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Abstract: Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demon-
strates sufficient efficiency in tackling various optimization tasks. However, MFO cannot provide
competitive results for complex optimization problems. The algorithm sinks into the local optimum
due to the rapid dropping of population diversity and poor exploration. Hence, in this article,
a migration-based moth–flame optimization (M-MFO) algorithm is proposed to address the men-
tioned issues. In M-MFO, the main focus is on improving the position of unlucky moths by migrating
them stochastically in the early iterations using a random migration (RM) operator, maintaining
the solution diversification by storing new qualified solutions separately in a guiding archive, and,
finally, exploiting around the positions saved in the guiding archive using a guided migration (GM)
operator. The dimensionally aware switch between these two operators guarantees the convergence
of the population toward the promising zones. The proposed M-MFO was evaluated on the CEC
2018 benchmark suite on dimension 30 and compared against seven well-known variants of MFO,
including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. Then, the top four
latest high-performing variants were considered for the main experiments with different dimensions,
30, 50, and 100. The experimental evaluations proved that the M-MFO provides sufficient exploration
ability and population diversity maintenance by employing migration strategy and guiding archive.
In addition, the statistical results analyzed by the Friedman test proved that the M-MFO demonstrates
competitive performance compared to the contender algorithms used in the experiments.

Keywords: optimization; metaheuristic algorithms; swarm intelligence algorithm; moth-flame
optimization (MFO); exploration and exploitation; population diversity

1. Introduction

During past decades, optimization techniques have been developed widely to solve
complex problems that emerged in different fields of science, such as engineering [1–9],
clustering [10–18], feature selection [19–28], and task scheduling [29–32]. Such optimiza-
tion problems mainly involve characteristics such as linear/non-linear constraints, non-
differentiable functions, and a substantial number of decision variables. These characteris-
tics make optimization problems almost impossible to solve by exact methods reasonably,
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and an effective approach is needed to tackle such complexities. Approximate algorithms
are recognized as an effective approach for solving issues due to their stochastic techniques
and global and local search strategies. Although metaheuristic algorithms cannot guaran-
tee the optimality of their solutions, they can offer near-optimal solutions in a reasonable
amount of time, which helps solve real-world problems [33–37].

Metaheuristic algorithms mostly employ stochastic techniques to solve optimization
problems by exploring the search space to promote population diversity in the early it-
erations. In the exploitation phase, the algorithm locally searches the promising areas to
enhance the quality of solutions discovered in the exploration phase. Striking a proper
balance between these two tendencies leads the algorithm toward the global optimum
after a limited number of iterations. The bio-inspired algorithms are the primary approach
to solve optimization problems by employing biological concepts. In the literature, some
of the bio-inspired algorithms, such as genetic algorithm (GA) [38], differential evolution
(DE) [39], particle swarm optimization (PSO) [40], and artificial bee colony (ABC) [41], have
been used to find the optimum of optimization problems in polynomial time. Although the
mentioned algorithms demonstrate satisfactory results for many problems, no single meta-
heuristic can solve all optimization issues based on the no free lunch (NFL) theorem [42].
The NFL is the main reason for continuous developments in the field of optimization. As
a result, numerous bio-inspired algorithms have been developed by introducing novel
methods.

To comprehensively investigate the bio-inspired algorithms, we can classify them
based on their source of inspiration to evolutionary and swarm intelligence (SI) [43]. The
natural biological evolution, reproduction, mutation, and Darwin’s theory of evolution
are the most used fundamentals for developing evolutionary optimization algorithms. Ge-
netic algorithm (GA) [44], genetic programming (GP) [45], differential evolution (DE) [39],
evolution strategy (ES) [46], and, from recent studies, quantum-based avian navigation
optimizer algorithm (QANA) [47] are some evolutionary algorithms. During past years,
many variants have been developed to improve the performance of evolutionary algo-
rithms, such as enhanced genetic algorithm (EGA) [48], an ensemble of mutation strategies
and control parameters with the DE (EPSDE) [49], the real-coded genetic algorithm using
a directional crossover operator (RGA-DX) [50], and an effective multi-trial vector-based
differential evolution (MTDE) [51].

Swarm intelligence (SI) algorithms are grounded in the collective behavior of a group
of biological organisms. SI algorithms can be divided into four categories: aquatic animals,
terrestrial animals, birds, and insects [52]. The natural behavior of aquatic animals, such as
prey besieging and foraging, has been mimicked in many SI algorithms, including the
krill herd (KH) algorithm [53], whale optimization algorithm (WOA) [54], and salp swarm
algorithm (SSA) [55]. Many researchers have simulated the biological behavior of terrestrial
animals to propose functional metaheuristic algorithms, such as grey wolf optimizer
(GWO) [41], red fox optimization algorithm (RFO) [56], chimp optimization algorithm
(ChOA) [57], and horse herd optimization algorithm (HOA) [58]. In the third category, bat
algorithm (BA) [59], cuckoo search algorithm (CS) [60], crow search algorithm (CSA) [61],
and Aquila optimizer (AO) [62] are among the well-known algorithms inspired by birds’
behaviors. Social behaviors of insects, such as self-organization and cooperation, are the
main sources of inspiration behind the fourth group of SI algorithms, including ant colony
optimization (ACO) [63], artificial bee colony (ABC) [64], ant lion optimization (ALO) [65],
dragonfly algorithm (DA) [66], and moth–flame optimization (MFO) [67].

The SI algorithms intrinsically benefit from autonomy, adaptability, and acceptable
time complexity. However, loss of population diversity and sinking into the local optimum
are common issues among most SI algorithms. Therefore, many variants have been
proposed to address these shortcomings and enhance the performance of the algorithms.
Karaboga et al. [68] introduced a quick artificial bee colony (qABC) algorithm to improve
the exploitation ability of the traditional algorithm. The conscious neighborhood-based
crow search algorithm (CCSA) [52] addresses the imbalance between exploration and
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exploitation. An improved grey wolf optimizer (I-GWO) [69] was proposed to maintain
the population diversity. An enhanced chimp optimization algorithm (EChOA) [70] has
been introduced to avoid local optimum.

The moth–flame optimization (MFO) is a prominent bio-inspired metaheuristic al-
gorithm inspired by the moths’ spiral movement around the light source at night. The
MFO algorithm stands out among many metaheuristic algorithms for its simplicity and
acceptable time complexity. Therefore, the MFO is used for solving a broad range of
real-world problems, such as clustering [71–77], feature selection [78–85], and image pro-
cessing [86–91]. Although the MFO is applicable for solving real-world problems and
many improvements have been developed, it has been observed that the MFO and its
variants hereditarily suffer from poor exploration and loss of population diversity before
the near-optimal solution is met, which leads the algorithm toward local optima trapping
and premature convergence.

In this study, an enhanced MFO algorithm, named migration-based moth–flame
optimization (M-MFO) algorithm, is proposed to cope with these weaknesses. The M-MFO
introduces a guiding archive to maintain the population diversity and a hybrid simple
strategy named migration strategy consists of two random migration (RM) and guided
migration (GM) operators which take advantage of an adapted crossover introduced in the
GA [44]. The RM operator is introduced to enhance the exploration ability and population
diversity by crossing the unlucky moths with a randomly generated moth to migrate to
new areas. If the migrated moths obtain better positions, they are updated and added to
the guiding archive to guide other unlucky moths. When the guiding archive size reaches
the size of the problem variables, the archive is mature enough to guide other unlucky
moths using the GM operator. This dimensionally aware switch between operators can
guarantee the convergence of the algorithm toward promising areas.

To evaluate the efficiency of the M-MFO, the CEC 2018 benchmark functions were
conducted to investigate the characteristics and performance of the proposed algorithm
and its competitors in different dimensions, 30, 50, and 100. The convergence curves and
population diversity provided in Section 5, show that the M-MFO can maintain population
diversity until the optimal solution emerges and effectively facilitates the convergence
behavior. Moreover, the Friedman test was conducted to evaluate the obtained results
statistically. The experimental and statistical results were first compared with seven well-
known variants of MFO, including LMFO [92], WCMFO [93], CMFO [94], CLSGMFO [95],
LGCMFO [96], SMFO [97], and ODSFMFO [98] in dimension 30. Then, the top four
algorithms and eight other state-of-the-art swarm intelligence algorithms were considered
for the main experiments. Hence, the total competitors for the main experiments were
KH [53], GWO [41], MFO [67], WOA [54], WCMFO [93], CMFO [94], HGSO [99], RGA-
DX [50], ChOA [57], AOA [100], and ODSFMFO [98]. The experimental evaluations
and statistical tests revealed that the M-MFO algorithm outperforms other competitor
algorithms with overall effectiveness of 91%. The experimental results revealed that the
migration strategy enhances the exploration ability and maintains the population diversity
to avoid local optimum by stochastically migrating the worst individuals across the search
space in the first iterations and exploiting promising areas discovered by the RM operator
in the next iterations. The main contributions of this study are summarized as follows.

• Introducing a guiding archive for storing improved moths to guide other unlucky
moths.

• Introducing a migration strategy using RM and GM operators to improve unlucky
moths.

• The RM operator enhances the exploration ability, while the GM operator converges
the population toward the promising areas by exploiting around improved moths.

