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Abstract: Dry aging creates a unique taste and flavor in beef; however, the process also causes
rancidity, which is harmful to humans. During dry aging, the microbial flora in beef changes
continuously; thus, this change can be used as an indicator of rancidity. The objective of this study
was to analyze the correlation between microbial flora in beef and rancidity during dry aging.
The round of beef (2.5–3 kg) was dry aged under 1.5 ± 1 ◦C and 82 ± 5% moisture for 17 weeks.
The microflora in the dry aged beef was analyzed by pyrosequencing. The volatile basic nitrogen
(VBN) and thiobarbituric acid reactive substance (TBARS) values were also measured. Primers
were designed to detect and quantify bacteria using real-time polymerase chain reaction (RT-PCR).
The VBN and TBARS values in the dry aged beef depreciated from week 11 of aging. The levels
of Streptococcus spp., Pantoea spp., and Pseudomonas spp. significantly changed at around week 11.
Quantitative RT-PCR showed that the levels of Pantoea spp. and Streptococcus spp. could be used to
identify rancidity during dry aging. Thus, among the microbial flora in dry aged beef, Pantoea spp.
and Streptococcus spp. can be used to determine the rancidity of dry aged beef.

Keywords: microbial flora; dry aged beef; rancidity; index

1. Introduction

Dry aging, a process that involves the long-term storage of meat at low temperatures
and relative humidity, can improve meat quality, which is represented by the development
of tenderness and a unique flavor. These quality factors are considerably affected by aging
conditions, such as temperature, air velocity, and humidity [1]. With the increasing interest
of consumers in its unique flavor, the dry aged beef market in the United States was
expected to reach $11,176 million in 2020 [2]. Dry aged beef is consumed globally, including
in Germany, Asia, the Middle East, Europe, and the United States, and the consumption of
dry aged beef accounts for <10% of overall beef consumption [3].

In dry aging, during the long-time storage, a tremendous number of microbes are
colonized on the surface of the meat (forming “crust”), and the composition of the microbial
community keeps changing continuously [4]. Microbes, including bacteria, yeasts, and
molds, metabolize ingredients in the meat and produce various metabolites that affect
the flavor, tenderness, and rancidity of dry aged meat [5,6]. Therefore, the quality of dry
aged beef is related to changes in the microbial community on the meat. For example,
Pseudomonas spp., the main spoilage bacterium, metabolizes glucose, lactate, and amino
acid, which results in the formation of slime and generation of off-odor, while lactic
acid bacteria cause greening as a consequence of H2O2 generation [7,8]. Psychrotrophs,
such as pseudomonads and lactobacilli, largely contribute to the spoilage of meat at
chilling temperatures and continuously compete with each other during the storage time.
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Under aerobic conditions, Pseudomonas species dominate, but lactobacilli dominate under
anaerobic conditions by producing an antimicrobial agent that inhibits the growth of other
species [9].

Recently, the microbial community on dry aged beef was characterized using metage-
nomic analysis [4]. In this study, dry aging led to prominent changes in the microbial
composition, especially in the abundance of lactic acid bacteria, and some yeast/mold
strains were prevalent in dry aged beef for a certain duration. In addition, Lee et al.
(2019) [10] revealed the effects of air velocities on changes in microbial composition and on
the properties of dry aged beef. Although little is known about the correlation between
the microbial community and the quality of dry aged meat, some specific strains, such as
Pilaira anomala and Debaryomyces hansenii, have been proven to have a positive effect on
the quality of dry aged meat [10,11]. Based on these findings, it is expected that analysis of
the microbial community on dry aged beef can provide information about the quality of
the beef.

As the period of dry aging is extended, the quality of the meat gradually decreases.
During this period, proteins and lipids are broken down extensively, and meat flavor,
tenderness, juiciness, odor, and texture are affected negatively [12]. The rancidity of dry
aged beef cannot be easily evaluated based on its appearance. Thiobarbituric acid reactive
substance (TBARS) and volatile basic nitrogen (VBN) values are well-known indices for
distinguishing the rancidity of meat, because these parameters are quantitative indices of
the oxidative deterioration of lipids and ammonia production by deamination of amino
acids, respectively [13]. Although some strains, such as Pseudomonas spp., and members of
Enterobacteriaceae, are known as meat spoilage bacteria [14], the specific microbial strains
that can be used to evaluate the rancidity of dry aged beef are not yet known.

