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Abstract: In industrial piping systems, turbomachinery, heat exchangers etc., pipe bends are essential
components. Computational fluid dynamics (CFD), which is frequently used to analyse the flow
behaviour in such systems, provides extremely precise estimates but is computationally expensive.
As a result, a computationally efficient method is developed in this paper by leveraging machine
learning for such computationally expensive CFD problems. Random forest regression (RFR) is used
as the machine learning algorithm in this work. Four different fluid flow characteristics (i.e., axial
velocity, x-velocity, y-velocity and z-velocity) are studied in this work. The accuracy of the RFR
models is assessed by using a number of statistical metrics such as mean-absolute error (MAE), mean-
squared-error (MSE), root-mean-squared-error (RMSE), maximum error (Max.Error) and median
error (Med.Error) etc. It is observed that the RFR models can produce considerable cost reductions in
computing by surrogating the CFD model. Minor loss in estimation accuracy as compared to the
CFD models is observed. While the magnitude of intricate flow characteristics such as the additional
vortices are correctly predicted, some error in their location is observed.

Keywords: computational fluid dynamics (CFD); random forest regression (RFR); machine learning;
curved pipe; turbulent flow

1. Introduction

Bent pipes and elbows are used in many engineering systems, including water supply
systems, oil and gas piping systems, automobile engines, power generation plants, turbo
machinery, and heat exchangers. Such flows have a complex character and are usually
turbulent. As a result, numerous experimental and computational studies in bend pipes and
ducts of several cross-sections have been conducted in response to the growing practical
interest in understanding the physical principles driving turbulent flows across pipe bends
and elbows. When compared to straight pipes, the main feature of curved pipes is the
presence of a secondary motion consisting of a pair of symmetric, counter-rotating vortices.
This Prandtl first kind secondary motion increases heat transfer and mixing, for example,
effects that are used in many industrial applications, such as nuclear reactor cooling
systems, and food processing [1–3].

Although curved pipe flows have been studied since the late 19th century (see a
detailed description including historical aspects [4]), many questions remain unanswered.
Several experiments on turbulent flow have been carried out in curved pipes [5–11], to
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name just a few. Measurements of turbulent flow through U-bends with circular and
rectangular sections have been reported by Sudo et al. [6]. Helically coiled pipe research
has also mostly focused on monitoring pressure or temperature data and determining
flow parameters. The flow’s curvature and torsion effects during the laminar to turbulent
transition were studied by Cioncolini and Santini [12] and Hayamizu et al. [13]. Due to
their sophisticated and resource-intensive nature for completing tests, numerical models of
flow in bent pipes have only lately begun to evolve in parallel with the advent of expanding
computer resources. Tanaka et al. [14] calculated FVM estimations of water flow in pipe
bends for various values of Re and bend curvature using the Large Eddy Simulation (LES)
turbulence model. The references [15,16] include a database for LES and Direct Numerical
Simulations (DNS) on pipe bend flows. Kim et al. [17] used the FVM-based OpenFOAM
software to do numerical simulations of Sudo et al.’s [5] tests and a comparison study to
see which turbulence model better matched the experimental results. Rohrig et al. [18]
used the OpenFOAM solver to describe turbulent flow in a 90-degree pipe curve. They
looked at the wall-resolved LES and various RANS models with Re ranging from 1.4103
to 3.4103 in terms of computing performance. They matched their results to Kalpakli and
Orlu’s [9] experimental data to establish the superiority of LES over frequently used RANS
techniques, although at a much greater computing cost.

Averaged flow field and measurements of turbulence in curved pipes have primar-
ily been carried out at intermediate Reynolds numbers, Re = (4 to 8) × 104, in recent
decades ([5–7,11]). Quite the reverse, there are few investigations on pipe bend flow above
Re = 4 × 105, when flow properties are expected to be independent of the Reynolds num-
ber [17,19]. Recently, Dutta conducted a series of numerical research on pipe bend flow at
high Reynolds numbers for different curvature ratios and also concluded the same [20–27].
These experiments were conducted on bends with various bend curvature ratios ranging
from Rc/D = 1 to 5 and the Reynolds numbers rang is Re = (1 × 105 to 10 × 105). The find-
ings of previous research are commonly used to power plant pipelines, which frequently
utilise pipe bends with a curvature ratio of 1.0 to 1.5. Due to a lack of experimental data, it
is currently difficult to offer an explanation for the impact of the bend curvature ratio on the
turbulent flow-field and turbulence structure in a pipe bend. In the absence of experimental
data, computational fluid dynamics (CFD) models are frequently used, which offer a highly
accurate prediction of flow properties in general. However, due to their computational
expense, CFD models are not suitable for large-scale deployment. To address this issue,
many researchers in technical issues, particularly turbulent flow in curved sections, have
used soft-computing techniques in the recent decade.