• The experiments prove that the M-MFO effectively maintains the population diversity
by taking advantage of the guiding archive.
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• The Friedman test demonstrated that the M-MFO provides the best results compared
to competitors and stands out among MFO variants for solving global optimization
problems.

The remainder of the paper is organized as follows. A literature overview of the MFO
variants is included in Section 2. Section 3 briefly presents the MFO algorithm. Section 4
comprehensively presents the proposed M-MFO algorithm. A rigorous examination of
the effectiveness of the proposed algorithm is provided experimentally in Section 5 and
statistically in Section 6. Finally, Section 7 summarizes the conclusions.

2. Related Work

The MFO algorithm is known as a prominent problem solver due to its simple frame-
work, fewer control parameters, and ease of implementation. However, the MFO suffers
from some issues for solving complex optimization problems. Therefore, since the release
of the MFO, many variants have been developed to address MFO’s shortcomings and offer
improved performance. These variants can be categorized into hybrid improvements and
non-hybrid improvements, as illustrated in Figure 1.
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Since the introduction of MFO, many researchers have proposed hybrid variants
to effectively address shortcomings of the canonical MFO by employing operators of
other algorithms. Bhesdadiya et al. [101] introduced a hybrid PSO-MFO algorithm by
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combining particle swarm optimization (PSO) with MFO to boost the exploitation ability
of the MFO algorithm. MFO-LSSVM [102] is a hybridization of MFO with least squares
support vector machines (LSSVM) to enhance the generalization in the prediction of
the MFO algorithm. To boost the exploitation ability of the MFO, Sarma et al. [103]
introduced the gravitational search algorithm (GSA) to the canonical MFO and proposed
MFOGSA. In WCMFO, Khalilpourazari et al. [93] introduced a combined MFO, water cycle
algorithm (WCA) and a random walk to avoid local optimum and enhance the solution
quality. Rezk et al. [104] designed a hybrid MPPT method by combining an incremental
conductance (INC) approach and MFO, called (INC-MFO), to reach a maximum-power
solar PV/thermoelectric system under different environmental conditions.

Ullah et al. [105] introduced a time-constrained genetic moth–flame optimization
(TG-MFO) algorithm for an energy management system (EMS) in smart homes and build-
ings. The FCHMD [106] algorithm combines Harris hawks optimizer (HHO) and MFO
to cope with the insufficient exploitation and exploration rate of the HHO and MFO, re-
spectively. Moreover, the method of evolutionary population dynamics (EPD) is employed
to address premature convergence and local optima stagnation. ODSFMFO, proposed by
Li et al. [98], is a hybridization of MFO with differential evolution (DE) and shuffled frog
leaping algorithm (SFLA). In addition, the algorithm is enhanced by the addition of a flame
generation strategy and death mechanism. Dang et al. [107] brought up a hybridization
of MFO and three different methods, including the Taguchi method, fuzzy logic, and re-
sponse surface method, to solve the flexure hinge design problem. SMFO has been recently
proposed by [97] to enhance the solution quality and convergence speed of the MFO by
introducing the sine cosine strategy to the MFO algorithm.

The non-hybrid algorithms are mostly developed to cope with issues such as local
optima trapping, premature convergence, the imbalance between search strategies, and
poor local and global search abilities. The LMFO algorithm proposed by Li et al. [92] is an
enhanced version of MFO, improved by Lévy flight to address premature convergence and
local optimum trapping by improving the population diversity. Apinantanakon et al. [108]
established an opposition-based moth–flame optimization (OMFO) algorithm to evade
local optimum by boosting the exploration ability of the MFO. Xu et al. [109] addressed
the MFO’s low population diversity and introduced EMFO by taking advantage of the
Gaussian mutation (GM). Li et al. [110] presented a multi-objective moth–flame optimiza-
tion algorithm (MOMFA) to enhance water resource efficiency by maintaining population
diversity and accelerating convergence speed by taking advantage of opposition-based
learning and indicator-based learning selection-efficient mechanisms.

The CLSGMFO [95] presents an efficient chaotic mutative moth–flame-inspired algo-
rithm by employing Gaussian mutation and chaotic local search to enhance the population
diversity and exploitation rate, respectively. Chaos-enhanced moth–flame optimization
(CMFO), proposed by Hongwei et al. [94], is an improved MFO algorithm that employs
ten chaotic maps. Xu et al. [96] developed LGCMFO to enhance the global and local search
ability of the MFO and avoid local optimum by employing new operators, such as Gaussian
mutation (GM), Lévy mutation (LM), and Cauchy mutation (CM). In BFGSOLMFO, Zhang
et al. [111] introduced orthogonal learning (OL) and Broyden–Fletcher–Goldfarb–Shanno
(BFGS) to the MFO to enhance the solution quality of the MFO. Nadimi-Shahraki et al. [112]
proposed an improved moth–flame optimization (I-MFO) algorithm to evade the local
optima trapping and premature convergence by adding a memory mechanism and taking
advantage of the adapted wandering around search (AWAS) strategy. This algorithm is
designed to solve the numerical and mechanical engineering problems.

3. Moth–Flame Optimization (MFO) Algorithm

The moth–flame optimization (MFO) is a prominent SI algorithm inspired by the spiral
locomotion behavior of moths around a light source at night. This behavior is derived
from the navigation mechanism of moths that is used to fly a long distance in a straight
line by maintaining a fixed inclination to the moon. However, this principled navigation
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mechanism turns into a deadly spiral path toward the light source if the light source
is relatively close to the moths. According to the brief description, the MFO algorithm
consists of moths and flames. As shown in Equation (1), moths are considered search
agents, organized in matrix M (t), that explore the D-dimensional search space, and N is
the number of moths.

M(t) =


m1,1 m1,2 · · · m1,D
m2,1 m2,2 · · · m2,D

...
...

...
...

mN ,1 mN ,2 · · · mN ,D

 (1)

Additionally, the fitness of the corresponding moth is stored in an array OM (t), as
shown below.

OM(t) =


OM1(t)
OM2(t)

...
OMN(t)

 (2)

On the other hand, flames are the best positions discovered by moths and are stored in
a similar matrix F (t), along with their fitness values in an array OF (t). The moths spirally
move around their corresponding flames, as shown in Equation (3), where Mi (t) is the
position of ith moth in the current iteration, the Disi determines the distance between Mi
and its corresponding jth flame (Fj) formulated in Equation (4), b indicates the shape of the
logarithmic spiral, and k is a random number value between intervals [−1, 1].

Mi(t) = Disi(t)× ebk × Cos(2πk) + Fj(t) (3)

Disi(t) =
∣∣Fj(t)−Mi(t)

∣∣ (4)

To converge the algorithm and provide more exploitation, the number of flames
decreases in the course of iterations based on Equation (5), where t determines the current
number of iterations, while N and MaxIt demonstrate the total number of flames and the
maximum number of iterations, respectively.

FlameNum(t) = round
(

N − t× N − 1
MaxIt

)
(5)

4. Proposed Algorithm

The MFO is a prominent population-based algorithm that is successfully applied in
different fields. However, based on the conducted analysis reported in Section 5.2 and
related studies [113–115], the MFO algorithm suffers from poor exploration and rapid
loss of population diversity. While the number of flames converges, the algorithm pro-
vides more local searches throughout the course of the iterations. Hence, the algorithm is
prone to sink into the local optimum due to its limited simple spiral movement of moths
around their corresponding flames which cannot offer further exploration to avoid the
local optimum. Therefore, this study proposes a migration-based moth–flame optimization
(M-MFO) algorithm, which is a hybridization of the MFO algorithm and the crossover
operator introduced in the GA. Moreover, the M-MFO utilizes a guiding archive to main-
tain population diversity and a migration strategy that uses the crossover operator to
boost exploration ability. The migration strategy introduces two operators, RM and GM,
by taking advantage of an adapted GA’s crossover. The RM operator is introduced to
provide sufficient exploration ability during the early iterations, while the GM operator
converges the population toward promising areas. Moreover, to maintain the population
diversity, a guiding archive is introduced, as outlined in Definition 1, to store lucky moths
that have improved using the migration strategy.
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Definition 1 (guiding archive). The guiding archive keeps the position of lucky moths improved by
the migration strategy to maintain the population diversity and suppress the premature convergence
of the population. Both RM and GM add improved moths to the guiding archive, although only the
GM operator exploits the archive. The guiding archive capacity (MaxArc) is formulated in Equation
(6), where D and N are dimensions and population size.

MaxArc = D× [ln N] (6)

To ensure that the guiding archive is mature enough to guide other unlucky moths,
the current size of the archive (δ) needs to be greater than the size of the problem variables
(D). This limitation provides a dimensionally aware switch to choose the right operator in
the migration strategy effectively. In addition, if the value of δ exceeds the MaxArc, the next
moth is replaced with a random member of the guiding archive.

Migration strategy includes RM and GM operators to ensure that there is high enough
exploration capability and convergence toward promising zones. The RM operator pro-
vides further exploration ability by changing the position of Mi stochastically. At the same
time, the GM operator is introduced to converge the population toward promising zones by
exploiting improved moths kept in the guiding archive. Moreover, the migration strategy
benefits from a dimensionally aware switch between these two operators as represented in
Equation (7), where δ indicates the current size of the guiding archive. The pseudo-code
and the flowchart of the M-MFO are presented in Algorithm 1 and Figure 2, respectively.