Metagenomics is one of the tools for genetic analysis (sequencing and identification),
which can be used to study the genetic content of the entire microbial community in
certain environments [15]. The analyses start with the extraction of deoxyribonucleic acid
(DNA) from the microbial community, and then the genetic information is obtained by
random shotgun sequencing, followed by metadata analysis [16]. Given that metagenomics
can easily detect anaerobes or newly isolated microorganisms compared with culturing
methods [17], metagenomics is widely used for analyzing microflora [18,19]. Therefore, in
this study, we aimed to investigate changes in the microbial community during dry aging
to find relationships between rancidity and microflora in dry aged beef.

2. Materials and Methods
2.1. Dry Aging of Beef

The round of beef (2.5–3 kg) was purchased from a local market (Seoul, Korea). The
whole beef was dry aged in DRY AGER® (DX1000, Landig + Lava GmbH & Co., Bad
Saulgau, Germany) at 1.5 ± 1 ◦C and 82 ± 5% moisture for 17 weeks. A microbial cluster
formed outside of the beef as the aging progressed. A portion (0.25 g) of the cluster (two
for each of three samples) was used to analyze the microflora [10] and the microbial level
(25 g of the cluster), and the portion of meat inside (10 g) was used to measure the VBN
and TBARS values.

2.2. Analysis of Microflora on Beef during Dry Aging

The microbial cluster (0.25 g) that formed outside the beef was collected at certain
intervals (1–3 weeks) during dry aging. Microbial DNA was extracted from the cluster
using a DNeasy PowerFood Microbial Kit (Cat. No. 21000-100; Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Briefly, the cluster samples in 2 mL micro-
centrifuge tubes were homogenized with MBL buffer (a cell lysis buffer) using a Vortex
Adapter (Cat. No. 13000-V1-24; Qiagen, Hilden, Germany) and vortexed thoroughly. After
centrifuging the lysate at 13,000× g for 1 min, an IRS solution (inhibitor removal solution)
was added to the supernatant, and the mixture was refrigerated at 4 ◦C for 5 min to remove
contaminants. Centrifugation was repeated, and the supernatants were transferred to a
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new 2 mL collection tube. To induce the DNA to bind the membrane in the column, the
supernatants were mixed with solution MR (highly concentrated salt solution), and the
mixtures were loaded onto the MB spin columns and centrifuged. After washing, the DNA
was eluted with 100 µL of solution EB (elution buffer). The DNA samples were subjected
to meta-analysis using an Illumina MiSeq Sequencing system (SY-410-1003, Illumina, San
Diego, CA, USA), and the sequencing data were then clustered using Cluster Database at
High Identity with Tolerance (CD-HIT) and UCLUST. Processing of raw reads started with
quality check, and filtering of low quality (<Q25) reads using Trimmomatic ver. 0.32. After
QC-pass results, paired-end sequence data were merged using the fastq_mergepairs com-
mand of VSEARCH version 2.13.4 with default parameters. Primers were then trimmed
with the alignment algorithm of Myers and Miller at a similarity cut-off of 0.8. Non-specific
amplicons that do not encode 16S rRNA were detected by nhmmer in HMMER software
package ver. 3.2.1 with hmm profiles. Principal coordinates analysis (PCoA), which con-
verts data on distances between items into a map-based visualization, was conducted using
EzBioCloud Program (Chunlab, Inc., Seoul, Korea).

