; or the Krieger-type viscosity (Equa-
tion (26)), which is suitable when the viscosity of the solid phase is considerably greater
than the viscosity of the gas phase [54]. Alternatively, Gidaspow [73] proposed a simple
sub-model (Equation (27)), which provided a good scale estimate and satisfies that µeff
tends to zero as the bed becomes more diluted, and enhances the numerical robustness of
the model.

µeff = µβ
9
8

[
(εσ/εmax

σ )1/3

1− (εσ/εmax
σ )1/3

]
(25)

µeff = µβ

[
1− εσ

εmax
σ

]−2.5εmax
σ

(26)

µeff =
1
2

max
(

εσ, 1× 10−4
)

(27)

Table 2 shows several other effective viscosity sub-models that are reported in the
literature.
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Using the bed elasticity approach, the models require a reduced number of coupled
sub-models. However, most of the sub-models required in this approach were developed in
the early studies of fluidization, based on macroscopic measurements, or using simplified
apparatus or measurement techniques, such as the tilting bed apparatus used by Rietema
and Piepers [68]. Despite the advantage of incorporating a reduced number of sub-models,
no advances in the improvement of the sub-models have been developed recently, and
the applicability of the bed elasticity approach has not been further explored. Hence, a
promising alternative to obtain a predictive model while keeping a reduced number of
coupled sub-models can be found in pairing the bed elasticity approach with detailed
experimental studies to develop new closure sub-models, or to enhance the currently
available ones.

Table 2. Commonly reported effective viscosity sub-models.

Model Author Restriction

µeff = µβ(1 + 2.5εσ) Einstein [76] Dilute flows (εσ ≤ 0.03)

µeff = µβ(1− εσ)
−2.5 Brinkman and Roscoe [77] Dilute flows

µeff = µβ
9
8

[
(εσ/εmax

σ )1/3

1−(εσ/εmax
σ )1/3

]
Frankel and Acrivos [78] Dense flows (εσ/εmax

σ → 1)

µeff = µβ exp
[

2.5εσ+2.7ε2
σ

1−0.609εσ

]
Vand [79] Dense flows, for spherical

particles

µeff = µβ
25
16

[
ε2
σ

(1−εσ/εmax
σ )2

]
Eilers [54] Dense flows

µeff = µβ

[
9
4

(
1

1+0.5Ψ

)(
1
Ψ −

1
1+Ψ −

1
(1+Ψ)2

)
+ 1 + 2.5εσ

]
Ψ =

1−(εσ/εmax
σ )1/3

(εσ/εmax
σ )1/3

Graham [80] Both dilute and dense flows

µeff = µβ

[
1− εσ

εmax
σ

]−2.5εmax
σ Ishii Both dilute and dense flows

3.2. Multiphase Interactions

Both Euler–Euler formulations require to couple a sub-model to account for the multi-
phase interactions, mainly the drag force (Fd). This sub-model is included as a volumetric
momentum exchange term on the transport equations, as indicated in Equations (4) and
(6). It is assumed that the drag force is in local equilibrium, and thus the acting force in one
phase is equal to the force acting on the other face, but in opposite direction

(
Fd,σ = −Fd,β

)
,

which explains the opposite signs of Fd in Equations (4) and (6). The drag force is modeled
according to Equation (28), where Kσβ is a multiphase interaction coefficient, and vslip is

the slip velocity between phases
(

vslip = vσ − vβ

)
.

Fd = Kσβ(vσ − vβ) = Kσβvslip (28)

Vast sub-models have been proposed for Kσβ based on both empirical or semi-
empirical approximations to experimental observations. One of the most-used sub-models
is the one proposed by Gidaspow [73], which combines Ergun’s equation for the dense re-
gions, and the Wen-Yu equation for dilute regions [81] (Equations (29)–(31)). Equation (30)
describes the drag coefficient (CD), modeled according to the Schiller and Naumann [82]
equation. Vast contributions for both fluidized beds and spouted beds can be found where
this sub-model has been used, leading to accurate predictions [12,53,62,83–85]. Hence, this
model has been widely practically validated.
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Kσβ =


3εβεσρβCD

4Dσ

∣∣∣vslip

∣∣∣ε−2.65
β for εβ ≥ 0.8 (Wen− Yu)

150 µβε2
σ

εβD2
σ
+ 1.75 εσρβ

Dσ

∣∣∣vslip

∣∣∣ for εβ < 0.8 (Ergun)
(29)

CD =

{
0.44 for Rep ≥ 1000
24

Rep

(
1 + 0.15Re0.687

p

)
for Rep < 1000

(30)

Rep =
ρβDσ

∣∣∣vslip

∣∣∣
µβ

(31)

Other sub-models have been proposed over the years of studies of fluidization, with
different approaches or based on different principles. For example, the sub-model proposed
by Schiller and Naumann [82] has a mechanistic developed based on a force balance
around a single sphere, and includes an approximation of the standard drag curve for
a non-rotating sphere [86]. In their model, Kσβ is defined according to Equation (32),
considering the drag coefficient (CD) defined in Equation (30). The main drawback of this
mechanistic sub-model is that since it is based on a force balance on a single sphere, there
is a need for the particles to have no interactions between them. Thus, the Schiller and
Naumann sub-model is only valid for diluted fluidized systems.

Kσβ =
3

4Dσ
εσCDρβ

∣∣∣vslip

∣∣∣ (32)

Ishii and Zuber [87] proposed a generalization of Schiller and Naumann sub-models
by introducing the concept of an effective mixture viscosity (µeff) to the drag coefficient.
This led to a phenomenological sub-model that could be adapted for bubbly, droplet or
particulate flows. Their proposed sub-model defines Kσβ according to Equation (32), and
the drag coefficient (CD) according to Equations (33) and (34), where µeff is usually defined
according to Equation (26).

