
processes

Article

Automatic Tolerance Analysis of Permanent Magnet Machines
with Encapsuled FEM Models Using Digital-Twin-Distiller

Tamás Orosz 1,*,† , Krisztián Gadó 1,† , Mihály Katona 2 and Anton Rassõlkin 3

����������
�������

Citation: Orosz, T.; Gadó, K.;

Katona, M.; Rassõlkin A. Automatic

Tolerance Analysis of Permanent

Magnet Machines with Encapsuled

FEM Models Using Digital-Twin-

Distiller. Processes 2021, 9, 2077.

https://doi.org/10.3390/pr9112077

Academic Editor: Francisco Javier

Fernández García

Received: 25 October 2021

Accepted: 16 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 MONTANA Knowledge Management Ltd., 1111 Budapest, Hungary; gado.krisztina@montana.hu
2 Department of Electric Power Engineering, Budapest University of Technology and Economics,

1111 Budapest, Hungary; katona.mihaly@edu.bme.hu
3 Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology,

19086 Tallinn, Estonia; anton.rassolkin@taltech.ee
* Correspondence: orosz.tamas@montana.hu
† These authors contributed equally to this work.

Abstract: Tolerance analysis is crucial in every manufacturing process, such as electrical machine
design, because tight tolerances lead to high manufacturing costs. A FEM-based solution of the
tolerance analysis of an electrical machine can easily lead to a computationally expensive problem.
Many papers have proposed the design of experiments, surrogate-model-based methodologies, to
reduce the computational demand of this problem. However, these papers did not focus on the
information loss and the limitations of the applied methodologies. Regardless, the absolute value of
the calculated tolerance and the numerical error of the applied numerical methods can be in the same
order of magnitude. In this paper, the tolerance and the sensitivity of BLDC machines’ cogging torque
are analysed using different methodologies. The results show that the manufacturing tolerances
can have a significant effect on the calculated parameters, and that the mean value of the calculated
cogging torque increases. The design of the experiment-based methodologies significantly reduced
the calculation time, and shows that the encapsulated FEM model can be invoked from an external
system-level optimization to examine the design from different aspects.

Keywords: FEM; electrical machines; digital twin; tolerance analysis

1. Introduction

FEM-based numerical simulations are an essential part of an electrical machine design
process. Creating a good design needs to resolve a multi-objective optimization prob-
lem, which contains many numerically expensive FEM calculations with large parameter
space [1,2]. Many state-of-the-art genetic and evolutionary optimization algorithms are
used to solve these optimization problems, such as NSGA-II, SPEA2, OMOPS, DE, etc. [3–6].
The solution of these tasks needs to perform thousands of computationally expensive cal-
culations. Many techniques and tools developed, such as parallel computing, surrogate
modelling, and model order reduction to accelerate or reduce the computational complexity
of these optimization tasks [7–11].

The main objectives of these optimizations are to find cost-optimal machines and
increase the power density [12]. Most of these methodologies do not consider the effect
of the manufacturing tolerances and uncertainties on an electrical machine design. How-
ever, to ensure the product quality, the tolerances should be analyzed during the design
process [13]. Taguchi, who was the pioneer of this field of research, suggested a three-step
robust design process comprising the system, parameter, and tolerance design [13–15].
Melvin illustrated the importance of the tolerance analysis with the aid of axiomatic design
principles on an example system [16]. The goal of the axiomatic design disciplines is to
satisfy the functional requirements and reduce the internal noise of the designed system.
The independence and the information axioms should be followed to select the key design
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parameters of the machine. These axioms ensure that the designed system will be robust as
possible to the performance degradation from interactions [16,17]. Figure 1 illustrates an
example system, in which the axiomatic design rules choose the design parameters. Here,
the R1 parameter represents the required parameter. These functional requirements can be
satisfied by selecting the independent design parameter. In the case of the M1 material,
the working point should be selected in (A0), while (A1) in the case of the M2 material.
The A0 and A1 parameters have the same manufacturing tolerance. This means that the
resulting uncertainty is two times higher in the functional requirement, which exceeds the
acceptable tolerance range. Therefore, we can deteriorate the robustness of a design and
increase the number of waste products if we use stronger or better materials in the design.

Figure 1. The tolerance on the required function parameter (R1) can be increased if a linear material
property (M2) is changed by another one (M1).