2.3. Quantitative Polymerase Chain Reaction PCR (q-PCR)

The bacterial on the dry aged beef (25 g) were quantified using q-PCR. The primer
sequences used in this study are listed in Table 1. A primer targeting Pantoea spp. was
developed in this study, and its sensitivity and specificity were verified using various
bacterial strains, such as Pseudomonas spp. and Streptococcus spp. (Supplementary Table S1;
Supplementary Figure S1). For q-PCR, the reaction mixture was prepared in a 0.1 mL
Strip q-PCR tube (Cat. No. 981103; Qiagen, Hilden, Germany) as follows: 12.5 µL of
2× Rotor-Gene SYBR Green PCR Master Mix (Cat. No. 204074; Qiagen, Hilden, Germany),
2.5 µL of primer_foward (10 µM), 2.5 µL of primer_reverse (10 µM), 6.5 µL of ribonuclease
(RNase)-free water, and 1 µL of DNA template. The mixture was amplified using Rotor-
GeneQ (Qiagen) at 95 ◦C for 5–35 cycles (95 ◦C, 5–60 ◦C, 10 s). The cycle threshold
(Ct) value was converted to the bacterial level using the standard curve of each primer
(Supplementary Figure S2).

Table 1. Primers used to detect bacteria on dry aged beef.

Strain Primer (3′–5′) Target Gene Reference

Pantoea spp. F: CACTGGAAACGGTGGCTAAT
16S rRNA This study

R: CTGGGTTCATCCGATAGTGAG

Pseudomonas spp. F: ACTTTAAGTTGGGAGGAAGGG
R: ACACAGGAAATTCCACCACCC 16S rRNA [20]

Streptococcus spp. F: CGATACATAGCCGACCTGAGA
R: CCACTCTCCCCTYYTGCAC 16S rRNA [21]

Universal bacteria

Gram-positive F: GAAAGTCCGGGCTCCATA
R: ATAAGCCGGGTTCTGT mp(G–) [22]

Gram-negative F: GAGGAAATCCRKGCTCGCAC
R: AGGGGTTTACCGCGTTCC mp(G+) [22]

rRNA, ribosomal ribonucleic acid.

2.4. Measurement of the TBARS and VBN Values

The TBARS values were determined according to the method of Witte et al. (1970) [23]
with slight modifications. Briefly, beef samples (10 g) were blended for 1 min in a homoge-
nizer (CH580, Hai Xin Technology Company, Shenzhen, China) with water three times the
amount of the sample. The homogenate was filtered through an Advantec No. 1 filter paper
(Cat. No. 265172; Chiba, Japan), and the filtrate was mixed with 20 mM 2-thiobarbituric
acid and 20% trichloroacetic acid. The mixtures were reacted at 99 ◦C in a water bath, and
the reaction was stopped by cooling under running water. After filtration, the absorbance
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of the samples at 531 nm was measured using a spectrophotometer (BioTek Instruments,
Winooski, VT, USA). The VBN value was measured using microdiffusion analysis [24]. The
beef sample (10 g) was homogenized in distilled water to a volume of 100 mL using a mess
flask. The homogenate was filtered through a filter paper. One milliliter of the filtrate was
transferred to the outer part of a Conway dish, and then 1 mL of 0.01 N boric acid (H3BO3)
and 0.1 mL of Conway solution (0.066% methyl red + 0.066% bromocresol green in ethanol)
was transferred to the inner part. A 50% potassium carbonate (K2CO3) solution was added
to the lower layer of the outer part. The dish was then sealed and incubated at 37 ◦C for
2 h. Finally, a drop of 0.02 N sulfuric acid (H2SO4) was added to the inner part until the
color changed from green to red, and the VBN value was calculated.

2.5. Statistical Analysis

The experiment was replicated with three samples. Data for the microflora were
analyzed using the Wilcoxon rank-sum test. Data for the level of quality factors (TBARS,
VBN, and bacterial level) in dry aged beef were analyzed using Analysis of Variance
(ANOVA) with SPSS statistical software (SPSS Ver. 20.0; IBM, Chicago, IL, USA). Least
square means among the groups were compared using a Tukey’s range test at α = 0.05.