CD = max

 24
Remix

(
1 + 0.1Re0.75

mix

)
, 0.45


1 + 17.67

(
ε0.5
β µβ

µeff

)6/7

18.67
ε0.5
β µβ

µeff


 (33)

Remix =
Dσρβ

∣∣∣vslip

∣∣∣
µeff

(34)

Other phenomenological and empirical sub-models have been proposed, such as the
Syamlal and O’Brien [88] sub-model based on measurements of terminal particle velocities
on fluidized beds; or the Arastoopour et al. [89] sub-model, which is a modification of the
Gibilaro et al. [90] sub-model, and is based on a Blake–Kozeny pressure drop equation.
Table 3 shows some of the commonly applied sub-models in the reported literature.
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Table 3. Commonly reported drag force sub-models.

Model Author Remark

Kσβ =
ρσεβg
vt
σεn−1

β

; 0.1Re0.9
t = 5.1−n

n−2.7 ; Ret =
ρσDσvt

σ

µβ
Richardson and

Zaki [91]
Based on the terminal velocity of a single

particle
(
vt
σ

)
Kσβ =

3εβεσρβCD
4Dσ

∣∣∣vslip

∣∣∣ε−2.65
β Wen and Yu

[81]
Valid on dilute regions

(
εβ ≥ 0.8

)
,

where CD is defined in Equation (30)

Kσβ = (1− ϕ)
(

150 µβε2
σ

εβD2
σ
+ 1.75 εσρβ

Dσ

∣∣∣vslip

∣∣∣)
+ϕ
(

3εβεσρβCD
4Dσ

∣∣∣vslip

∣∣∣ε−2.65
β

)
ϕ =

arctan[150×1.75(0.2−εσ)]
π + 0.5

Gidaspow [73] Modified Gidaspow model, with a switch
function for regime transition (ϕ)

Kσβ = 3
4Dσ

εσCDρβ

∣∣∣vslip

∣∣∣ Schiller and
Naumann [82]

CD is defined in Equation (30)

Kσβ =
3εσεβCDρβ|vslip|

4DP f 2

CD =

[
0.63 + 4.8

(
f

Ret

)1/2
]2

f = 0.5
[

A− 0.06Re +
(
(0.06Re)2 + 0.12Re(2B− A) + A2

)1/2
]

A = ε4.14
β

B =


ε2.65
β εσ < 0.15

0.8ε1.28
β εσ ≥ 0.15

Syamlal and
O’Brien [88]

Based on measurements of terminal
particle velocities on fluidized beds

Kσβ =


3εβεσρβCD

4Dσ

∣∣∣vslip

∣∣∣ω f or εσ ≥ 0.74

150 µβε2
σ

εβD2
σ
+ 1.75 εσρβ

Dσ

∣∣∣vslip

∣∣∣ f or εσ < 0.74

ω =


−0.5760 + 0.0214

4(εβ−0.7463)2+0.0044
f or 0.74 ≤ εβ ≤ 0.82

−0.0101 + 0.0038
4(εβ−0.7789)2+0.0040

f or 0.82 ≤ εβ ≤ 0.97

−31.8295 + 32.8295εβ f or εβ ≥ 0.97

Yang et al. [92] Based on the Energy Minimum Multi−
Scale theory, incorporates a drag
coefficient correction factor (ω)

Other more complex sub-models have been proposed, such as the approach explored
by Hu and Liu [36]. They relied on a sub-model based on the Energy Minimum Multi-Scale
(EMMS) theory [92], which introduces seven constitutive equations to estimate the drag
force. This complex model was also practically validated by comparison of the model’s
predictions against local pressure profiles, gas holdup and solid velocity, reported by Zhou
et al. [93,94], even though deviations in the predictions of the axial pressure profiles and
radial solid holdup profiles were observed in certain cases.

The main drawback of coupling complex sub-model is that optimization of the closure
parameters, such as the fitting constants observed in the previous equations, is practically
disabled, as there are numerous sources of the possible deviations. This becomes a more
convoluted task when complex modeling approaches are used, like the implemented by Hu
and Liu [36], who also coupled a Population Balance Model (PBM) through a centralized
coupling approach, which resulted in a model with 15 coupled sub-models.

4. Advanced Measurement Techniques for Gas-Solid Fluidized Systems

An important and prevailing shortcoming in the current status of modeling and vali-
dation of fluidized beds and spouted bed systems is that most of the models are validated
through a comparison of macroscopic parameters, such as overall solids holdup and overall
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pressure drops. However, validation of macroscopic parameters does not imply that the
model will provide insightful predictions of local scale phenomena. The major drawback
preventing the local validation of the mathematical models is the challenge of developing
measurement techniques that can measure the local scale phenomena with accuracy. A
vast number of commonly applied measurement techniques can only measure macroscopic
parameters, such as high-speed cameras [95], and differential and absolute pressure trans-
ducers [96,97], while other techniques that allow local measurements are constrained to a
limited number of locations inside the bed, and in most cases are invasive, such as using
optical fiber probes [98,99]. Recently, more advanced measurement techniques based on
γ-ray and x-ray and radiation techniques [10,11,100–102], as well as Electrical Capacitance
Tomography (ECT) [103–106], have arisen as an alternative to provide deeper details in the
local fields. Nevertheless, these techniques also usually fail to provide timewise variations
of the measured fields and are generally limited to lab-scale systems (DC < 0.5 m).

Hence, developing advanced measurement techniques that can overcome the limita-
tions of current experimental techniques is still a challenge to overcome in the next few
years. Nevertheless, the current status of measurement techniques, understanding their
inherent limitations, can allow us to locally validate models, and can be used to develop
new sub-models or enhance the currently available ones. In this sense, the measurement
techniques developed by the Multiphase Flow and Reactors Engineering, Applications
and Education Laboratory (mFReael) should be highlighted. In the context of studies of
gas–solid fluidized systems, we have developed and successfully applied four different
invasive and non-invasive measurement techniques that measure pointwise detailed in-
formation of the local hydrodynamics phenomena in fluidized beds and spouted beds: (i)
Differential Pressure Transducer Probe (DPTP), (ii) Two-Tip Optical Fiber probe (TTOF),
(iii) Dual Source γ-ray Computed Tomography (CT), and (iv) Radioactive Particle Tracking
(RPT).