There are many publications that deal with the role of robustness in electrical machine
design [2,18–21]. Robustness has been taken into consideration in two different ways.
Firstly, with an expectation measure, secondly, as a constraint of the optimization task [22].
Both methodologies increase the computational complexity of the design problem. A good
example is an existing team benchmark problem, where a robust solenoid design should
be calculated. The solution of the robust goal function needs multiple FEM simulations
for every individual during the evolutionary algorithm-based optimization [23–26]. Con-
sidering the tolerances and other uncertainties in an early design stage, they can increase
further the number of calculations. Bramerdorfer pointed out that the application of the
design of experiment (DOE) methodologies and the surrogate modelling techniques can
significantly decrease the number of calculations, by more than 96% [27,28]. These DOE
methodologies achieve this computational time reduction by certain smart sampling tech-
niques. However, the application of DOE methods can cause an information loss, which
decreases the accuracy of the calculations. In these papers [27,28], the accuracy of the
applied DOE techniques was not examined, and the results were not been compared with
a reference, i.e., a full-factorial design based calculations.

The main goal of the paper is to compare the accuracy of different DOE-based method-
ologies on the cogging torque calculation of a BLDC machine. The proposed methodologies
integrated into the digital-twin-distiller, the created model were saved as a digital twin,
and not only the source code of the model but its encapsulated version can be accessed
from the digital-twin-distiller projects homepage (http://www.distiller.dev), accessed
on 17 October 2021). This containerized version of the code contains the model and the
simulation together, as a digital twin (DT) [29–31]. It can be run via the online application
interface without any installation. The proposed solution supports long term usability and
reproducibility for the proposed model.

http://www.distiller.dev
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2. Materials and Methods
2.1. Modeling with Digital-Twin-Distiller

The tolerance analysis was carried out by the digital-twin-distiller (digital-twin-
distiller is available for download from: http://www.github.com/montana-knowledge-
management/digital-twin-distiller, accessed: 17 October 2021). a novel robust design
optimization platform, which has many features supporting high-performance tolerance
analysis with different FEM-solvers [26]. Due to the Platform class, it is possible to switch
between the integrated FEM-solvers: Agros2D and FEMM [25,32–34].

The tolerance analysis workflow with digital-twin-distiller can be seen in Figure 2.
The middle of the picture shows the model of the enclosed finite element calculation.
The model geometry can be built from different pieces of geometrical elements, from differ-
ent CAD formats. The edges of these geometrical elements can be automatically selected
and parameterized for tolerance analysis. In Figure 2 the magnets and the coils were defined
separately, imported from separate sources. The selected input parameters (x0, x1, x2, x3, x4)
can be used for the tolerance analysis. then digital-twin-distiller calculates a bunch of 2D
FEM simulations and returns the calculated parameters (R0, R1) with their tolerances, using
modern Design of Experiments (DoE) based strategies [35–37]. Therefore, thedigital-twin-
distiller can be invoked as a simple Python function from a third-party robust optimization
package, such as Ārtap [25,38,39] and it gives back the resulting value of the calculated
parameter with its estimated error.

Figure 2. Automatic tolerance analysis with the enclosed parametric FEM in digital-twin-distiller
(R0, R1).

It is not necessary to install the required solver to run an digital-twin-distiller, be-
cause it contains another innovative feature, which can save the built model into a platform
independent Digital Twin (DT). The motivation behind this function is similar, like in the
Science Capsule [40] or the Whole Tale [41] projects, where the data and the used tools can
be archived into a single container to ensure the reproducibility of a scientific experiment.
The goal of the digital-twin-distillers encapsulation is different. The archived project runs
as an application in a server, which can be accessed via a REST-api. The POST endpoint
waits the command from an external application. In this way, the realized simulations can
be accessed or used in a system level simulation by another researcher without a deep
knowledge of the domain itself (Figure 3).

Figure 3. Deployment of the containerized parametric FEM calculation using a DT as a standard-
ized REST-API.

http://www.github.com/montana-knowledge-management/digital-twin-distiller
http://www.github.com/montana-knowledge-management/digital-twin-distiller
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Nevertheless, the digital-twin-distiller is a good alternative for other open-source
electrical machine design tools [42–46].

2.2. Design of Experiments for Tolerance Analysis

The goal of the Design of Experiment techniques is to extract as much information
as possible from a limited set of laboratory and computer experiments. This terminol-
ogy is usually divided into two parts: classical and modern methodologies [37]. These
strategies are similar to the Taguchi proposed orthogonal arrays [36,47–49]. The main
difference is that random error exists in a laboratory experiment but does not exist in
a computer experiment [37,50]. Nonetheless, some of the previous papers showed the
usefulness of these classical DoE Techniques in the tolerance analysis of electrical machine
design [27,51]. Orthogonal Arrays and Box-Behnken methodology was used in [27] to
reduce the computational demand of the cogging torque analysis.