Mi(t + 1) =


RM operator δ < D

GM operator δ ≥ D
(7)

Random migration (RM) operator: Let unlucky moths (t) = {M1, M2, . . . , Mi, . . . },
which is a finite set of unlucky moths, such that OMi (t) > OMi (t − 1). Hence, in this
operator, the position of Mi changes by considering a randomly generated moth (Mr) and
Mi represents the parents in the crossover formulated in Equations (8) and (9), where α
is a random number in [0, 1]. The crossover produces two offspring, and the one with
better fitness is selected and compared with other offspring to choose the best one, and the
position of OMi (t + 1) is added to the guiding archive if it can dominate the OMi (t). The
RM operator satisfies the need for exploration by stochastically moving the unlucky moths
to discover promising areas in the early iterations.

O f f spring1 = α×Mi + (1− α)×Mr (8)

O f f spring2 = α×Mr + (1− α)×Mi (9)

Guided migration (GM) operator: The GM operator is employed to change the po-
sition of unlucky moth, Mi, when the size of the GM reaches the size of the problem
variables. The GM changes the position of Mi by employing the crossover formulated
in Equations (10) and (11), where LMr is a random lucky moth from the guiding archive.
Similarly, to the RM operator, if the new offspring obtains a better position compared to
Mi (t), the position of Mi (t + 1) is updated, and it is appended to the guiding archive.

O f f spring1 = α×Mi + (1− α)× LMr (10)

O f f spring2 = α× LMr + (1− α)×Mi (11)



Processes 2021, 9, 2276 8 of 28
Processes 2021, 9, 2276 9 of 27 
 

 

 

Figure 2. The flowchart of the proposed M-MFO algorithm. 

5. Numerical Experiment and Analysis 

In this section, the performance of the proposed M-MFO has been evaluated on sev-

eral benchmark functions. In the first section, the population diversity and convergence 

behavior of the canonical MFO have been analyzed on some selected functions to provide 

some useful information about the shortcomings of the MFO algorithm. Then, the MFO 

variants and the M-MFO have been compared on dimension 30 to determine the top four 

superior MFO variants to participate in the next experiments. Following that, the perfor-

mance of M-MFO has been compared with ten of the state-of-the-art swarm intelligence 

Figure 2. The flowchart of the proposed M-MFO algorithm.



Processes 2021, 9, 2276 9 of 28

Algorithm 1. The pseudocode of proposed M-MFO algorithm.

Input: Max iterations (MaxIt), number of moths (N), max size of guiding archive (MaxArc), and
dimension (D).
Output: The best flame position and its fitness value.

Begin
Randomly distributing M moths in the D-dimensional search space.
Calculating moths’ fitness (OM).
Set t and δ = 1 //δ is the number of guiding archive members.
OF (t)← sort OM (t).
F (t)← sort M (t).
While t ≤MaxIt

Updating F and OF by the best N moths from F and current M.
Updating FlameNum (t) using Equation (5).
For i = 1: N

Updating the position of Mi (t) using Equation (3) and computing the OMi (t).
If OMi (t) > OMi (t − 1)

τ← Generating a random number between intervals [1, D].
For j = 1: τ

If δ ≤ D (The guiding archive is still immature)
Generating the next position Mi (t + 1) using RM operator and

Equations (8) and (9).
Else (The guiding archive is mature)

Generating next position Mi (t + 1) using GM operator and
Equations (10) and (11).

End If
End For
If OMi (t + 1) < OMi (t)

Updating position Mi (t) and adding Mi (t + 1) to guiding archive
using Definition 1 and MaxArc.

End If
End If

End For
Updating the position and fitness value of the global best flame.
t = t +1.

End while

5. Numerical Experiment and Analysis

In this section, the performance of the proposed M-MFO has been evaluated on sev-
eral benchmark functions. In the first section, the population diversity and convergence
behavior of the canonical MFO have been analyzed on some selected functions to pro-
vide some useful information about the shortcomings of the MFO algorithm. Then, the
MFO variants and the M-MFO have been compared on dimension 30 to determine the
top four superior MFO variants to participate in the next experiments. Following that, the
performance of M-MFO has been compared with ten of the state-of-the-art swarm intel-
ligence algorithms: KH [53], GWO [41], MFO [67], WOA [54], WCMFO [93], CMFO [94],
HGSO [99], RGA-DX [50], ChOA [57], AOA [100], and ODSFMFO [98]. The parameters of
the competitor algorithms are reported in Table 1.
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Table 1. Parameter values for the optimization algorithms.

Alg. Parameter Settings

KH Vf = 0.02, Dmax = 0.005, Nmax = 0.01, Sr = 0.
GWO The parameter a is linearly decreased from 2 to 0.
MFO b = 1, a is decreased linearly from −1 to −2.
WOA α variable decreases linearly from 2 to 0, b = 1.
WCMFO The number of rivers and sea = 4.
CMFO b = 1, a is decreased linearly from −1 to −2, chaotic map = Singer.
HGSO l1 = 5 × 10−3, l2 = 100, l3 = 1 × 10−2, alpha = 1, beta = 1, M1 = 0.1, M2 = 0.2.
RGA-DX pcv = 0.9, α = 0.95, and pd = 0.75.
ChOA f decreases linearly from 2 to 0.
AOA µ = 0.5, α = 5.
ODSFMFO m = 6, pc = 0.5, γ = 5, α = 1, l = 10, b = 1, β = 1.5.
M-MFO τ = random number between 1 and D, MaxArc = D × [ln N].

5.1. Experimental Environment and Benchmark Functions

The M-MFO and competitor algorithms were implemented in Matlab 2020a. All exper-
iments were performed 20 times, independently, on a laptop with Intel Core i7-10750H CPU
(2.60 GHz) and 24 GB of memory to ensure fair comparisons. In each run, the maximum
number of iterations (MaxIt) was set by (D × 104)/N where D and N were respectively set
to the dimensions of the problem and 100. In this study, the CEC 2018 benchmark func-
tions [116] were used to evaluate the effectiveness of the proposed M-MFO. There are 29
test functions in the CEC 2018 benchmark suite, each with its own set of characteristics and
different dimensions 30, 50, and 100. These test functions can be classified into unimodal
functions F1 and F3, multimodal functions F4–F10, hybrid functions F11–F20, and composi-
tion functions F21–F30. The experimental results tabulated in Tables 2–5 and Tables A1–A4
in the Appendix A are based on each algorithm’s average and minimum fitness value,
where the bold values illustrate the winning algorithm. Moreover, the symbols “W|T|L”
in the last row of each table demonstrate the number of wins, ties, and losses for each
algorithm.

Table 2. The overall results of MFO variants for dimension 30.

Metric LMFO
(2016)

WCMFO
(2019)

CMFO
(2019)

CLSGMFO
(2019)

LGCMFO
(2019)

SMFO
(2021)

ODSFMFO
(2021) M-MFO

Overall
results W|T|L 0|0|29 0|0|29 1|0|28 0|0|29 0|0|29 0|0|29 0|0|29 28|0|1

Table 3. The overall results of the M-MFO and comparative algorithms on unimodal and multimodal test functions.

D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

Overall
results

30 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|1|8 0|0|9 0|0|9 0|0|9 8|1|0

50 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 9|0|0

100 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 9|0|0

Table 4. The overall results of the M-MFO and comparative algorithms on hybrid test functions.

D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

Overall
results

30 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 8|0|2

50 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 9|0|1

100 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 10|0|0
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Table 5. The overall results of the M-MFO and comparative algorithms on composition test functions.

D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

Overall
results

30 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 9|0|1

50 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 8|0|2

100 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 1|0|9 0|0|10 0|0|10 0|0|10 8|0|2

5.2. Population Diversity Analysis

Maintaining population diversity plays a crucial role in metaheuristic algorithms dur-
ing the optimization process, as low diversity among search agents can lead the algorithm
toward getting stuck at a local optimum. In this experiment, the population diversity
and convergence behavior of the MFO algorithm were comprehensively examined to dis-
cover the shortcomings of the MFO algorithm. The population diversity curves shown
in Figure 3 were measured by a moment of inertia (Ic) [117], where the Ic represents the
spreading of each individual from their centroid given by Equation (12) and the centroid cj
for j = 1, 2 . . . D was calculated using Equation (13).

Ic =
D

∑
j=1

N

∑
i=1

(
Mji − cj

)2 (12)

cj =
1
N

N

∑
i=1

Mji (13)
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In order to perform a fair analysis and develop a better understanding of how popula-
tion diversity affects the optimization process, Figure 3 illustrates the population diversity
and convergence curves of the MFO side by side. For unimodal function F1, the diversity
fell while the optimal solution had not been met yet. Hence, the algorithm sunk into
the local optimum until the last iterations. For F3, the slope of losing diversity was not
as sharp as F1, and the convergence trend continued until the last iterations. However,
the population diversity was still low, and convergence speed was too slow to reach the
near-optimal solution in the course of iterations. F4 and F7 represent the multimodal
functions in which the MFO could not maintain the population diversity, and the algorithm
experienced premature convergence, beginning at early iterations. F13, F18, F22, and F27
were plotted as representatives of hybrid and composition functions with similar diversity
and convergence behaviors. The standard behavior was the effort of the algorithm to avoid
the local optimum by increasing the population diversity; however, the simple movements
of search agents in MFO could not satisfy the needs of exploration to escape the local
optimum. To sum up, it can be concluded from the plots that the MFO loses its population
diversity before reaching an optimal solution. This behavior was repeated for most of the
functions, proving the deficiency of the algorithm in maintaining the population diversity.