4.1. Differential Pressure Transducer Probe (DPTP)

The most common practice to characterize the hydrodynamics of fluidized beds is
the analysis of pressure [107]. Generally, differential pressure transducers are connected to
a port on the wall of the fluidized beds, from which overall pressure drops are obtained,
and the analysis of the time series allows us to determine flow regimes [96]. The main
drawback of this technique is that the pressure information is measured only at the wall,
and thus, overlooks the local scale phenomena inside the bed.

As an alternative, to obtain local scale pressure information, Taofeeq and Al-Dahhan [26]
implemented a Differential Pressure Transducer Probe, which measured pressure drops
at different radial locations inside a fluidized bed column. The DPTP consisted of two
stainless steel probes connected to a differential pressure transducer. These probes had an
internal diameter of 2.5 mm, and the end tips were protected with a wire mesh to prevent
blockage by the solid particles. The DPTP was inserted in a 6-inch diameter fluidized bed,
and local radial pressure drop profiles were measured, as well as the timewise pressure
drop fluctuations.

Figure 3 shows a sample of the obtained results by the DPTP for a fluidized bed
packed with aluminum oxide particles. The results correspond to radial dimensionless
pressure drop profiles

(
∆P/z
ρβg

)
in a fluidized bed column with an internal diameter of

0.14 m, operating at different superficial inlet velocities, as studied and reported by Taofeeq
and Al-Dahhan [26], where the error bars correspond to the standard deviation of the
measurements. The DPTP can capture the radial differences in the pressure drop profiles.
Remarkably, the pressure drop measured at the wall position (r/RC = 1) is always lower
than the pressure measured at the other locations inside the bed, despite the radial varia-
tions being of a small-scale, especially when the superficial gas inlet velocity is increased.
The radial variations can be attributed to the local variations of the flow fields, such as the
difference in gas velocities crossing the probe head at the different radial locations.
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The information obtained by this technique is essential for the local validation of
mathematical models. However, it should be kept in mind that this is an invasive technique,
and that there could be a disturbance in the hydrodynamics phenomena inside the fluidized
bed due to insertion of the probe. Thus, to a certain extent, the observed trends in the
measurements could also be affected by the measurement technique.

4.2. Two-Tip Optical Fiber Probe (TTOF)

The second developed technique for the measurement of local scale phenomena in
fluidized beds and spouted beds are optical fiber sensors. Optical fiber sensors have
been extensively used in experimental studies of gas–solid fluidized systems over the last
decades [7,106,108,109]. Nevertheless, commonly, these sensors cannot simultaneously
measure the solids holdup and velocities, show blind regions (their overall size is large and
becomes highly invasive

(
Dprobe ∼ 2 cm

)
) or fail to provide accurate time resolved mea-

surements [110–112]. As a response to these limitations of optical probes, in the mFReael,
we developed a new Two-Tip Optical Fiber (TTOF) probe, which allowed simultaneous
measurements of solids holdup and particles velocities, as well as other derived key hy-
drodynamic parameters, such as bubble rise velocity, bubble frequency and bubble chord
length [20], along with a new simple and reliable calibration method for solids holdup and
solids velocity [113].

Figure 4 shows a schematic diagram of the developed TTOF probe. This sensor
consists of two sub-probes of 1 mm in diameter, which are fixed in a 3 mm in diameter
probe, that keeps both sub-probes parallel and at a fixed distance of 1 mm from each other.
When inserted into the system, the two sub-probes will remain vertically aligned, and
hence, both sub-probes will measure relatively the same signal at slightly different times.
An important difference with this probe, in comparison to other probes used in reported
works in the literature, is that each of the sub-probes is composed of an alternating array of
light emitting and receiving optical fibers of 15 µm in diameter. When the emitted light by
the emitting optical fibers is reflected by the solid particles, it is sensed by the receiving
fibers. The sensed back reflection of light is then transformed by a photomultiplier (also
shown in Figure 4) into a voltage signal, which is then processed and captured in a personal
computer. The calibration curve obtained by the new calibration method for solids holdup
and solids velocity [113] is used to correlate the recorded voltage signal to the solids
holdup.
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Figure 4. Details of the Two-Tip Optical Fiber Probe technique.

The sampled data by both sub-probes is processed by a cross-correlation method, as
described by Taofeeq et al. [113], to calculate the time shift (∆ti) between the two signals.
Since both sub-probes are at a known distance of 1 mm, the instantaneous particle velocities
(vσ,i) can be calculated according to Equation 35. The probe can capture whether the parti-
cles are moving upwards or downwards, which is indicated in the sign of the coefficient
obtained by cross-correlation. With this information, particle velocity distributions at local
positions inside the bed are obtained, and time-averaged particle velocity profiles can be
estimated.

vσ,i =
1 mm

∆ti
(35)

vB,i =
1 mm
∆tB,i

(36)

Considering a similar cross-correlation processing of the sampled data by the sub-
probes, and linking such processing with a bubble linking algorithm, as described by
Rüdisüli et al. [114], a bubble linking time shift ∆tB,i can be estimated. Modifying Equa-
tion (35) as indicated in Equation (36), a bubble rise velocity distribution and profiles can
be obtained.

Further processing of the measured voltage signal allows us to estimate the bubble
chord length and bubble frequency.

With this technique, the predictions of local solids holdup and solids velocity can be
validated. Bubble-related parameters can also be validated for models that can predict
these parameters, such as the model of Wang et al. [115], who implemented a PBM with a
centralized coupling scheme to estimate bubble size distribution.