Figure 4 plots and compares the sampling strategy of the applied DOE methodologies,
Full Factorial, Box-Behnken, Plackett-Burman, and Central Composite Design. These
methodologies are illustrated in a three level design space [−1, 0,+1]n, in the case of
n = 3 parameters. It can be seen from the figure, that in the case of a full factorial design,
for all of the sampling points, 27 simulation should be done, while in the case of a Box-
Behnken design only 13 variables should be considered. If the number of the parameters
(n) increases, these sampling strategies are becoming more and more efficient. However,
neglecting a large amount of sampling points leads to the loss of calculation accuracy.
If the computational time is not critical, the full-factorial solution gives the most accurate
solution. In the rest of the paper, the full factorial design is calculated to be used as a
reference to compare the different methodologies with that.

Figure 4. Illustration of the sampling points in the used design of experiment methodologies in the
case of a three level, three parameter design.

2.3. Computational Model and Validation

The examined geometry originally published by Antunes [52] (Figure 5), then Meeker [53],
used this geometry to demonstrate his novel sliding band algorithm in FEMM. He gleaned
the original geometry and the material parameters (Table 1) from [52,54] the calculation
results validated by a benchmark line-to-line voltage measurement (Figure 6) [54].

The subject of the simulation was the computation of the cogging torque. Anti-periodic
air gap boundary condition was used to account the mechanical rotation between 0° and
7.5°. The motor has 24 slits, therefore the cogging torque has the period of 360/24 = 15°. It
is symmetric in 61 steps. Figure 5 plots the realized segment of the permanent magnet ma-
chine in Digital-Twin-Designer. Every colored region is imported from the CAD geometry
and modeled as a separate part. All of these parts are parameterized, and these parameters
can be automatically used in the tolerance analysis. To call the API, the user has to fill the
tolerances section of the input json, which consists of three parts: the selected design of the
experiments method, the list of parameters that can be changed as well as their absolute
tolerance values, and the selected variables that will be the output. It is worth pointing out
that not only geometrical parameters can be used in the tolerance analysis but virtually
any parameter that the particular model accepts.
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Listing 1. The tolerance analysis section in the API call. The type is “ff” which translates to the
Full-Factorial design. Below the changing parameter names and their absoulte tolerance values. The
“s1” parameter is coupled with the length of the airgap, “r3” and “mw” sets the magnets height and
width, while “Hc” and “mur” set the magnets’ coercive field, and relative permeablility tolerances.
The results will be calculated for the “Torque” variable.

\label{listling}
{
"tolerances":{
"type":"ff",
"parameters":{
"s1":0.05,
"r3":0.05,
"mw":0.05,
"Hc":5000,
"mur":0.05
},
"variables":[
"Torque"
]
}
}

w1

w2

w3

w4

h2

h3

h4

s3

h1

mw

r3

r1

r2

Figure 5. The geometry of the analyzed BLDC machine, which is built from the colored segments of
the machines via the Digital-Twin-Designer. The right side of the image shows the parameterization
of these different elements.
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Table 1. The main geometric and material parameters of the BLDC machine model [52,53].

Parameter Dimension Value

Axial Length mm 50
Rotor Inner Diameter mm 22.8
Rotor Iron Outer Diameter mm 50.5
Rotor Outer Diameter mm 55.1
Magnet Width mm 15.9
Air Gap Length mm 0.7
Angle Spanned by Tooth deg 11.9
Tooth width mm 4
Tooth Root diameter mm 86.6
Stator Outer Diameter mm 100
Turns/Slot - 46
Winding Wire - 4X20AWG copper wire
Magnet Material - Sm2Co17 24MGOe
Stator Material - 24 Gauge M19 NGO Steel @ 98% fill
Rotor Material - 1018 steel

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Time [s]

150

100

50

0

50

100

150

e.
m

.f 
[V

]

simulation
reference

Figure 6. Simulated and benchmark line-to-line voltage [53,54].