5.3. Comparison of M-MFO with MFO Variants

To compare M-MFO with more variants, the results of M-MFO and seven other well-
known variants of MFO, including LMFO [92], WCMFO [93], CMFO [94], CLSGMFO [95],
LGCMFO [96], SMFO [97], and ODSFMFO [98], were assessed and tabulated in Table 2
and Table A1 in the Appendix A, where the M-MFO outperformed its competitors in
dimension 30. Then, the top four algorithms, including the proposed M-MFO, ODSFMFO,
WCMFO, and CMFO, were selected for main experiments, including comparison results
on dimensions 30, 50, and 100; convergence analysis; population diversity analysis; and
the Friedman test.

5.4. Evaluation of Exploitation and Exploration

The exploitation and exploration abilities of the proposed M-MFO have been evaluated
by unimodal and multimodal test functions, respectively. As the unimodal functions, F1
and F3 have a single global optimum and they are suitable for assessing the exploitation
abilities of optimization algorithms. Based on the results of the unimodal functions reported
in Table 3 and Table A2 in the Appendix A, the M-MFO outperformed competitors for
30, 50, and 100 dimensions, particularly on test function F3, where the M-MFO provided
the global best solution. The main reason for this exploitation ability is to employ the
GM operator, which effectively exploits improved moths kept in the guiding archive. To
assess the exploration ability of the M-MFO, the multimodal test functions F4–F10 were
considered, as multimodal functions have many local optima. The results of multimodal
test functions demonstrated that the M-MFO provides very competitive results compared
to other competitors, mainly because of the RM operator and its stochastic movement
employed for exploring the landscape effectively in the early iterations.

5.5. Local Optima Avoidance Analysis

In this experiment, the local optima avoidance ability and balance between explo-
ration and exploitation of M-MFO were investigated using hybrid F11–F20 and compo-
sition F21–F30 functions with dimensions 30, 50, and 100. The related results, tabulated
in Tables 4 and 5 and Tables A3 and A4 in the Appendix A, proved that the M-MFO is
very competitive in comparison to other algorithms used for approximating the global
optima values. The main reason is that the algorithm optimally trades off exploration
and exploitation by defining two operators—the RM operator, which stochastically moves
the unlucky search agents across the search space, and the GM operator, which exploits
the promising areas located by successful migrants. Additionally, a guiding archive is
introduced to maintain the population diversity by storing new solutions obtained by mi-
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gration strategy. Moreover, defining a dimensionally aware switching between operators
of migration strategy guarantees a proper trade-off between exploration and exploitation.

5.6. The Overall Effectiveness of M-MFO

This study evaluated the overall effectiveness (OE) of the M-MFO and contender
algorithms based on the results reported in Tables 3–5 and Tables A2–A4 in Appendix A.
The OE results reported in Table 6 were calculated using Equation (14), where N indicates
the total number of test functions and L is the number of losing tests for each algorithm.
The results prove that the M-MFO, with overall effectiveness of 91%, is the most effective
algorithm for the various dimensions 30, 50, and 100.

OE (%) =
N − L

N
× 100 (14)

Table 6. The overall effectiveness of the M-MFO and contender algorithms.

D

Algorithms

KH
(W/T/L)

GWO
(W/T/L)

MFO
(W/T/L)

WOA
(W/T/L)

WCMFO
(W/T/L)

CMFO
(W/T/L)

HGSO
(W/T/L)

RGA-DX
(W/T|L)

ChOA
(W|T|L)

AOA
(W|T|L)

ODSFMFO
(W|T|L)

M-MFO
(W|T|L)

30 0/0/29 0/0/29 0/0/29 0/0/29 0/0/29 1/0/28 1/0/28 1/1/27 0/0/29 0/0/29 0/0/29 25/1/3

50 0/0/29 0/0/29 0/0/29 0/0/29 1/0/28 0/0/29 1/0/28 0/0/29 0/0/29 0/0/29 1/0/28 26/0/3

100 0/0/29 0/0/29 0/0/29 0/0/29 0/0/29 0/0/29 1/0/28 1/0/28 0/0/29 0/0/29 0/0/29 27/0/2

Total 0/0/87 0/0/87 0/0/87 0/0/87 1/0/85 1/0/86 3/0/84 2/1/85 0/0/87 0/0/87 1/0/86 78/1/8

OE 0% 0% 0% 0% 1% 1% 4% 2% 0% 0% 1% 91%

5.7. Convergence Rate Analysis

In this experiment set, the convergence properties of the M-MFO were examined
and the results were compared with contender algorithms for dimensions 30, 50, and 100.
Figure 4 illustrates the convergence curves of the average fitness values obtained by each
algorithm on unimodal, multimodal, hybrid, and composition test functions. The first
row shows the convergence behavior of algorithms on F3. The M-MFO hit the global
optimum solution in the early iterations for all dimensions, which proved the sufficient
exploitation ability of the M-MFO. In contrast, the convergence trends of other algorithms
were hampered by local minima or demonstrated a prolonged convergence rate. For
multimodal function F10, the M-MFO provided the best solution among competitors in the
early iterations due to its exploration ability derived from the migration strategy. The third
and fourth rows present the convergence of the hybrid functions. The M-MFO bypassed
the local optima and continued its gradual trend toward the near-optimum solutions
until the final iterations by striking a balance between exploration and exploitation. The
convergence curves of the composition function illustrated in the last row demonstrate
that the M-MFO obtained the best solution among competitors in early iterations. To sum
up, the plots proved that the M-MFO is superior to the other algorithms and provides
sufficient exploitation, exploration, and balance between these two tendencies. In addition,
it can be noticed that the M-MFO offered more consistent results by increasing the size of
the problem variables.
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5.8. Population Diversity Analysis

As mentioned in Section 5.2, adequate population diversity can suspend the algorithm
from local optima trapping. Therefore, in this section, the population diversity of M-MFO
and other competitors is provided in Figure 5. Comparing the population diversity with
convergence curves provided in the previous section demonstrated that the M-MFO effec-
tively maintained its population diversity until the promising area was met for different
test functions with dimensions of 30, 50, and 100. Furthermore, the plots suggest that the
M-MFO shows strong robustness for maintaining the population diversity as the size of the
problem variables increases, mainly for its dimensionally aware switch between operators.
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5.9. Sensitivity Analysis on the Guiding Archive Maturity Size

As discussed in Definition 1, the M-MFO algorithm switches from RM to GM operator
when the guiding archive has matured. Hence, in this experiment, the impact of considering
different maturity sizes of the guiding archive was evaluated and is discussed in relation
to four different scenarios. Table 7 shows the fitness values gained in each scenario among
five functions (i.e., F1, F9, F17, and F30) for different dimensions 30, 50, and 100.
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Table 7. Results of sensitivity analysis on the guiding archive maturity size.

Scenario 1 (δ = 1) Scenario 2 (δ = 3) Scenario 3 (δ = 5) Scenario 4 (δ = D)
M-MFO

Dim D30 D50 D100 D30 D50 D100 D30 D50 D100 D30 D50 D100

F1
(Unimodal) 2.04 × 103 1.43 × 103 3.48 × 103 2.28 × 103 1.54 × 103 4.24 × 103 2.30 × 103 1.83 × 103 4.69 × 103 1.66 × 103 1.46 × 103 4.46 × 103

F9
(Multimodal) 9.01 × 102 9.06 × 102 9.58 × 102 9.01 × 102 9.05 × 102 9.57 × 102 9.00 × 102 9.05 × 102 9.49 × 102 9.00 × 102 9.04 × 102 9.45 × 102

F17
(Hybrid) 1.75 × 103 2.05 × 103 2.39 × 103 1.74 × 103 1.99 × 103 2.35 × 103 1.74 × 103 1.99 × 103 2.29 × 103 1.74 × 103 1.93 × 103 2.29 × 103

F30
(Composition) 6.78 × 103 8.29 × 105 1.30 × 104 6.77 × 103 8.26 × 105 1.14 × 104 6.58 × 103 8.22 × 105 1.05 × 104 6.64 × 103 8.16 × 105 9.59 × 103

The reported results indicate that the fourth scenario (δ = D) among all the tested
functions provided better results overall compared to other scenarios. Nevertheless, it
can be noticed that other scenarios provided competitive results, especially for unimodal
functions. The main reason lies behind the fact that the higher value for maturity provides
more population diversity and exploration ability, while the need for exploitation ability is
more highlighted for unimodal functions. Moreover, previous studies [47,52] have proved
that increasing the dimension has a negative impact on the effectiveness and scalability of
metaheuristic algorithms. Hence, the size of the problem variables for maturity condition
(δ = D) can provide dimensional robustness for the algorithm. Furthermore, considering
D as the maturity size does not add any additional parameters to the algorithm, and it
provides an autotune parameter for different dimensions.