Artificial neural network (ANN) is one of the most widely used metamodeling method
for accurately surrogating complex CFD models for fluid flow problems. In case of large-
eddy simulation, Gamahara and Hattori [28] employed ANN to create a subgrid model.
To estimate the velocity of fluid flowing through a steep 90◦ curve, Gholami et al. [29]
used ANN with decision trees (DT). Rahimi et al. [30] used ANN to investigate the flow
characteristics in serpentine microchannels. Srinivasan et al. [31] evaluated the effective-
ness of ANN in recreating reduced-order models in turbulent flows in a recent paper.
Ganesh et al. [32] have developed genetic programming (GP)-based metamodels to prop-
erly measure fluid flow velocity in 90◦ pipe bends. Narayanan et al. [33] created the PSO
adjusted support vector machine (SVM) model to investigate the turbulent flow field at the
elbow. In order to better understand the influence of various parameters on turbulent fluid
behaviour at the elbow, they utilised the SVM metamodel to perform a parameter enquiry
on the CFD simulation dataset.

Based on the foregoing explanation, it is clear that utilising soft computing to forecast
turbulent flow characteristics in pipe bends will considerably reduce the computation
time than CFD, but it would be a great challenge in computing a highly nonlinear fluid
flow problem accurately. To address this, an ensemble machine learning algorithm called
Random Forest Regression (RFR) is used a surrogate to the expensive CFD model. However,
RFR model must be accurately trained initially on suitable training data that may be
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generated through the CFD process. The rest of the manuscript is arranged in the following
way—Section 2 introduces the problem tackled in the paper.

2. Methodology
2.1. Problem Description

For three distinct Reynolds numbers {Re = (1, 5 and 10) × 105}, a 90◦ pipe bend with a
curvature ratio of (Rc/D = 2) and an inner diameter (D) is investigated in this study. The
radius of the bend curvature (Rc) scaled by the bend diameter (D) is known as the curvature
ratio. The Reynolds number is defined as Re = D× uin/ν, where uin is the intake velocity
and ν is the working fluid’s kinematic viscosity (air). For all situations in this study, a
straight pipe of 10 D length is also evaluated before and after the pipe bend.

Figure 1 depicts a schematic diagram of the flow domain and the mesh configuration
utilized in the current CFD investigation. The x-coordinate is defined as the axial direction
downstream of the bend, the y-coordinate is defined as the direction from the inner wall
to the outer wall of the bend at the bend outlet, and the z-coordinate is defined as the
perpendicular direction to x and y. (u, v, w) indicate the axial, radial, and circumferential
velocity components in the predefined directions (x, y, z), and different variables are
non-dimensionalised utilising the bend diameter (D) and input velocity (uin) as per the
requirements, such as:

U =
u

uin
, V =

v
uin

, W =
w

uin
, Vmag =

√
u2 + v2 + w2

uin
, X =

x
D

, Y =
y
D

, Z =
z
D

(1)
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Figure 1. (a) Schematic diagram of the flow domain and (b) present CFD model with computational grid.

The velocity parameters, i.e., axial velocity, x-velocity, y-velocity and z-velocity of the
fluid flow are considered as the targets in the study. The objectives of the RFR model is to
accurately estimate these velocity parameters by building a function relationship with the
four features, i.e., Reynolds number and the three coordinate locations of the flow.

2.2. CFD Modelling

The equations for the mass and moment balance for turbulent flows are given by
Reynolds’ averaged Navier-Stokes equations for incompressible liquids, as shown in
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Equations (2) and (3). The standard nomenclature is used for ui, p, ρ, µ velocity, pressure,
density, and dynamic viscosity.

∂ui
∂xi

= 0 (2)

ρ

(
ui

∂uj

∂xi

)
= − ∂p

∂xi
+

∂

∂xi

[
(µ + µt)

∂ui
∂xi

]
, j = 1, 2, 3 (3)

For closure of the above equations an expression for turbulent viscosity (µt) is needed.
In this work, k-ε model which belongs to the family of two equations RANS model is used
to obtain the value of µt as given by

µt = Cµ
k2

ε
(4)

where cµ is a constant that has been calculated empirically. The k-ε turbulence model
is used in the current study as k-ε turbulence model has been established to give better
performance for the determination of turbulent flows in pipe curvature [17,25–27,34].
Transport equations for k-ε model are illustrated in Equations (5) and (6), the equations also
contain adjustable constants [35].