2.4. Mesh Selectivity Analysis

Before the tolerance analysis, the impact of the discretization on the cogging torque
calculation was examined because the cogging torque is very sensitive to meshing errors.
The order of the cogging torque calculation error magnitude can be on the same scale as the
result. A sensitivity analysis was carried out to establish the achievable accuracy. The mesh
size changed between 0.1 mm and 0.6 mm with 51 steps in the airgap, rotor, and magnet.
The element count varied between 4000 and 58,000 during these analyses. Figure 7 shows
one of the examined configurations, while the results can be seen in Figure 8 around the
peaks. When the minimal number of elements was used, the peak value of the cogging
torque was given to 0.335 Nm (Figure 9). This is significant, more than 20% higher than
when smart mesh or the maximal number of meshes were applied (0.275 Nm).
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Figure 7. Comparison of the simulated and the reference cogging torque.

Figure 8. An example configuration for the mesh selectivity analysis. The mesh size is set to 0.18 mm
on the rotor_steel, airgap, magnet regions.
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Figure 9. Cogging torque in relation to different mesh settings. The labels show the total number of
elements in a particular configuration. In magenta, the smart mesh option was turned on.

To get a better overview from the proposed solutions, the peak to peak torque is
plotted in the function of the mesh elements (Figure 10). It can be seen from the picture
that the highest value of the resulting torque is 0.655 Nm, while the smallest value is
0.55 Nm, the difference between these two calculations are more than 15%. If the number
of elements are increasing, the value of the cogging torque is fluctuating around 0.57 Nm
with ±0.015 Nm amplitude (Figure 10). (Figure 10 red dot).

The same statistical analysis was made for the RMS value of the cogging torque,
as well. Here, most of the calculations are fluctuating around 0.135 Nm, and they are
placed between 0.130 Nm and 0.140 Nm. Based on the model and the calculations, the
accuracy was about 3.7%, which is a bit less than what we got from the peak-to-peak
calculations. This means that during the tolerance analysis the disturbances have to
produce at least a 3.7% difference compared to the reference values in order to create a
measurable difference in the peak-to-peak- as well as the RMS torque values (Figure 11).
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Figure 10. The peak cogging torque in relation to the number of elements. (a) The peak cogging
torque in each simulation, (b) the distribution of the results.
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Figure 11. The root mean square torque in relation to the number of elements. (a) The RMS torque in
each simulation, (b) the distribution of the results.

2.5. Tolerance Analysis

During the tolerance analysis, five design parameters of the BLDC machine were
varied. The examined parameters with their tolerances are summarized in Table 2 and
plotted in Figure 12. The parameters can get three values with equal probability, which
means that 35 = 243 combinations should be considered during the full-factorial analysis.
In each case, half of the cogging torque period was simulated in 61 steps. Hence, 14,823
FEM simulations were performed to calculate the resulting cogging torque’s full-factorial
design, mean value, and standard deviation. This full factorial design and the resulting
values are used to compare the resulting minimum, maximum, and mean values of the
cogging torque with the results of different DOE methodologies: Box-Behnken, Central-
Composite (CCF), Plackett-Burman, and the Taguchi designs. All of these methodologies
offer a significant reduction in the calculation time. The CCF design needs the most
computational cost with its 43 designs, which means an 82% reduction compared to the
reference. The Plackett-Burman methodology is the cheapest, with only eight design cases.
This is only the 4% of the full factorial design’s computational demand.

The results of the cogging torque calculation are plotted in Figure 13 and the resulting
mean values are summarized in Table 3. The single design represented in Table 3 shows
the previously analyzed FEM calculation, with the expected physical dimensions of the
machine. Therefore single analysis means a precise FEM calculation without considering
the tolerances of the parameters. Here, the error of the calculation represents the meshing
error. The first finding is that the resulting mean value of the full-factorial design is
significantl more than 5% higher than the original calculation. Surprisingly, it can be seen
from the mesh sensitivity analysis that a single FEM calculation with a coarse mesh is
more close to the result of the full-factorial design than the more precise ones (Figure 9).
The reason of this phenomena is the high sensitivity of the cogging torque to the changes
of the selected parameters, and there is no coincidence between the mesh selection and the
mean value of the full factorial design.
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mw ± 0.05

s1 ± 0.05

r3 ± 0.05

Figure 12. The geometrical parameters, which tolerances were considered during the analysis.

Table 2. The varied parameters during the tolerance analysis with their mean values and the
applied tolerances.

Parameter Dimension Mean Value Tolerance

Airgap [mm] 0.7 0.05
Magnet height [mm] 3.577 0.05
Magnet width [mm] 15.8566 0.05
HC [kA/m] 724 5
µr [-] 1.11 0.05

Table 3. The resulting mean value and the standard deviation of the peak to peak (Tpp) and rms
cogging torque Trms after the different Design of Experiment Calculations.