6. Statistical Analysis

In this experiment, the Friedman test [118] was conducted to statistically prove the
superiority of M-MFO by ranking the algorithms based on their performance on CEC 2018
benchmark functions. Table 8 illustrates the obtained results for unimodal and multimodal
test functions. In addition, hybrid and composition functions have been tabulated in
Table 9. Inspecting the overall rank of the Friedman test, it is evident that the M-MFO
demonstrated superior performance in comparison to contender algorithms for dimensions
of 30, 50, and 100.

Table 8. Friedman test for unimodal and multimodal functions of the CEC 2018.

Functions Unimodal Functions Multimodal Functions

Dimensions 30 50 100 30 50 100

Algorithms Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

KH 4.9500 3 5.9500 4 6.6750 5 4.4250 2 4.1250 2 4.3250 3
GWO 6.4000 5 6.6750 5 6.1000 4 4.4500 3 4.7500 3 4.9750 4
MFO 9.0500 9 8.8000 8 8.9500 9 7.8750 8 7.8000 8 7.9250 8
WOA 8.4750 7 4.6250 3 8.3250 7 7.5000 7 6.8000 6 6.8000 6

WCMFO 2.8750 2 2.5750 2 2.6000 2 4.8750 4 4.8750 4 4.2250 2
CMFO 7.7000 6 6.9250 7 6.0750 3 7.4250 6 7.4000 7 7.1250 7
HGSO 8.5000 8 10.3000 10 9.0000 10 10.5500 9 10.6250 9 10.3750 9

RGA-DX 2.0250 1 2.1500 1 1.9250 1 2.2250 1 1.8000 1 2.2500 1
ChOA 9.6750 10 9.9500 9 8.7500 8 11.2750 11 11.2250 11 11.1500 10
AOA 11.2000 11 11.8000 11 10.5500 11 11.0750 10 11.1500 10 11.4250 11

ODSFMFO 5.6750 4 6.9000 6 7.5500 6 5.3250 5 6.1250 5 6.4000 5
M-MFO 1.4750 1 1.3500 1 1.5000 1 1.0000 1 1.3250 1 1.0250 1

In Figures 6 and 7, the M-MFO and competitors are visually ranked based on their
performance in CEC 2018 benchmark suite for various dimensions. Figure 6 depicts the
ranking results of algorithms in solving CEC 2018 benchmark functions, expressed through
a radar graph. Meanwhile the clustered bar chart of Friedman’s test average results
is shown in Figure 7. The radar graph demonstrates that the M-MFO surpassed other
algorithms in the majority of test functions for various dimensions. The clustered bar chart
shows that the M-MFO achieved the best rank among competitors since it has the shortest
bar in the different dimensions of 30, 50, and 100.
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Table 9. Friedman test for hybrid and composition functions of the CEC 2018.

Functions Hybrid Functions Composition Functions

Dimensions 30 50 100 30 50 100

Algorithms Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

KH 6.0350 6 6.0150 6 6.0400 5 6.4450 6 6.9750 6 6.4550 5
GWO 5.8350 4 5.5000 4 6.0500 6 5.1700 3 4.7950 3 5.0550 4
MFO 6.2950 7 7.2050 7 8.1350 8 6.6900 7 6.5750 5 6.9750 6
WOA 9.2400 9 8.0600 8 6.3300 7 8.5450 8 8.6150 8 8.0200 8

WCMFO 5.9700 5 5.7550 5 5.0400 3 5.7500 4 5.3100 4 5.0100 3
CMFO 5.3550 3 5.1900 3 5.4400 4 6.3850 5 7.0250 7 7.3350 7
HGSO 10.9100 11 10.7300 10 10.8550 10 8.9800 9 9.0400 9 9.7600 9

RGA-DX 3.0000 1 2.8400 1 2.3950 1 2.2500 1 2.2350 1 2.0700 1
ChOA 10.8550 10 10.8750 11 10.3950 9 10.3650 10 10.0700 10 9.9350 10
AOA 8.4900 8 9.7400 9 11.2950 11 11.6400 11 11.6800 11 11.8000 11

ODSFMFO 4.3600 2 4.6450 2 4.8800 2 4.3750 2 4.2750 2 4.2250 2
M-MFO 1.6550 1 1.4450 1 1.1450 1 1.4050 1 1.4050 1 1.3600 1
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Figure 6. The radar graphs of M-MFO and competitors in different dimensions.
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7. Conclusions 

The MFO is a successful metaheuristic algorithm inspired by moths’ behavior con-

verging to a light source at night. The MFO has been used in various real-world optimi-

zation problems during recent years, mainly due to its simple structure. However, as the 

experiments revealed, the canonical MFO algorithm experiences local optima trapping 

and premature convergence due to the rapid dropping of population diversity and poor 

exploration. Hence, the M-MFO algorithm is proposed to overcome MFO’s shortcomings 

by introducing a migration strategy that includes two new operators to boost exploration 

ability and maintain the population diversity. 

The performance of M-MFO was experimentally evaluated by conducting CEC 2018 

benchmark functions on dimension 30 and compared with seven recent variants of MFO, 

including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. The 

top four latest high-performing variants and eight other state-of-the-art swarm intelli-

gence algorithms were considered for experiments on the 30, 50, and 100 dimensions. The 

M-MFO stood out among competitors by providing highly competitive results and main-

taining robustness while the size of the problem variables increased. In addition, to rank 

the algorithms, M-MFO and competitors were analyzed statistically by the Friedman test, 

in which the M-MFO obtained the first rank. For future works and studies, the migration 

strategy and guiding archive could be considered a reference in handling low population 

diversity and inefficient exploration of other metaheuristic algorithms. Moreover, the M-

MFO can be used to solve engineering design problems. It can be converted for solving 

discrete optimization problems, such as feature selection, data mining, and image seg-

mentation. 
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Figure 7. Friedman’s test average results in different dimensions.

7. Conclusions

The MFO is a successful metaheuristic algorithm inspired by moths’ behavior converg-
ing to a light source at night. The MFO has been used in various real-world optimization
problems during recent years, mainly due to its simple structure. However, as the ex-
periments revealed, the canonical MFO algorithm experiences local optima trapping and
premature convergence due to the rapid dropping of population diversity and poor ex-
ploration. Hence, the M-MFO algorithm is proposed to overcome MFO’s shortcomings
by introducing a migration strategy that includes two new operators to boost exploration
ability and maintain the population diversity.

The performance of M-MFO was experimentally evaluated by conducting CEC 2018
benchmark functions on dimension 30 and compared with seven recent variants of MFO,
including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. The top
four latest high-performing variants and eight other state-of-the-art swarm intelligence al-
gorithms were considered for experiments on the 30, 50, and 100 dimensions. The M-MFO
stood out among competitors by providing highly competitive results and maintaining
robustness while the size of the problem variables increased. In addition, to rank the algo-
rithms, M-MFO and competitors were analyzed statistically by the Friedman test, in which
the M-MFO obtained the first rank. For future works and studies, the migration strategy
and guiding archive could be considered a reference in handling low population diversity
and inefficient exploration of other metaheuristic algorithms. Moreover, the M-MFO can
be used to solve engineering design problems. It can be converted for solving discrete
optimization problems, such as feature selection, data mining, and image segmentation.
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Appendix A

Table A1 provides the detailed results of the proposed M-MFO algorithm and other
variants of the MFO for solving CEC 2018 benchmark functions in dimension 30. Fur-
thermore, the detailed results of the proposed M-MFO and contender algorithms for
unimodal, multimodal, hybrid, and composition functions of CEC 2018 benchmark suite in
dimensions 30, 50, and 100 are reported in Tables A2–A4.

Table A1. Comparison results of MFO variants.

F D Metrics LMFO
(2016)

WCMFO
(2019)

CMFO
(2019)

CLSGMFO
(2019)

LGCMFO
(2019)

SMFO
(2021)

ODSFMFO
(2021) M-MFO

F1 30
Avg 2.402 × 107 1.328 × 104 1.878 × 108 9.430 × 108 4.532 × 108 3.091 × 1010 7.519 × 106 1.660 × 103

Min 1.731 × 107 1.214 × 102 2.464 × 106 1.923 × 108 9.606 × 107 2.010 × 1010 1.570 × 106 1.002 × 102

F3 30
Avg 2.786 × 103 1.887 × 103 4.825 × 104 5.191 × 104 4.491 × 104 8.189 × 104 2.875 × 104 3.006 × 102

Min 1.424 × 103 3.092 × 102 2.643 × 104 3.418 × 104 3.166 × 104 7.186 × 104 1.359 × 104 3.000 × 102

F4 30
Avg 5.335 × 102 4.886 × 102 6.536 × 102 6.009 × 102 5.829 × 102 5.977 × 103 5.335 × 102 4.247 × 102

Min 4.755 × 102 4.239 × 102 5.311 × 102 5.259 × 102 4.890 × 102 3.030 × 103 4.722 × 102 4.001 × 102

F5 30
Avg 6.470 × 102 6.744 × 102 6.150 × 102 6.587 × 102 6.468 × 102 8.721 × 102 5.526 × 102 5.136 × 102

Min 5.707 × 102 6.104 × 102 5.709 × 102 6.140 × 102 6.040 × 102 8.041 × 102 5.270 × 102 5.070 × 102

F6 30
Avg 6.038 × 102 6.225 × 102 6.179 × 102 6.285 × 102 6.208 × 102 6.830 × 102 6.037 × 102 6.000 × 102