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Pk − ρε (5)

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj

[
(µ +

µt

σε
)

∂k
∂xj

]
+ C1ε

ε

k
Pk − C2ερ

ε2

k
(6)

Here (Pk) signifies the production of turbulence kinetic energy and Cµ = 0.09,
σκ = 1.00, σε = 1.30, C1ε = 1.44, C2ε = 1.92 are considered.

In the present model, at inlet of straight pipe section (upstream) the measured inlet
velocity (u = uin, v = 0, w = 0; based on Reynolds number) is applied as the Dirichlet
condition. The no-slip condition (u = 0, v = 0, w = 0) was assumed at the pipe wall while
the zero-stress outflow condition (i.e., with an overall mass balance correction, all flow
variables have a zero-diffusion flux) was assumed at the outlet of straight pipe section in
the downstream.

In present work, a three-dimensional double-precision segregated implicit solver in
ANSYS Fluent 14.5, is utilised to solve the RANS equations iteratively. For momentum
spatial discretization, a second-order up-wind technique is utilised. The velocities and
pressures are solved using the semi-implicit pressure-linked equations (SIMPLE) technique.
The solution’s convergence criteria are in the range of 10−5. Figure 1b shows a three-
dimensional structured mesh with hexahedral components that is verified using a grid
convergence test. Extensive attention was taken during mesh creation to ensure that the
solution was correct in the area of the wall. Using the standard wall treatment function
for the near wall cell employed in this work so that the value of non-dimensional distance
from wall (0 < y + < 30) is tightly regulated.

2.3. RFR Modelling

Random forest regression (RFR) is a machine learning based regression method. Its
foundation lies in the bagging and random subspace methods. Using bagging a number
of learner trees are created which is then ensembled to obtain the overall prediction. A
number of independent bootstrap samples are created from the original training data to
train the learner trees. Each bootstrap sample (Db) is created by drawing n examples from
the original training data D, containing N examples. Replacement of examples is allowed
while creating the bootstrap samples. In general, Db maybe 2/3rd of D and does not
contain any duplicate examples. K number of independent regression trees are created
for the bootstrap samples with input vector x. The regression trees are characterized by
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low bias and high variance. In regression tasks, the mean prediction of K regression trees,
hk(x) is calculated to obtain the random forest prediction [36].

RFR prediction =
1
K

K

∑
k=1

hk(x) (7)

Bagging is responsible for reducing the variance in the ensemble RFR model and
preventing overfitting. Thus, the learner trees must not be correlated. The samples from
the original training dataset which were not selected for training the k th regression tree
during bagging are collated to form an out-of-bag data (OOB) dataset. In general, OOB
may be 1/3rd of D. Based on the OOB dataset the k th regression tree’s performance in
terms of mean squared error (MSEOOB) is computed as,

MSEOOB =
1
n

n

∑
i=i

(yi − yiOOB)
2 (8)

where yi and yiOOB are the i th prediction and the mean of i th prediction from all the trees.
The coefficient of determination, i.e., R2

OOB of the OOB dataset can be computed
from the MSEOOB based on the total variance, i.e., Vary of the output parameter using the
following relation

R2
OOB = 1−MSEOOB/Vary (9)

2.4. Metrics to Assess RFR Metamodel Accuracy

In this paper, a number of accuracy metrics are considered to assess the accuracy of
the developed RFR metamodels. The CFD model’s output response is represented by yi
and the RFR metamodel’s prediction for the corresponding output response is denoted by
ŷi. Thus, the residual εi can be computed as,

εi = yi − ŷi (10)

Based on the mean (y) of the CFD dataset the R2, i.e., the coefficient of determination
can be computed as,

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (11)

Considering the total number of the samples (n), the MAE, i.e., the mean-absolute-
error can be computed as,

MAE =
∑n

i=1|yi − ŷi|
n

(12)

Similarly, the mean-squared-error (MSE), root-mean-squared-error (RMSE), maximum
error (Max Error) and median error (Med Error) are computed as,

MSE =
∑n

i=1(yi − ŷi)
2

n
(13)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(14)

Max Error (y, ŷ) = max. (|yi − ŷi|) (15)

Med Error (y, ŷ) = median (|y1 − ŷ1|, . . . , |yn − ŷn|) (16)

3. Results and Discussion
3.1. CFD Model Validation

The current CFD model and simulation setup are first confirmed against the existing
experimental and numerical data in references [5,14,17] before being used to generate
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training and testing data using CFD models. The same geometrical arrangement and
flow condition are used for that purpose. Figure 2b demonstrates that the mean axial
velocity profile normalized with inlet velocity along the symmetry line at bend outlet
(θ = 90◦) agrees extremely well with both experimental and numerical data. There are
some differences between experimental and numerical data in the bend’s inner wall area.
These differences might be caused by an unfavourable pressure gradient at the bend’s inner
wall. Overall, the current CFD model shows a high degree of concurrence with the existing
literature results.
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Figure 2. Assessment of normalized axial velocity profile at bend outlet (a) grid convergence test (b) validation of the
present CFD model.