4.3. Dual Source γ-ray Computed Tomography (CT)

Despite the TTOF probe being able to measure pointwise information of the hydro-
dynamics phenomena inside gas-solid fluidized systems, it has the important limitation
that the measurements are constrained to limited diameter locations inside the bed, and it
is an invasive technique. As an alternative, our developed Dual Source γ-ray Computed
Tomography (CT) is a non-invasive measurement technique that measures cross-section
measurements. γ-ray CT is a radioisotope-based technique, that allows it to obtain time-
averaged cross-sectional images of the phases’ distribution.
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Our developed dual source γ-ray CT is composed two collimated γ-ray sources, a
Cs-137 source and a Co-60 one. Each source is collimated with a horizontal 40◦ γ-ray
beam of 5 mm in height. On the opposite side of each source, there is an arch array of
15 collimated Sodium Iodine (NaI(TI)) scintillation detectors, each of 2 inch in diameter.
Each detector is covered by a lead collimator that provides a 5× 2 mm opening, in order
to detect narrow γ-ray beams, and to enhance the spatial resolution and minimize the
scattered γ-rays [116]. As shown in Figure 5, the sources and detectors are mounted on a
horizontal rotary plate, which can also move in the axial direction.
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In order to obtain a cross-sectional scan of the phases distribution, the sources and
detectors array rotate 360◦ around the system places inside the γ-ray CT. The complete
rotation around the system consists of 197 different positions of the source (views). At
each view, the detectors array moves 21 different positions (projections). The recorded data
by the 15 detectors adds to 65,055 data points (197 views× 21 projections× 15 detectors).
This extensive full rotation scan takes around 6–8 h to be completed, with variations
depending on the sample frequency and sample time [116]. The measurements are captured
by a data acquisition system that consists of the 15 scintillation detectors, 30 timing filter
amplifiers, 32 channel scalers, and a CC-USB CCAMAC controller.

The CT scans for gas-solid fluidized systems consist of three main steps [25,100,117]:

(1) Scanning the empty column as a reference,
(2) Scanning the column filled with the solid particles, without any gas flow, in order to

measure the attenuation coefficient of the solid phase,
(3) Scanning the column at operation conditions.

The collected data are processed by an Alternating Minimization (AM) algorithm [118],
in order to obtain the attenuation values of each pixel of three cross-sectional images. The
size of the images, and therefore the number and size of the pixels, depends on the size
of the column placed in the CT and the width of the detector collimator. With the AM
algorithm, the effective attenuation coefficient (µ̂σ−β(x)) at each pixel location (x), as
defined in Equation (37), is reconstructed.

µ̂σ−β(x) = µ̂σ(x)εσ(x) + µ̂β(x)εβ(x) (37)

In Equation (37), µ̂σ(x) and µ̂β(x) are the attenuation coefficients of the solid and
phase, respectively. µ̂β(x) is reconstructed from step 1 mentioned above; µ̂σ(x) is recon-
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structed from step 2; and µ̂σ−β(x) is reconstructed from step 3. εσ(x) and εβ(x) are the
solid and gas holdups at each pixel x, respectively.

Considering that in a gas–solid fluidized system, µ̂σ(x)� µ̂β(x), Equation (37) can
be simplified as shown in Equation (38). With this definition, the solid holdup at each
pixel can be estimated according to Equation (39). The gas holdup can then be estimated
recalling that εσ + εβ = 1, which is consistent with the definition of Equation (40).

µ̂σ−β(x) ∼= µ̂σ(x)εσ(x) (38)

εσ(x) =
µ̂σ−β(x)

µ̂σ(x)
(39)

εβ(x) =
µ̂σ(x)− µ̂σ−β(x)

µ̂σ(x)
(40)

With this procedure, time-averaged cross-sectional solid and gas holdup distributions
can be measured. This information allows us to locally validate the time-averaged pre-
dictions of models. The main limitation of the technique is that the scanning procedure
takes a long time, which implies that in order to develop a large enough database for
benchmarking of models, a rather lengthy experimental phase is needed. Furthermore, the
technique cannot provide timewise measurements.

4.4. Radioactive Particle Tracking (RPT)

Another technique that allows us to obtain local scale non-invasive measurements in
gas-solid fluidized systems is Radioactive Particle Tracking (RPT). In this technique, the
motion of a single γ-ray emitting tracer particle, which mimics the solid phase, is followed.
A set of detectors strategically placed around the system detects the radiation emitted by
the particle, and the measurements allow us to determine the instantaneous position of
the tracer and to reconstruct the lagrangian trajectory [16]. Despite this technique being
present for the past few years [119–121], its application for fluidization had previously
been a major challenge due to high velocities and high attenuation [100]. To overcome this
challenge, our developed technique included a new fully automated calibration device and
data acquisition and processing system [100].

The developed measurement technique, applied for both fluidized beds and spouted
beds, uses a Cobalt-60 (Co-60) radioactive particle as tracer, which was irradiated at the
University of Missouri Research Reactor Centre in Columbia, Missouri, USA. The Co-60
particle has a diameter of 600 µm and a density of 8900 kg/m3. In order to match the
density of the solid phase, a hole is drilled in a ball of a different material, where the
radioactive particle is encapsulated, and the size of the air pocket (size of the hole) is
adjusted to match the required density. The material, size of the encapsulation and size of
the air pocket, depends on the characteristics of the tracked phase. For example, Efhaima
and Al-Dahhan [122] used a 1 mm in diameter aluminum ball to track the solid phase of a
fluidized bed packed with Geldart B glass beads of 210 µm in diameter, while Al-Juwaya
et al. [123] used a 2 mm in diameter stainless steel ball to track the steel packing in a
spouted bed packed with a binary mixture of 2 mm glass beads and 2 mm steel shots, and
for a different application, Sabri et al. [124] encapsulated the Co-60 particle in a 2 mm in
diameter polypropylene ball to track the liquid phase in a split airlift photobioreactor for
culturing microalgae. Detail of the encapsulation of the radioactive particle can be seen in
Figure 6.
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As shown in Figure 6, the RPT technique uses a set of Sodium Iodine (NaI(TI))
scintillation detectors strategically placed around the column. These detectors are similar
to the ones used by the γ-ray CT, also of 2 inch in diameter, but without a collimator. The
number and location of these detectors around the column will also depend on the studied
system, with a maximum possible of 28 detectors. With an array of 28 detectors, Efhaima
and Al-Dahhan [122] were able to obtain high-resolution measurements for a fluidized bed
of 44 cm in diameter.