3. Results and Discussion
3.1. Changes in the Level of Quality Factors during Dry Aging of Beef

Lipid oxidation and protein putrefaction are highly related to a decrease in taste and
flavor in spoiled meat, which are reflected in the TBARS and VBN values, respectively. At
low temperatures, the pH of meat is increased as the meat is spoiled, and this causes an
increase in the water-holding capacity of the meat [25]. In this study, round beef was dry
aged under low temperature for a long time, and its quality factors, including TBARS, VBN,
and water holding capacity (WHC), were analyzed at certain intervals during 24 weeks of
dry aging. The TBARS value was significantly increased at the fifth week, and the VBN
value increased at the 14th week of dry aging (p < 0.05) (Figure 1A,B). The WHC of beef
considerably increased after the 11th week (p < 0.05) (Figure 1C). These results indicate
that the quality of dry aged beef decreased from the 11th week. Therefore, the dry aging
duration was divided into early and late stages based on the 11th week, the time at which
the quality of the dry aged beef decreased.
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Figure 1. Changes in the (A) thiobarbituric acid reactive substance (TBARS), (B) volatile basic nitrogen (VBN), and (C) water
holding capacity values in the dry aged beef during an aging time of 24 weeks. a–d: means with different letters are
significantly different (p < 0.05). The data were analyzed using Analysis of Variance (ANOVA).

3.2. Changes in the Composition of Microflora during Dry Aging of Beef

The microflora that colonized on the surface of the dry aged beef (cluster) were
analyzed using metagenomics analysis at 0–24 weeks of age. The number of valid reads
ranged from 14,817 to 115,681. PCoA showed that the composition of microflora was
grouped by dry aging duration (Supplementary Figure S3). To facilitate the analysis, the
data were divided into two groups: early (~11th week) and late (~11th week), and the
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compositions of the two groups were compared. Diversity indices of microflora, such
as Chao1, abundance-based coverage estimator (ACE), and Jackknife, were significantly
lower in the early group than in the late group (p < 0.05) (Figure 2A). This result indicates
that the diversity of the microflora is correlated with the rancidity of dry aged beef. Similar
results were observed in a previous study [24]. In the previous study, differences between
fresh and low-temperature spoiled round beef were compared, and it was observed that
the general type of flora changed from mixed and many types of microflora in the fresh
meat to homogeneous and few types of microflora in the spoiled meat. Similar trends of
decreased microbial diversity in spoiled meats were observed in other types of red meats
and under various storage conditions [26,27].

Processes 2021, 9, x FOR PEER REVIEW 5 of 9 
 

 

3.2. Changes in the Composition of Microflora during Dry Aging of Beef 
The microflora that colonized on the surface of the dry aged beef (cluster) were ana-

lyzed using metagenomics analysis at 0–24 weeks of age. The number of valid reads 
ranged from 14,817 to 115,681. PCoA showed that the composition of microflora was 
grouped by dry aging duration (Supplementary Figure S3). To facilitate the analysis, the 
data were divided into two groups: early (~11th week) and late (~11th week), and the 
compositions of the two groups were compared. Diversity indices of microflora, such as 
Chao1, abundance-based coverage estimator (ACE), and Jackknife, were significantly 
lower in the early group than in the late group (p < 0.05) (Figure 2A). This result indicates 
that the diversity of the microflora is correlated with the rancidity of dry aged beef. Similar 
results were observed in a previous study [24]. In the previous study, differences between 
fresh and low-temperature spoiled round beef were compared, and it was observed that 
the general type of flora changed from mixed and many types of microflora in the fresh 
meat to homogeneous and few types of microflora in the spoiled meat. Similar trends of 
decreased microbial diversity in spoiled meats were observed in other types of red meats 
and under various storage conditions [26,27]. 

 
Figure 2. Metagenomic analysis of the microflora in the early (before the 11th week) or late stage
(after the 11th week) of dry aging. (A) Diversity indices; and (B) microbial composition at the genus
and species levels. * indicates that the two groups are significantly different (p < 0.05). The data were
analyzed using Wilcoxon rank-sum test.