Min 6.017 × 102 6.096 × 102 6.116 × 102 6.117 × 102 6.117 × 102 6.615 × 102 6.010 × 102 6.000 × 102

F7 30
Avg 8.986 × 102 8.986 × 102 9.041 × 102 9.291 × 102 9.167 × 102 1.349 × 103 8.151 × 102 7.446 × 102

Min 8.438 × 102 8.402 × 102 8.306 × 102 8.555 × 102 8.532 × 102 1.175 × 103 7.824 × 102 7.363 × 102

F8 30
Avg 9.379 × 102 9.841 × 102 9.127 × 102 9.350 × 102 9.273 × 102 1.096 × 103 8.460 × 102 8.141 × 102

Min 8.797 × 102 9.344 × 102 8.679 × 102 8.859 × 102 8.940 × 102 1.058 × 103 8.262 × 102 8.070 × 102

F9 30
Avg 1.064 × 103 8.747 × 103 2.277 × 103 3.984 × 103 3.275 × 103 9.591 × 103 1.062 × 103 9.005 × 102

Min 9.456 × 102 5.118 × 103 1.626 × 103 2.051 × 103 2.089 × 103 7.754 × 103 9.647 × 102 9.000 × 102

F10 30
Avg 4.422 × 103 4.808 × 103 4.967 × 103 5.252 × 103 4.970 × 103 8.363 × 103 4.221 × 103 1.958 × 103

Min 3.149 × 103 3.333 × 103 3.912 × 103 4.057 × 103 3.939 × 103 7.473 × 103 3.066 × 103 1.348 × 103

F11 30
Avg 1.292 × 103 1.336 × 103 2.126 × 103 1.784 × 103 1.512 × 103 5.265 × 103 1.285 × 103 1.122 × 103

Min 1.177 × 103 1.255 × 103 1.360 × 103 1.334 × 103 1.275 × 103 2.547 × 103 1.210 × 103 1.105 × 103

F12 30
Avg 5.460 × 106 1.254 × 106 4.296 × 107 1.932 × 107 1.814 × 107 4.462 × 109 2.297 × 106 7.118 × 104

Min 1.046 × 106 3.718 × 104 8.503 × 105 3.033 × 106 4.012 × 106 1.749 × 109 2.010 × 105 2.650 × 104

F13 30
Avg 4.494 × 105 1.047 × 105 6.841 × 103 2.837 × 105 1.553 × 105 8.738 × 108 9.819 × 103 1.116 × 104

Min 2.705 × 105 1.436 × 104 2.860 × 103 4.152 × 104 2.770 × 104 2.189 × 108 1.596 × 103 5.053 × 103

F14 30
Avg 2.614 × 104 2.074 × 104 7.665 × 104 3.506 × 105 2.108 × 105 1.548 × 106 5.267 × 104 6.136 × 103

Min 2.724 × 103 6.252 × 103 2.082 × 103 8.610 × 103 1.008 × 104 7.879 × 104 4.686 × 103 1.533 × 103

F15 30
Avg 9.006 × 104 3.448 × 104 5.245 × 103 1.596 × 104 1.131 × 104 4.469 × 107 6.098 × 103 2.252 × 103

Min 5.003 × 104 2.547 × 103 1.693 × 103 3.298 × 103 2.834 × 103 2.375 × 106 1.703 × 103 1.508 × 103

F16 30
Avg 2.640 × 103 2.807 × 103 2.581 × 103 2.763 × 103 2.736 × 103 4.402 × 103 2.334 × 103 1.774 × 103

Min 2.110 × 103 2.095 × 103 2.009 × 103 2.046 × 103 2.025 × 103 3.607 × 103 1.949 × 103 1.602 × 103

F17 30
Avg 2.203 × 103 2.315 × 103 2.050 × 103 2.125 × 103 2.076 × 103 2.752 × 103 1.937 × 103 1.738 × 103

Min 1.801 × 103 1.942 × 103 1.805 × 103 1.864 × 103 1.762 × 103 2.359 × 103 1.771 × 103 1.703 × 103

F18 30
Avg 3.682 × 105 1.734 × 105 4.761 × 105 1.747 × 106 1.130 × 106 2.844 × 107 9.249 × 105 9.790 × 104

Min 8.629 × 104 3.793 × 104 3.856 × 104 1.058 × 105 8.154 × 104 2.007 × 106 9.952 × 104 5.073 × 104

F19 30
Avg 6.193 × 104 3.223 × 104 1.816 × 104 1.949 × 104 1.084 × 104 1.072 × 108 9.241 × 103 6.433 × 103

Min 1.764 × 104 2.168 × 103 2.460 × 103 2.390 × 103 2.973 × 103 5.192 × 106 1.968 × 103 1.946 × 103

F20 30
Avg 2.498 × 103 2.468 × 103 2.494 × 103 2.496 × 103 2.333 × 103 2.847 × 103 2.306 × 103 2.128 × 103

Min 2.180 × 103 2.073 × 103 2.162 × 103 2.069 × 103 2.132 × 103 2.454 × 103 2.053 × 103 2.028 × 103

F21 30
Avg 2.439 × 103 2.493 × 103 2.396 × 103 2.421 × 103 2.420 × 103 2.653 × 103 2.352 × 103 2.312 × 103

Min 2.378 × 103 2.398 × 103 2.347 × 103 2.386 × 103 2.375 × 103 2.552 × 103 2.331 × 103 2.303 × 103

F22 30
Avg 5.006 × 103 6.637 × 103 2.373 × 103 2.507 × 103 2.492 × 103 8.654 × 103 2.318 × 103 2.300 × 103

Min 2.325 × 103 5.330 × 103 2.315 × 103 2.371 × 103 2.358 × 103 5.677 × 103 2.307 × 103 2.300 × 103

F23 30
Avg 2.786 × 103 2.785 × 103 2.828 × 103 2.795 × 103 2.787 × 103 3.283 × 103 2.718 × 103 2.662 × 103

Min 2.710 × 103 2.721 × 103 2.764 × 103 2.745 × 103 2.707 × 103 3.027 × 103 2.699 × 103 2.647 × 103

F24 30
Avg 2.928 × 103 2.978 × 103 2.928 × 103 2.952 × 103 2.959 × 103 3.433 × 103 2.871 × 103 2.827 × 103

Min 2.898 × 103 2.928 × 103 2.877 × 103 2.878 × 103 2.920 × 103 3.217 × 103 2.848 × 103 2.820 × 103
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Table A1. Cont.

F D Metrics LMFO
(2016)

WCMFO
(2019)

CMFO
(2019)

CLSGMFO
(2019)

LGCMFO
(2019)

SMFO
(2021)

ODSFMFO
(2021) M-MFO

F25 30
Avg 2.889 × 103 2.894 × 103 3.004 × 103 2.980 × 103 3.005 × 103 3.940 × 103 2.928 × 103 2.888 × 103

Min 2.888 × 103 2.884 × 103 2.933 × 103 2.939 × 103 2.920 × 103 3.463 × 103 2.890 × 103 2.887 × 103

F26 30
Avg 5.012 × 103 5.447 × 103 4.227 × 103 4.838 × 103 4.163 × 103 8.871 × 103 4.425 × 103 3.408 × 103

Min 4.607 × 103 4.955 × 103 2.936 × 103 3.514 × 103 3.241 × 103 5.057 × 103 2.876 × 103 2.800 × 103

F27 30
Avg 3.241 × 103 3.228 × 103 3.257 × 103 3.286 × 103 3.275 × 103 3.688 × 103 3.230 × 103 3.221 × 103

Min 3.200 × 103 3.201 × 103 3.232 × 103 3.224 × 103 3.218 × 103 3.397 × 103 3.222 × 103 3.210 × 103

F28 30
Avg 3.255 × 103 3.194 × 103 3.444 × 103 3.451 × 103 3.290 × 103 5.524 × 103 3.295 × 103 3.110 × 103

Min 3.210 × 103 3.100 × 103 3.247 × 103 3.285 × 103 3.268 × 103 4.419 × 103 3.251 × 103 3.100 × 103

F29 30
Avg 3.785 × 103 3.965 × 103 4.050 × 103 3.976 × 103 3.872 × 103 5.698 × 103 3.669 × 103 3.319 × 103

Min 3.596 × 103 3.650 × 103 3.631 × 103 3.601 × 103 3.556 × 103 4.728 × 103 3.475 × 103 3.312 × 103

F30 30
Avg 1.579 × 105 2.812 × 104 8.574 × 105 3.989 × 105 3.406 × 105 3.278 × 108 1.629 × 104 6.645 × 103

Min 4.934 × 104 1.582 × 104 7.507 × 104 3.747 × 104 4.618 × 104 3.212 × 107 7.769 × 103 6.062 × 103

Summary W|T|L 0| 0| 29 0| 0| 29 1| 0| 28 0| 0| 29 0| 0| 29 0| 0| 29 0| 0| 29 28|0|1

Table A2. Results of the comparative algorithms on unimodal and multimodal test functions.