In order to determine the tracer particle position, a calibration step is required prior
to each experimental condition tested. This calibration step consists of generating a map
by placing the tracer particles at several known radial, angular and axial positions. At
each of these known positions, the counts measured by each detector are recorded. This
calibration step is fully automated by using an in-house developed device that places a
calibration rod that holds the tracer particle at all the selected positions. The timewise
positions of the particle in experimental conditions are reconstructed based on the count
rate of each detector, by using the obtained calibration map along with a cross-correlation
position algorithm, and a semi-empirical model to provide further calibration points. With
the obtained particle position time series, the particle velocity vector can be calculated as
shown in Equation (41). vσ,r

vσ,θ
vσ,z

 =
1

ti+1 − ti

 ri+1 − ri
ri+1−ri

2 (θi+1 − θi)
zi+1 − zi

 (41)

With the velocity vectors obtained by Equation (41), further processing allows us to
obtain cross-sectional average velocity profiles, as well as velocity fluctuations, turbulent
stresses and turbulent kinetic energy per unit mass.

This technique, as well as the TTOF probe, allows us to locally validate the velocity
profiles predictions of the implemented models. RPT has the advantage of being non-
invasive, in comparison with the TTOF probe technique. However, implementing RPT on
a system requires long preparation times, as a calibration step is required to be conducted
at each of the tested experimental conditions. Moreover, RPT experiments have to be run
for prolonged times (~6 h) in order to allow the tracer particle to visit every location inside
the bed, in order to obtain reliable and useful information.
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5. Pairing Experimental and Mathematical Modelling Studies

In an attempt to enhance the quality of the predictions of local hydrodynamic fields on
gas-solid fluidization, we implemented a simplified E2P model based on the bed elasticity
approach. In this model, the governing equations for the gas phase were set to be described
by Equations (3), (4) and (7), while the governing equations for the solid phase, considering
the discussion on Section 3, incorporated the continuity equation described in Equation (5),
and the momentum balance defined as follows:

εσρσ

[
∂vσ

∂t
+ vσ · ∇vσ

]
= −εσ∇P− G(εβ)∇εβ + εσ∇ ·

[
µeff

(
∇vσ + (∇vσ)

T
)]

+ εσρσg− Fd (42)

where µeff was defined according to Equation (27), by virtue of its simplicity and the shown
evidence of providing an adequate scale estimate for an effective pseudo-phase viscosity. Fd
was selected to follow Gidaspow’s sub-model [73], which defines the multiphase interaction
coefficient (Kσβ), as per Equations (29)–(31), since this model has been widely practically
validated in the literature [12,53,62,83–85].

Regarding the selection of the modulus of elasticity sub-model (−G(εβ)), all the
sub-models found to be reported in the literature were developed on early contributions of
numerical studies of fluidization, with some of the models being over 50 years old. The
developed sub-models were constrained to the available measurement techniques of the
moment, resulting in sub-models based on macroscopic measurements, with no regard of
the local-scale phenomena. Considering this important limitation, the major challenge in
the implemented approach was to define an insightful modulus of elasticity sub-model
that could predict the local scale phenomena on a fluidized bed.

As shown in Table 1, there are vast options of sub-models that can be selected to model
the modulus of elasticity on fluidized beds. In a modeling environment where diverse
alternatives could be considered, it is important to discern between the options based on
the underlying assumptions for the derivation of each model. In this sense, there is also a
need to recognize the main characteristics of the experimental system to model.

Several moduli of elasticity sub-models were tested in order to observe the local
predictive quality of the overall model, and the sensitivity to these changes. Nevertheless,
the selection of the sub-models should be made in accordance with the derivation of the
models, their assumptions and their applicability range. In this sense, the modulus of the
elasticity sub-model proposed by Ettehadieh and Gidaspow [67] should be highlighted.
This model was developed for fine particles, based on the experimental results of Mutsers
and Rietma [66]. The experimental study to obtain the data for the development of such
sub-models was obtained from an experimental tilting bed apparatus [68]. The tilting bed
apparatus was a separate-effect experimental setup to determine interparticle forces, which
consisted of a bench-scale fluidized bed, where fine solid particles were expanded without
reaching bubbling. Once steadily expanded, the whole bed slowly tilted, and the tilt
angle was obtained until the surface of the bed remaining undisturbed was recorded. The
experimental observations of such tilt angles at different bed expansions were indicative of
the interparticle forces. One important remark of their findings was that the interparticle
forces, and therefore the modulus of elasticity, did not seem to depend on the mean particle
diameter, but it exhibits important variations when there is a large particle size distribution,
such as in the case where fines are present. Considering the fluidized bed experimental
setups modeled, which consisted of fluidized beds without internals, packed with Geldart
B particles, and where a large particle size distribution was not observed, the sub-model of
Ettehadieh and Gidaspow [67], as shown in Table 1, seems to be adequate for modeling the
modulus of elasticity in these systems.