The microflora was further analyzed to investigate the microbial strains and determine
the rancidity of the dry aged beef. At the species level, the compositions of the Pantoea
agglomerans, Pseudomonas fluorescens, and Pseudomonas veronii groups were higher in the
late group than in the early group (Figure 2B). At the genus level, the composition of
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microorganisms, such as Brucellaceae, Brochothrix, and Carnobacterium, was higher in
the early group compared with that in the late group (Figure 2B). These differences in
the microbial composition between the early and late groups mean that the dry aging
process (also decrease in quality) is highly correlated with the composition of the microbial
community. However, the specific relationship between the quality and the microbial
community of dry aged beef has hitherto not been clearly understood.

In particular, the relative abundances of Pantoea spp. and Pseudomonas spp. were
significantly higher in the late group than in the early group, while that of Streptococcus spp.
was significantly lower in the late group (p < 0.05) (Figure 3). Similar changes in relative
bacterial levels of Pseudomonas spp. and Streptococcus spp. have been observed in previous
studies [4,28]. Pantoea, a genus belonging to the Enterobacteriaceae family, contributes
to meat spoilage [29]. Pseudomonas spp. are well-known psychrotrophic bacteria, which
are often isolated from spoiled meat, and Pseudomonas fragi, Pseudomonas lundensis, and
Pseudomonas fluorescens are frequently found species [5]. Streptococcus is a genus of lactic
acid bacteria, which are the most abundant strains in the early stage of dry aging, but their
number decreases as ripening progresses [4]. These genera are commonly found in meat
that is spoiled/stored in air [5]. Therefore, together with the results from Figure 1, changes
in the abundance of Pantoea spp., Pseudomonas spp., and Streptococcus spp. could be used to
determine the rancidity of dry aged beef.
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3.3. Level of the Microbes Quantified Using Real-Time q-PCR (qRT-PCR) during Dry Aging
in Beef

To validate the use of Pantoea spp., Pseudomonas spp., and Streptococcus spp. as indices
for the rancidity of dry aged beef, the abundance of these microbes was quantified in newly
produced dry aged beef using qRT-PCR. In the initial stage, the number of Pantoea spp. was
3.7 log CFU/g, which increased during the early stage of dry aging (Figure 2). The number
of Pantoea spp. was significantly decreased after the 10th week of dry aging (p < 0.05), and it
was 2.3 log CFU/g at the very late stage of dry aging (the 17th week). This result indicates
that the number of Pantoea spp. is highly related to the quality of dry aged beef. Li et al.
(2020) [30] also found that the number of Pantoea spp. was lower in spoiled meat products
compared with that in normal meat products. However, these results are different from
that of the microflora analysis in the present study, which showed a decreased abundance
of Pantoea spp. in the late group (Figure 3). The reason for these differences could be as
follows: (1) differences between “composition” in the microflora analysis and “quantity”
in the qRT-PCR analysis; and/or (2) limitation of primers that could cover all strains of
Pantoea spp. on the beef.

The number of Pseudomonas spp. increased initially and slightly decreased, but not
significantly, in the late stage of dry aging (Figure 4). It was also reported in a previous
study that Pseudomonas spp. (most are P. fragi, P. flourescens, and P. lundensis) were prevalent
both in the fresh and spoiled meat [7,25]. Increase in Pseudomonas spp. composition in
the microflora analysis might be due to a decrease in the total number of microorganisms.
This result indicates that Pseudomonas spp. cannot be used to determine the rancidity of



Processes 2021, 9, 2049 7 of 8

dry aged beef. Similar results were observed for Streptococcus spp. The number of strains
gradually decreased after the sixth week of dry aging, but it was not significant (Figure 4).
At the 17th week of dry aging, however, the number of Streptococcus spp. was significantly
decreased to 1.4 log CFU/g. The results indicate that the abundance of Streptococcus spp.
can be used to determine rancidity in the very late stage of dry aging of beef.
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4. Conclusions

In this study, changes in the microbial community during dry aging were investigated,
and it was proven that microbial strains are highly related to the rancidity of dry aged
beef. Based on the microflora analysis and quantification using qRT-PCR, Pantoea spp. and
Streptococcus spp. could be used to determine the rancidity of dry aged beef. Findings
from this study might be helpful for manufacturers to manage the decay of dry aged beef.
Further studies are needed to validate the use of these strains under various conditions of
dry aging or in applications with other parts of beef.
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