Design Methodology Tpp Trms
Mean std Mean std

Single Design 0.57 0.015 0.136 0.05
Full-Factorial 0.603 0.077 0.145 0.019
Box-Behnken 0.6 0.054 0.144 0.013
Plackett-Burman 0.618 0.118 0.149 0.029
Central-Composite 0.606 0.09 0.145 0.022
Taguchi 0.642 0.055 0.154 0.013

Surprisingly, the tolerance region of the resulting cogging torque is not symmetrical,
although everywhere the tolerance regions of the design parameters were considered
symmetrically. The smallest value of the resulting peak-to-peak cogging torque is 0.46 Nm,
while the highest one is 0.83 Nm. Thus, the examined tolerances can cause more than 30%
higher cogging torque in the machine, as shown in Figure 14.

If we compare the performance of the different DoE methods, it can be seen that
the CCF design produced the most accurate tolerance estimation. The Box-Behnken
methodology predicted the mean value of the cogging torque well, with 5% accuracy.
However, the maximal and minimal values of the resulting cogging torques were under-
and overestimated by more than 10%. This methodology gave back nearly the same
result for the cogging torque’s mean value while predicting exactly the same value for the
maximal and minimal cogging torque, like the full factorial calculation.
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The Plackett-Burman design, the computationally cheapest methodology, made a
good estimation for the maximum of the peak-to-peak cogging torque correctly, while the
resulting minimal value was overestimated by 6%. The resulting mean value of the peak-
to-peak cogging torque is more than 15% higher than in the case of the full factorial design.

Finally, the Taguchi methodology based sampling produced the worst estimation for
the minimum and maximum values of the cogging torque and it overestimated the mean
value of the cogging torque by more than 20%. This methodology did not use the base
value for the calculations. This is the reason why we do not see any results below 0.6 Nm
in Figure 14.
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Figure 13. The mean value of the calculated cogging torque and its tolerances with different DoE
strategies: Full-facorial designs represented by the gray zone and its results compared by Box-
Behnken design (a), Plackett-Burman (b), CCF (c) and Taguchi design (d).

We made the same analysis on the RMS values of the cogging torque to examine
what the differences were if we used a different metric to compare the results, a result
of an integral instead of a point-to-point difference based metric. The plotted histogram
in Figure 15 shows the distribution of the RMS cogging torque in the different cases.
The shape of this function is a bit different than in the previous case, as it has two peaks
around the resulting value of the base calculation (0.136 Nm), and the mean value of the
cogging torque is significantly higher in the case of full-factorial design, like the result of
a single design. Both the Box-Behnken and the CCF designs estimate the mean value of
the calculation well, while the other two methods overestimate. For the case of minimum
and maximum values, both of the methodologies made a similar prediction error, as in the
previous examination.
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Figure 14. The distribution of the peak value of the cogging torque with the different Doe strategies:
Box-Behnken (a), Plackett-Burman (b), CCF (c), and Taguchi (d), which were compared with the
Full-factorial design.
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Figure 15. The distribution of the calculated rms value of the cogging torque with the different Doe
strategies: Box-Behnken (a), Plackett-Burman (b), CCF (c), and Taguchi (d), which were compared
with the Full-factorial design.

3. Conclusions

FEM-based tolerance analysis of an electrical machine is a computationally expensive
problem. A high number of designs should be performed to discover the full factorial
design space, and the sensitivity of the resulting value from the discretization errors can
significantly impact the results. In this paper, a BLDC machine was examined. The cor-
rectness of the model was validated by the measured data of the back-EMF calculation.
Then, the sensitivity of the cogging torque from the mesh selection was examined, and the
tolerance analysis was made with five parameters. The selected mesh accuracy was around
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2%, while the tolerances can increase the mean value of the resulting cogging torque by
more than 5%. The central composite design made the most accurate calculation on the
selected design. The Box-Behnken methodology predicted the resulting mean value of the
cogging torque well. This methodology made more than 10% error in the prediction of the
minimal and maximal cogging torque value. The results show that these methodologies
can significantly accelerate the tolerance analysis of the cogging torque. However, reducing
the computational demand can lead to information loss and inaccurate prediction of the
mean value or the minimum or maximum values of the examined quantities. In our case,
the central composite design made the best prediction, but it should be investigated in
the future how the design of these experiment methodologies work on different types of
electrical machines. The proposed model and the methodologies implemented into the
digital-twin-distiller, the presented calculations source code, or the working REST-api, can
be accessed in the projects homepage.
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