F D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

F1

30
Avg 1.371 × 104 8.223 ×

108
6.952 ×

109 1.906 × 106 1.328 × 104 5.824 × 107 1.455 ×
1010 2.575 × 103 2.395 ×

1010
4.015 ×

1010 7.519 × 106 1.660 × 103

Min 3.462 × 103 4.405 ×
107

1.027 ×
109 5.654 × 105 1.214 × 102 2.553 × 106 7.442 × 109 1.272 × 102 1.123 ×

1010
3.092 ×

1010 1.570 × 106 1.002 × 102

50
Avg 1.954 × 105 4.523 ×

109
3.099 ×

1010 7.172 × 106 2.826 × 104 1.046 × 109 3.844 ×
1010 3.059 × 103 4.417 ×

1010
1.003 ×

1011 3.066 × 108 1.466 × 103

Min 4.342 × 104 1.231 ×
109

7.095 ×
109 1.980 × 106 6.883 × 102 2.822 × 108 2.159 ×

1010 1.327 × 102 3.506 ×
1010

8.424 ×
1010 9.629 × 107 1.001 × 102

100
Avg 5.646 × 107 3.207 ×

1010
1.173 ×

1011 3.677 × 107 2.017 × 105 3.803 × 109 1.643 ×
1011 4.575 × 103 1.463 ×

1011
2.629 ×

1011 5.316 × 109 4.465 × 103

Min 2.550 × 106 1.634 ×
1010

6.748 ×
1010 1.409 × 107 1.093 × 104 1.832 × 109 1.299 ×

1011 1.587 × 102 1.282 ×
1011

2.350 ×
1011 1.894 × 109 1.032 × 103

F3

30
Avg 4.863 × 104 2.993 ×

104
1.009 ×

105 1.715 × 105 1.887 × 103 4.248 × 104 3.687 × 104 7.905 × 103 5.178 ×
104

7.318 ×
104 2.875 × 104 3.006 × 102

Min 2.979 × 104 1.576 ×
104

1.920 ×
103 8.481 × 104 3.092 × 102 3.385 × 104 2.335 × 104 9.933 × 102 3.954 ×

104
5.445 ×

104 1.359 × 104 3.000 × 102

50
Avg 1.216 × 105 7.147 ×

104
1.650 ×

105 6.180 × 104 1.150 × 104 9.610 × 104 1.363 × 105 2.712 × 104 1.309 ×
105

1.625 ×
105 9.729 × 104 3.000 × 102

Min 6.121 × 104 3.628 ×
104

1.176 ×
104 3.098 × 104 7.428 × 102 6.899 × 104 1.050 × 105 1.139 × 104 1.006 ×

105
1.249 ×

105 6.538 × 104 3.000 × 102

100
Avg 3.477 × 105 2.023 ×

105
4.556 ×

105 5.928 × 105 7.361 × 104 2.317 × 105 2.945 × 105 1.387 × 105 3.065 ×
105

3.325 ×
105 3.252 × 105 3.000 × 102

Min 2.569 × 105 1.595 ×
105

1.191 ×
105 3.355 × 105 3.430 × 104 2.058 × 105 2.601 × 105 7.593 × 104 2.849 ×

105
3.027 ×

105 2.456 × 105 3.000 × 102

F4

30
Avg 4.963 × 102 5.441 ×

102
9.082 ×

102 5.476 × 102 4.886 × 102 5.631 × 102 2.171 × 103 4.896 × 102 2.545 ×
103

8.649 ×
103 5.335 × 102 4.247 × 102

Min 4.043 × 102 4.963 ×
102

5.424 ×
102 4.995 × 102 4.239 × 102 4.759 × 102 1.194 × 103 4.040 × 102 1.134 ×

103
3.825 ×

103 4.722 × 102 4.001 × 102

50
Avg 5.683 × 102 8.767 ×

102
4.098 ×

103 6.676 × 102 5.493 × 102 1.069 × 103 8.889 × 103 5.095 × 102 9.023 ×
103

2.568 ×
104 7.414 × 102 4.872 × 102

Min 4.996 × 102 6.745 ×
102

1.216 ×
103 5.138 × 102 4.849 × 102 6.394 × 102 5.286 × 103 4.285 × 102 5.017 ×

103
1.686 ×

104 6.237 × 102 4.092 × 102

100
Avg 7.431 × 102 2.813 ×

103
2.348 ×

104 9.992 × 102 6.423 × 102 2.354 × 103 2.840 × 104 6.436 × 102 2.822 ×
104

7.733 ×
104 1.400 × 103 5.378 × 102

Min 6.443 × 102 1.870 ×
103

6.743 ×
103 8.615 × 102 5.980 × 102 1.123 × 103 1.677 × 104 5.671 × 102 2.145 ×

104
6.186 ×

104 1.103 × 103 4.753 × 102

F5

30
Avg 6.363 × 102 5.855 ×

102
6.894 ×

102 8.044 × 102 6.744 × 102 5.957 × 102 8.061 × 102 5.430 × 102 7.905 ×
102

7.873 ×
102 5.526 × 102 5.136 × 102

Min 5.936 × 102 5.508 ×
102

6.280 ×
102 7.242 × 102 6.104 × 102 5.678 × 102 7.824 × 102 5.259 × 102 7.471 ×

102
7.217 ×

102 5.270 × 102 5.070 × 102

50
Avg 7.659 × 102 6.892 ×

102
8.934 ×

102 9.209 × 102 8.940 × 102 8.095 × 102 1.049 × 103 6.004 × 102 1.043 ×
103

1.074 ×
103 6.212 × 102 5.296 × 102

Min 7.050 × 102 6.379 ×
102

7.731 ×
102 8.081 × 102 7.743 × 102 7.138 × 102 9.990 × 102 5.677 × 102 9.853 ×

102
9.951 ×

102 5.630 × 102 5.179 × 102

100
Avg 1.216 × 103 1.058 ×

103
1.666 ×

103 1.413 × 103 1.726 × 103 1.297 × 103 1.824 × 103 7.916 × 102 1.787 ×
103

1.960 ×
103 8.658 × 102 5.564 × 102

Min 1.054 × 103 9.864 ×
102

1.455 ×
103 1.329 × 103 1.328 × 103 1.154 × 103 1.701 × 103 7.259 × 102 1.743 ×

103
1.842 ×

103 7.800 × 102 5.368 × 102

F6

30
Avg 6.428 × 102 6.043 ×

102
6.267 ×

102 6.671 × 102 6.225 × 102 6.166 × 102 6.655 × 102 6.000 × 102 6.603 ×
102

6.654 ×
102 6.037 × 102 6.000 × 102

Min 6.175 × 102 6.011 ×
102

6.144 ×
102 6.410 × 102 6.096 × 102 6.078 × 102 6.511 × 102 6.000 × 102 6.537 ×

102
6.566 ×

102 6.010 × 102 6.000 × 102

50
Avg 6.515 × 102 6.105 ×

102
6.437 ×

102 6.760 × 102 6.400 × 102 6.355 × 102 6.813 × 102 6.001 × 102 6.710 ×
102

6.837 ×
102 6.081 × 102 6.000 × 102

Min 6.440 × 102 6.052 ×
102

6.270 ×
102 6.638 × 102 6.165 × 102 6.257 × 102 6.724 × 102 6.000 × 102 6.608 ×

102
6.747 ×

102 6.041 × 102 6.000 × 102

100
Avg 6.587 × 102 6.276 ×

102
6.648 ×

102 6.768 × 102 6.664 × 102 6.528 × 102 6.936 × 102 6.001 × 102 6.860 ×
102

7.029 ×
102 6.184 × 102 6.000 × 102

Min 6.527 × 102 6.229 ×
102

6.467 ×
102 6.676 × 102 6.526 × 102 6.418 × 102 6.867 × 102 6.000 × 102 6.761 ×

102
6.970 ×

102 6.133 × 102 6.000 × 102
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Table A2. Cont.