Some of the tested sub-models did not converge, such as when using the sub-model
proposed by Uribe et al. [49], which was expected, as this model was developed for
a spouted bed. Among the modulus of elasticity tested, Figure 7 compares the sub-
models that led to the most accurate predictions of the local fields. Figure 7 shows the
locally predicted solid holdup of the model by using an Ettehadieh and Gidaspow sub-
model and other sub-models listed in Table 1, for a sample case of the fluidized bed
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reported by Taofeeq et al. [20,26,125]. In this figure, the error bars on the experimental
data correspond to the standard deviation of the measurements. At each radial location,
measurements were taken for 65 s, with a frequency of 5 Hz, and were repeated 5 times.
The modulus of elasticity proposed by Ettehadieh and Gidaspow leads to accurate radial
solid holdup profiles. Table 4 shows a comparison of the Average Absolute Relative Error
(AARE = ∑n

i=1 (|ψEXP,i − ψModel,i|/ψEXP,i)/n) obtained in the predicted profiles shown in
Figure 7. Similar deviations in the predictions for other operation conditions were observed,
and the model of Ettehadieh and Gidaspow always exhibited a similar predictive quality.
Thus, according to these results, −G(εβ) in Equation (42) was defined for the fluidized bed
model as per Ettehadieh and Gidaspow, which was expected according to the previous
discussion. Nevertheless, it should be taken into account that the implemented sub-model
is also tied to the previously discussed limitations of the modulus of elasticity, meaning
that this model was developed based on overall measurements of a simplified experimental
apparatus. An improvement in the local predictions could be obtained by the development
of a new modulus of elasticity sub-model based on local scale measurements.
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Table 4. Average Absolute Relative Error (%) in the time-averaged predicted radial solids holdup
profiles for for a fluidized bed of DC = 14 cm, operating at

〈
Vβ

〉
0/Vmf = 1.60, using different

modulus of elasticity sub-models.

Sub-Model

z/DC
Ettehadieh and
Gidaspow [67] Gidaspow [73] Kuipers et al. [74]

0.75 4.5 8.8 6.9
1.45 13.9 12.5 17.4
2.0 10.8 12.1 12.6

〈AARE〉 9.76 11.5 12.3

〈AARE〉 = 1
nj

∑
j

(
AAREj

)

5.1. Experimental Setup

Two experimental systems were considered. The first one, reported by Taofeeq
et al. [20,26,125], consists of a fluidized bed of a diameter of DC = 14 cm, and a height of
LC = 184 cm. The column was packed to a static bed height of Lσ,0 = 35 cm with Geldart
B type glass beads, which had an average particle diameter of 〈Dσ〉 = 365 µm, with a min-
imum particle diameter of around Dσ,min = 300 µm, and a density of ρσ = 2500 kg/m3.
The fluidized bed was operated at relative gas inlet velocities between 〈Vβ〉0/Vmf = 1.6− 1.96.
This system was studied by Taofeeq et al. by using TTOF probes and DPTP, which allowed
us to determine radial solids velocity, holdup and pressure drop local profiles.

The second system has been reported by Efhaima and Al-Dahhan [100,122], and also
consists of a fluidized bed packed with Geldart B type glass bead particles. The difference
is that this system had a diameter of DC = 44 cm, height of LC = 487 cm, static bed height
of Lσ,0 = 88 cm, and the solid particles had an average diameter of 〈Dσ〉 = 210 µm. by
Efhaima and Al-Dahhan implemented γ-ray CT and RPT to determine in a non-invasive
way the solid holdup and velocity cross-sectional profiles.

Considering these two systems will allow us to assess the local predictive quality of
the implemented model, as well as to assess the scale dependency of the model.

5.2. Results: Comparison with Experiments

A model for fluidized beds with the characteristics discussed above had been available
in the literature for decades. However, important limitations in the available computational
resources resulted in models considering a 2D computational domain, or considering
further simplifications and assumptions to reduce the complexity of the model [71]. Fur-
thermore, no local validation of the predicted profiles had been reported. Implementing
the model discussed above, in a previous contribution, we conducted a study to locally
validate the model [53]. The model incorporated important differences in comparison
with similar models reported in the literature, such as considering the 3D computational
domain, and no further simplifications on the transport equations.

As shown in Figure 8, first a validation of the macroscopic parameters predictions
was conducted by comparing the time averaged overall gas holdup

(
〈εβ〉t

)
and the time

averaged overall pressure drop (〈∆P〉t). In this figure, the error bars represent the standard
deviation of the measurements, as reported by Taofeeq et al. [20,26,125] The model with
the discussed characteristics had a high accuracy in the prediction of these two important
macroscopic parameters. The model predicted these parameters with an AARE of 4.5%
and 5.2% for 〈∆P〉t and 〈εβ〉t, respectively.
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Nevertheless, the prediction of overall parameters is not insightful of the predictive
quality of the model for the local scale phenomena. Furthermore, the experimental measure-
ments of macroscopic parameters relies on overall observations, overlooking the behaviors
inside the bed. The limitation of this is clearly identified when determining overall time
averaged solids holdup. Usually, this macroscopic parameter is experimentally determined
by comparing the dynamic bed height at a certain operational condition against the static
bed height [96]. Table 5 compares the predicted overall pressure drop and overall solid
holdup predicted by the model using a different modulus of elasticity sub-models, for the
sample case shown in Figure 7 and Table 4. Comparing these overall predictions, these
three sub-models lead to a model with a similar predictive quality. In fact, it seems that
the models that couples the Kuipers et al. sub-model can better predict the solid holdup.
However, as shown in Figure 7, the model that leads to the most accurate predictions of
the local solid holdup profile is the one that couples Ettehadieh and Gidaspow sub-model.

Table 5. Average Absolute Relative Error (%) in the overall parameters prediction for a fluidized bed
of DC = 14 cm, operating at

〈
Vβ

〉
0/Vmf = 1.60, using different modulus of elasticity sub-models.