3.2. Preliminary Analysis of the Features and Targets

A large dataset of 80, 333 data points is generated by using random sampling. The
data is generated using the CFD described in Section 2.2 and validated in Section 3.1. The
dataset is split into 70% and 30% for training and testing, respectively. A visual assessment
of the relationship between the features and the targets considered in the study is carried
out by using scatter plot matrix presented in Figure 3. It is observed that there is negligible
linear relationship between the features and the targets. This indicates that simple machine
learning algorithms such as linear regression may be insufficient to accurately map the
targets as functions of the features. Further, the Pearson’s correlation is calculated between
each pair of features and targets and presented in Figure 4. Expect for a moderately high
correlation (0.72) between x and y, all the other features have no correlation amongst
themselves, thereby indicating the lack of any multicollinearity. Reynolds number is seen
to have a moderately strong positive relationship with axial velocity and moderate positive
relationship with x-velocity and y-velocity. However, Reynolds number has no correlation
with z-velocity. The other features, i.e., the x, y, z coordinates have minimal correlation
with the axial velocity. However, x and y coordinates share moderate relationship with
x-velocity and y-velocity.
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3.3. RFR Model Development and Validation

Random forest models for each target variable are developed by training on the
CFD generated dataset. Since RFR models are known to be significantly influenced by
the hyperparameters, a pilot study was carried out to fine tune them. Based on the
hyperparameter tuning, the number of regressor is considered as 300. Figure 5 show
the actual responses, i.e., the CFD values versus the RFR model predicted values of the
responses. The better the prediction, closer the data point is to the diagonal line. From
Figure 5, it is clear that the prediction of the axial velocity, y-velocity and z-velocity is
very accurate for the training as well as testing data. A few outliers are seen in case of
testing data, but the outlier deviation is not significant for axial velocity, y-velocity and
z-velocity. However, x-velocity predictions show significant deviations from the true values
for a number of data point. However, the performance of the x-velocity predictions is
better on test data as compared to the training cases, indicating that there is no occurrence
of overtraining.

To further assess the performance of the RFR models, residual analysis is carried out
and presented in Figure 6. Except for the x-velocity RFR models, all other surrogate models
show very small residuals. The x-velocity RFR models have relatively large residuals.
However, it is encouraging to observe that in all the RFR models there is no undue cluster
of residuals, indicating that there is no bias with respect to sampling order in the models.
Moreover, for a very large chunk of the sample points the residual is almost zero, thereby
ensuring that the models have good predictive power.
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The performance of the RFR models on training and testing data is further assessed by
using various metrics discussed in Section 2.3 and presented in Table 1. In all the models,
there is negligible drop in the testing R2 as compared to the training R2, indicating absence
of any over fitting while training. The performance of the RFR models on testing data in
terms of other metrics such as RMSE, MAE, MedAE etc. are also encouraging.

Table 1. Performance of the RFR models on training and testing data.

Metric
Training Testing

Velocity x-Velocity y-Velocity z-Velocity Velocity x-Velocity y-Velocity z-Velocity

R2 0.9998 0.9935 0.9999 0.9992 0.9982 0.9803 0.9991 0.9950
MSE 0.0787 1.2866 0.0389 0.0018 0.6652 3.7459 0.2572 0.0120

RMSE 0.2805 1.1343 0.1971 0.0429 0.8156 1.9354 0.5072 0.1096
MAE 0.0987 0.1250 0.0656 0.0045 0.2727 0.2646 0.1709 0.0117

Max Error 7.3217 40.3404 5.4708 2.6397 18.1603 54.7334 14.9904 3.6267
MedAE 0.0256 0.0106 0.0140 0.0000 0.0685 0.0309 0.0396 0.0000

All the CFD and RFR simulations are carried out a windows platform with Intel(R)
Core(TM) i7 CPU @3.40 GHz, 16 GB RAM. The approximate computational time required
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for each step in the study is reported in Table 2. It is observed that majority of the time is
spend on generation of the data by the CFD models. Thus, the current approach of replacing
the expensive CFD models by computationally cheaper RFR models has significant benefits.
However, it should be noted that the role of CFD models cannot be completely negated, as
some CFD models will be needed for generating the data needed to train the RFR models.
Nevertheless, once trained on a few CFD models, the RFRs can then be used as surrogates
for future CFD models to be built for similar systems, thereby leading to significant cost
and effort savings.