Sub-Model

Parameter Experimental Ettehadieh and
Gidaspow [67]

Gidaspow
[73]

Kuipers et al.
[74]

〈∆P〉t[kPa] 2.75 2.96 3.09 3.10
〈AARE〉 of 〈∆P〉t 7.6% 12.4% 12.7

〈εσ〉t 0.52 0.49 0.51 0.52
〈AARE〉 of 〈εσ〉t 7.3% 3.5% 1.6%

Figure 9a,b shows a sample of the comparison between the predicted pressure drop
profile and the experimentally determined local pressure drop profile by using the DPTP
technique, as reported by Taofeeq and Al-Dahhan [26], for the fluidized bed of DC = 14 cm.
Error bars represent the standard deviation of the measurements. According to the previous
observations, the predictions shown corresponds with the model that couples Ettehadieh
and Gidaspow sub-model. It can be seen that the model is able to predict the values
and trends of the experimentally determined profiles. However, it should be noted that
the experimental measurements exhibit high variations of the profiles, especially in the
region close to the wall. This source of deviation in comparison with the model predictions
can be attributed to systematic errors in the measurement technique, or to unquantified
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wall effects in the experimental measurements that affect the DPTP measurements in the
near-wall regions. Despite such deviations, the AARE for these cases was found to be 2.8%
and 3.4% for 〈Vβ〉0/Vmf = 1.96 and 〈Vβ〉0/Vmf = 2.14, respectively. A similar predictive
quality was observed for all other tested cases. This suggests that the implemented model
can predict the overall and local pressure drops with a high accuracy.
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Similarly, Figure 10a,b shows a sample of the comparison of experimentally deter-
mined and model-predicted solid holdup profiles for the fluidized bed of DC = 14 cm, at
an axial location of z/DC = 0.75. The experimental data on these figures were obtained
by the TTOF probe, which implies that the data were obtained at discrete locations by an
invasive technique. In this figure, the error bars also represent the standard deviation of
the measurements. The observed deviations between measurements and predicted profiles
can be attributed to these limitations of the technique. Despite this, it can be seen that the
model properly predicts the solids holdup profile values and trends, with an AARE of
4.5% and 7.6% for 〈Vβ〉0/Vmf = 1.60 and 〈Vβ〉0/Vmf = 1.76, respectively. Again, for other
operation conditions, the predictive quality remained similar. This also suggests a high
local accuracy of the implemented model.

A more detailed local validation of the local holdup profile can be observed in
Figure 11a,b. In these, a comparison of the time and azimuthally averaged solids holdup
profile can be observed for the fluidized bed case of DC = 44 cm, as reported by Efhaima
and Al-Dahhan [100,122]. In these, the experimental data were obtained by using γ-ray
CT, where the cross-sectional scan results were azimuthally averaged. It can be seen that
the time and azimuthally averaged solid holdup profiles show more details of the solids
distribution inside the bed, since the full non-symmetrical chaotic behavior expected on
fluidized beds is captured. It can be seen that the model is also able to predict these trends
and values. The deviations in the predictions can be attributed to the fact that the γ-ray
CT could have limitations in capturing the behaviors in the central regions of the bed,
since the fluidized bed system is a highly attenuating media, due to the density of the
packing and the large column diameter. Despite this, the model was able to predict these
profiles with an AARE of 7.8% and 5.9% for the cases of z/DC = 0.286 and z/DC = 1.7,
respectively. It is also remarkable to observe that the predictive quality of the model and
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coupled sub-models seem to be scale independent, as the predictions were accurate for
both fluidized beds of different scales.
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Similarly, Figure 12 shows a comparison of the experimentally determined and pre-
dicted azimuthally and axially averaged axial solids velocity profile on the fluidized bed
reported by reported by Efhaima and Al-Dahhan [100,122]. The experimental results were
obtained by using RPT, averaging the axial component of the solid velocity vector described
in Equation (41) axially and azimuthally. A similar averaging procedure was done in the
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model predictions for comparison purposes. It can be seen that the model can also prop-
erly capture the solids velocity values and trends, and properly predicts the recirculation
zones. The solids velocity profile shown in Figure 12 was predicted with a Mean Squared

Deviation
(

MSD = 1
ni

∑
i
[(ψModel)i − (ψEXP)i]

2
)

of 0.023 m/s. Similar predictions were

obtained at other operation conditions.
Processes 2021, 9, x FOR PEER REVIEW 27 of 34 
 

 

 

Figure 12. Radial solids velocity profile at β 0
0.36 m sV =  for a fluidized bed of C 44 cmD = . 

The highest deviations in the predictions of the local phenomena is observed in the 
predictions of solids velocities. This was also observed when comparing the model pre-
dictions against solids velocities determined by a TTOF probe [53]. These deviations can 
be attributed to the underlying limitation of the coupled modulus of the elasticity sub-
model. Hence, in order to improve the predictions of the local solids velocity, a new and 
improved modulus of elasticity, developed considering the local scale information, is 
needed. 

Implementing the Euler-Euler with a bed elasticity approach for the fluidized bed 
case required merely a proper selection of the coupled sub-models. In this sense, pairing 
the mathematical modeling study with the advanced experimental study allowed to ob-
tain insights into the level of detail in the modeling required to obtain a locally predictive 
model. Remarkably, the model with such simplified characteristics, such as a reduced 
number of coupled sub-models, was able to predict with high accuracy, the key local hy-
drodynamic parameters. As suggested by Al-Dahhan et al. [17,99,109,126,127], the hydro-
dynamic parameters predicted by the implemented model are of paramount importance 
for scale-up tasks. Specifically, Al-Dahhan et al. have demonstrated that two fluidized 
beds of different scales will exhibit a similar hydrodynamic behavior when the local solids 
holdup profiles are matched in both systems. Hence, the implemented model, can be use-
ful for assessing local hydrodynamic behavior of fluidized beds of different scales, and 
can aid in scale-up tasks. The model, however, is not able to predict other parameters, 
which could be of importance for other tasks, such as bubble size distribution, and cluster 
size distribution. 

6. Remarks 
Modeling gas-solid fluidized systems is still a major challenge, and further research 

efforts are required in the years to come. The current status of modeling these systems has 
focused on the addition of further sub-models to account for multiphase and multiscale 
phenomena. However, such practice has led to models that couple a vast number of sub-
models and rely on a vast number of closure and fitting parameters. Models with these 
vast coupling of sub-models become virtually impossible to optimize due to the vast 
sources of uncertainties in them. Hence, a simplified approach that can provide accurate 
local predictions of the multiphase flow phenomena fields is required. 

Figure 12. Radial solids velocity profile at
〈
Vβ

〉
0 = 0.36 m/s for a fluidized bed of DC = 44 cm.

The highest deviations in the predictions of the local phenomena is observed in
the predictions of solids velocities. This was also observed when comparing the model
predictions against solids velocities determined by a TTOF probe [53]. These deviations
can be attributed to the underlying limitation of the coupled modulus of the elasticity
sub-model. Hence, in order to improve the predictions of the local solids velocity, a new
and improved modulus of elasticity, developed considering the local scale information, is
needed.

Implementing the Euler-Euler with a bed elasticity approach for the fluidized bed case
required merely a proper selection of the coupled sub-models. In this sense, pairing the
mathematical modeling study with the advanced experimental study allowed to obtain
insights into the level of detail in the modeling required to obtain a locally predictive model.
Remarkably, the model with such simplified characteristics, such as a reduced number of
coupled sub-models, was able to predict with high accuracy, the key local hydrodynamic
parameters. As suggested by Al-Dahhan et al. [17,99,109,126,127], the hydrodynamic
parameters predicted by the implemented model are of paramount importance for scale-up
tasks. Specifically, Al-Dahhan et al. have demonstrated that two fluidized beds of different
scales will exhibit a similar hydrodynamic behavior when the local solids holdup profiles
are matched in both systems. Hence, the implemented model, can be useful for assessing
local hydrodynamic behavior of fluidized beds of different scales, and can aid in scale-up
tasks. The model, however, is not able to predict other parameters, which could be of
importance for other tasks, such as bubble size distribution, and cluster size distribution.

6. Remarks

Modeling gas-solid fluidized systems is still a major challenge, and further research
efforts are required in the years to come. The current status of modeling these systems has
focused on the addition of further sub-models to account for multiphase and multiscale
phenomena. However, such practice has led to models that couple a vast number of
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sub-models and rely on a vast number of closure and fitting parameters. Models with
these vast coupling of sub-models become virtually impossible to optimize due to the vast
sources of uncertainties in them. Hence, a simplified approach that can provide accurate
local predictions of the multiphase flow phenomena fields is required.

In order to explore a possible alternative, we proposed modifying and implementing
an underexplored approach for gas-solid fluidized systems based on the so-called bed
elasticity approximation. In order to implement such a model, detailed and reliable experi-
mental information of local fields is necessary. In this sense, recent advances in invasive
and non-invasive measurement techniques become of primal importance. Remarkably,
four of our in-house techniques can provide such a level of detail needed for benchmarking
of the implemented models: (i) Differential Pressure Transducer Probe (DPTP), (ii) Two-Tip
Optical Fiber probe (TTOF), (iii) Dual Source γ-ray Computed Tomography (CT), and (iv)
Radioactive Particle Tracking (RPT).

It was observed that pairing the results obtained by these advanced measurement
techniques allowed us to develop and implement highly predictive models for fluidized
beds. The bed elasticity approach had been underexplored in the literature, and no models
using this approximation had been locally validated. In this work, it was noted that this
approach could lead to the accurate local prediction of the key hydrodynamic parameters,
such as pressure drops, solids holdup and solids velocity. Furthermore, such a simplified
approach has a high adaptability, and could be modified to provide accurate predictions
of local fields on other gas–solid fluidized systems, such as spouted beds. In order to
enhance the predictive quality of the implemented model, a new modulus of the elasticity
sub-model can be developed based on the local scale information obtained by advanced
measurement techniques. Forthcoming research efforts will be focused on the development
of such an enhanced model.
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Nomenclature

AARE Average Absolute Relative Error ∆tB,i Bubble linking time shift
CT Computed Tomography Vmf Minimum fluidization velocity [m/s]
c Compaction modulus vi Superficial velocity vector of

phase i [m/s]
CFD Computational Fluid Dynamics vslip Slip velocity [m/s]
CD Drag coefficient vi,j j component of the superficial velocity

vector of phase i [m/s]
DPTP Differential Pressure Transducer Probe z Axial direction
DEM Discrete Element Model Greek symbols
DC Column diameter [m] β Gas phase
Dσ Solid particle diameter [m] εi Volume fraction (holdup) of phase i
E2P Euler-two-phase ε′β Compaction gas holdup
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Fd Volumetric drag force [N/m3] εmax
σ Maximum solids packing

g Gravitational acceleration [m/s2] µ̂i(x) Effective attenuation coefficient of phase i
G
(
εβ
)

Modulus of elasticity µi Dynamic viscosity of phase i [Pa s]
G0 Normalizing units factor µeff Effective pseudo-solid viscosity of

phase i [Pa s]
I Identity matrix ρi Density of phase i [kg/m3]
KTGF Kinetic Theory of Granular Flows θ Angular direction
Kσβ Multiphase interaction coefficient σ Solid pseudo-phase
Lσ,0 Static bed height [m] τi Stress tensor of phase i [N/m3]
LC Column length [m] ψ Any field variable
MSD Mean Squared Deviation Super/subscripts and averages
n Total number of sample points B Bubble
PBM Population Balance Model Model Model prediction
P Pressure [Pa] EXP Experimentally determined quantity
RPT Radioactive Particle Tracking eff Effective property
r Radial direction mf Minimum fluidization
RC Column radius [m] 0 Initial conditions
Remix Effective mixture Reynolds number Average quantities
Rep Particle Reynolds number 〈 〉 Average quantity
TTOF Two-Tip Optical Fiber 〈 〉t Time-averaged quantity
t Time [s] 〈 〉t,θ Time and azimuthally averaged quantity
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