Table 2. Computational time requirements for CFD and RFR modelling.

Steps Involved in the Study Computational Time (Appox., in min)

Geometry modelling 30

Meshing 15

Grid independent test 180

Validation test run 240

Present CFD and dataset generation 4800

Data cleaning and exploratory analysis 180

RFR regressor tuning study 300

RFR based modelling of all four targets 60

3.4. Flow Characteristics in Pipe Bends

Figures 7 and 8 provide a summary of the turbulent flow inside the pipe bend at
different Re which is derived from the current CFD simulations before beginning the
current RFR study (left portion of each image). Figure 7 depicts streamlines in the centre
flow cross-section with the time-averaged in-plane velocity magnitude normalized with
the input velocity (Vmag). Flow is increased in the centre portion and flows towards the
curve at the beginning of the bend (θ = 0), but the bend has no discernible impact. A flow
acceleration may be noticed at the pipe’s outer wall as the flow travels ahead. Due to
the formation of a high-pressure gradient between θ = 30◦ and 60◦, this impact becomes
more noticeable. The flow is moved from the centre of the pipe to the outside wall portion
due to the impact of centrifugal force. Toward the wall, a time averaged flow structure
with strong momentum in the centre and decreased momentum near the wall can be seen.
Mean flow detaches from the inner wall area at the bend outlet (θ = 90◦) and a secondary
flow is visible. The existence of ‘camel back shapes’ in the profile of velocity distribution
is a major feature of this flow in this area (between θ = 75◦ and 90◦, see Figure 2). The
development of secondary flow causes axial momentum loss, which results in these profiles.
Turbulence along the inner wall of the bends is also considerably hindered as a result of
the development of secondary flow.

Figure 8 depicts the time-averaged in-plane velocity magnitude normalised with the
inlet velocity (Vmag) at the bend outlet section (θ = 90◦), similar to Figure 7. The contour
plot of Vmag is shown on the left side of each picture, along with the streamlines plot of
mean secondary flow from the current CFD simulations. The outside wall of the bend is at
the top of each image, while the inner wall is at the bottom. Supreme velocity is observed in
the upper and centre regions of the bend cross section, while a low velocity area along the
bend’s inner wall, as previously stated, is plainly visible. A “cross-flow boundary” occurs
at the sideways wall of the bends at each Re utilised in this investigation, and the secondary
flow produces a vertical velocity component that hastens the flow to the bend centre in
the radial direction. For all Reynolds values, two identical counter rotating Dean vortices
were discovered due to the relationship between centrifugal force with high velocity and
pressure gradient on the flow. In the current study range, two distinct vortices were also
seen at the inner wall portion for moderately high Re flow (for Re = 5 × 105 and 5 × 105).
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Some difference between the CFD and the RFR results is observed in the prediction of
low velocity region near the inner wall for high Re flow. RFR seems to be a little imprecise
in this region. Moreover, minor variations in the positions of additional vortices predicted
by CFD and RFR is seen. RFR does a very accurate mapping of the flow characteristics in
the straight portion of the pipe but marginally underpredicts the effect of curvature at high
Re flow.

4. Conclusions

This study presents an efficient machine learning based surrogate modelling approach
that may be used to rapidly and accurately predict fluid flow parameters that would other-
wise necessitate the use of costly CFD models. Due to its enormous practical significance
and strong nonlinearity, the study of turbulent flow across pipe bends has been chosen
as the topic of interest. Reynolds number and the x, y, z coordinates are chosen as the
features to estimate four target variables namely axial velocity, x-velocity, y-velocity and
z-velocity. The developed random forest regression machine learning model are compared
with the CFD models by using various statistical metrics and graphical analysis. Overall
excellent predictive ability of the RFR models is seen. However, location of certain intricate
flow characteristics such as the positions of additional vortices are erroneously reported
by a small margin. Nevertheless, RFR models do an excellent job in correctly mapping a
complex phenomenon such as turbulent fluid flow characteristics with more than 98% accu-
racy. The study can be improved furthered by ascertaining the feasibility of other machine
learning approaches such as Gaussian regression, XGBoost etc. Uncertainty quantification
in such critical cases can be another interesting area.
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