F D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

F7

30
Avg 8.280 × 102 8.418 ×

102
1.011 ×

103 1.238 × 103 8.986 × 102 8.989 × 102 1.080 × 103 7.801 × 102 1.187 ×
103

1.302 ×
103 8.151 × 102 7.446 × 102

Min 7.853 × 102 7.801 ×
102

8.671 ×
102 1.089 × 103 8.402 × 102 8.415 × 102 1.032 × 103 7.586 × 102 1.063 ×

103
1.154 ×

103 7.824 × 102 7.363 × 102

50
Avg 1.070 × 103 1.016 ×

103
1.701 ×

103 1.684 × 103 1.141 × 103 1.224 × 103 1.530 × 103 8.481 × 102 1.663 ×
103

1.862 ×
103 9.911 × 102 7.684 × 102

Min 9.625 × 102 9.654 ×
102

1.113 ×
103 1.500 × 103 1.020 × 103 1.021 × 103 1.333 × 103 8.062 × 102 1.464 ×

103
1.744 ×

103 9.354 × 102 7.588 × 102

100
Avg 2.118 × 103 1.710 ×

103
4.169 ×

103 3.250 × 103 1.988 × 103 2.421 × 103 3.184 × 103 1.129 × 103 3.326 ×
103

3.694 ×
103 1.619 × 103 8.363 × 102

Min 1.819 × 103 1.542 ×
103

2.576 ×
103 2.814 × 103 1.531 × 103 2.103 × 103 2.813 × 103 9.899 × 102 3.182 ×

103
3.580 ×

103 1.416 × 103 8.161 × 102

F8

30
Avg 9.196 × 102 8.713 ×

102
9.790 ×

102 1.000 × 103 9.841 × 102 8.945 × 102 1.051 × 103 8.434 × 102 1.031 ×
103

1.041 ×
103 8.460 × 102 8.141 × 102

Min 8.707 × 102 8.435 ×
102

8.938 ×
102 9.488 × 102 9.344 × 102 8.574 × 102 1.033 × 103 8.249 × 102 9.726 ×

102
1.002 ×

103 8.262 × 102 8.070 × 102

50
Avg 1.065 × 103 9.792 ×

102
1.229 ×

103 1.249 × 103 1.213 × 103 1.055 × 103 1.369 × 103 9.002 × 102 1.305 ×
103

1.425 ×
103 9.168 × 102 8.315 × 102

Min 1.019 × 103 9.384 ×
102

1.118 ×
103 1.132 × 103 1.087 × 103 9.831 × 102 1.308 × 103 8.567 × 102 1.251 ×

103
1.339 ×

103 8.625 × 102 8.199 × 102

100
Avg 1.576 × 103 1.397 ×

103
1.968 ×

103 1.897 × 103 2.026 × 103 1.533 × 103 2.240 × 103 1.063 × 103 2.151 ×
103

2.414 ×
103 1.193 × 103 8.694 × 102

Min 1.465 × 103 1.225 ×
103

1.717 ×
103 1.716 × 103 1.756 × 103 1.410 × 103 2.093 × 103 9.900 × 102 2.052 ×

103
2.248 ×

103 1.122 × 103 8.398 × 102

F9

30
Avg 3.059 × 103 1.384 ×

103
6.278 ×

103 7.233 × 103 8.747 × 103 1.893 × 103 5.814 × 103 9.064 × 102 6.551 ×
103

5.578 ×
103 1.062 × 103 9.005 × 102

Min 1.768 × 103 1.025 ×
103

4.471 ×
103 4.425 × 103 5.118 × 103 1.554 × 103 3.388 × 103 9.009 × 102 5.576 ×

103
4.101 ×

103 9.647 × 102 9.000 × 102

50
Avg 9.536 × 103 4.571 ×

103
1.644 ×

104 1.783 × 104 2.195 × 104 7.504 × 103 2.616 × 104 9.773 × 102 2.577 ×
104

2.294 ×
104 1.750 × 103 9.045 × 102

Min 6.223 × 103 2.135 ×
103

8.748 ×
103 1.187 × 104 1.190 × 104 3.715 × 103 2.123 × 104 9.213 × 102 1.969 ×

104
1.804 ×

104 1.299 × 103 9.007 × 102

100
Avg 2.251 × 104 2.638 ×

104
4.508 ×

104 3.820 × 104 5.208 × 104 2.315 × 104 6.515 × 104 2.428 × 103 6.876 ×
104

5.410 ×
104 4.877 × 103 9.454 × 102

Min 1.965 × 104 1.102 ×
104

3.679 ×
104 2.557 × 104 3.986 × 104 1.973 × 104 5.587 × 104 1.304 × 103 5.806 ×

104
4.674 ×

104 3.620 × 103 9.174 × 102

F10

30
Avg 4.876 × 103 3.909 ×

103
5.130 ×

103 6.156 × 103 4.808 × 103 4.728 × 103 6.636 × 103 3.700 × 103 7.996 ×
103

6.444 ×
103 4.221 × 103 1.958 × 103

Min 3.664 × 103 2.718 ×
103

3.575 ×
103 4.506 × 103 3.333 × 103 3.522 × 103 5.706 × 103 2.875 × 103 7.199 ×

103
5.410 ×

103 3.066 × 103 1.348 × 103

50
Avg 8.127 × 103 6.428 ×

103
8.566 ×

103 9.478 × 103 7.956 × 103 7.769 × 103 1.242 × 104 5.949 × 103 1.427 ×
104

1.216 ×
104 7.662 × 103 2.391 × 103

Min 6.288 × 103 4.582 ×
103

6.288 ×
103 6.969 × 103 6.204 × 103 6.035 × 103 1.100 × 104 4.819 × 103 1.301 ×

104
1.073 ×

104 5.766 × 103 1.246 × 103

100
Avg 1.549 × 104 1.498 ×

104
1.728 ×

104 2.012 × 104 1.618 × 104 1.578 × 104 2.579 × 104 1.361 × 104 3.140 ×
104

2.787 ×
104 1.733 × 104 4.814 × 103

Min 1.267 × 104 1.141 ×
104

1.417 ×
104 1.687 × 104 1.147 × 104 1.335 × 104 2.440 × 104 1.115 × 104 3.051 ×

104
2.582 ×

104 1.468 × 104 2.834 × 103

Summary

30 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|1|8 0|0|9 0|0|9 0|0|9 8|1|0

50 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 9|0|0

100 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 9|0|0

Table A3. Results of the comparative algorithms on hybrid test functions.

F D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

F11

30
Avg 1.514 × 103 1.406 ×

103
3.749 ×

103 1.462 × 103 1.336 × 103 2.126 × 103 2.811 × 103 1.138 × 103 3.267 ×
103

3.249 ×
103 1.285 × 103 1.122 × 103

Min 1.262 × 103 1.271 ×
103

1.363 ×
103 1.282 × 103 1.255 × 103 1.360 × 103 1.707 × 103 1.109 × 103 1.731 ×

103
1.797 ×

103 1.210 × 103 1.105 × 103

50
Avg 4.926 × 103 3.078 ×

103
7.297 ×

103 1.591 × 103 1.491 × 103 1.984 × 103 5.800 × 103 1.251 × 103 8.848 ×
103

1.587 ×
104 1.725 × 103 1.128 × 103

Min 2.518 × 103 1.480 ×
103

1.574 ×
103 1.421 × 103 1.344 × 103 1.278 × 103 3.881 × 103 1.129 × 103 6.441 ×

103
9.287 ×

103 1.394 × 103 1.123 × 103

100
Avg 7.658 × 104 3.531 ×

104
1.257 ×

105 7.762 × 103 2.191 × 103 4.024 × 104 1.281 × 105 1.033 × 104 7.093 ×
104

1.631 ×
105 3.043 × 104 1.195 × 103

Min 3.912 × 104 1.647 ×
104

2.137 ×
104 4.463 × 103 1.841 × 103 2.012 × 104 1.128 × 105 2.076 × 103 6.100 ×

104
1.268 ×

105 1.322 × 104 1.127 × 103

F12

30
Avg 3.051 × 106 3.900 ×

107
6.158 ×

107 3.770 × 107 1.254 × 106 4.296 × 107 1.343 × 109 7.608 × 105 3.594 ×
109

7.204 ×
109 2.297 × 106 7.118 × 104

Min 1.788 × 105 2.109 ×
106

7.306 ×
104 2.509 × 106 3.718 × 104 8.503 × 105 6.717 × 108 1.016 × 105 6.620 ×

108
3.034 ×

109 2.010 × 105 2.650 × 104

50
Avg 1.249 × 107 4.764 ×

108
2.475 ×

109 1.861 × 108 7.229 × 106 1.684 × 108 1.550 ×
1010 1.983 × 106 1.896 ×

1010
5.311 ×

1010 1.951 × 107 3.292 × 105

Min 1.930 × 106 7.558 ×
107

1.646 ×
107 5.114 × 107 1.549 × 106 6.965 × 106 9.677 × 109 5.848 × 105 1.045 ×

1010
2.948 ×

1010 7.129 × 106 1.293 × 105

100
Avg 6.902 × 107 4.919 ×

109
3.523 ×

1010 6.875 × 108 3.428 × 107 1.982 × 109 5.643 ×
1010 3.019 × 106 6.718 ×

1010
1.822 ×

1011 4.254 × 108 2.834 × 103

Min 2.478 × 107 1.450 ×
109

1.435 ×
1010 2.918 × 108 3.806 × 106 9.911 × 107 3.888 ×

1010 1.129 × 106 4.928 ×
1010

1.296 ×
1011 1.525 × 108 2.195 × 105
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Table A3. Cont.

F D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

F13

30
Avg 3.536 × 104 8.368 ×

105
7.958 ×

106 1.463 × 105 1.047 × 105 6.841 × 103 4.947 × 108 1.173 × 104 8.944 ×
108

4.457 ×
104 9.819 × 103 1.116 × 104

Min 1.619 × 104 1.991 ×
104

1.122 ×
104 2.283 × 104 1.436 × 104 2.860 × 103 1.781 × 108 1.376 × 103 5.646 ×

107
2.158 ×

104 1.596 × 103 5.053 × 103

50
Avg 4.578 × 104 1.532 ×

108
2.428 ×

108 1.657 × 105 8.895 × 104 2.085 × 104 2.604 × 109 4.464 × 103 6.036 ×
109

4.764 ×
109 1.952 × 104 2.083 × 103

Min 2.381 × 104 1.312 ×
105

1.136 ×
105 4.764 × 104 2.174 × 104 6.621 × 103 1.204 × 109 1.455 × 103 8.730 ×

108
1.041 ×

107 9.648 × 103 1.317 × 103

100
Avg 3.464 × 104 4.163 ×

108
4.053 ×

109 8.423 × 104 1.378 × 105 1.269 × 106 9.302 × 109 5.906 × 103 1.894 ×
1010

3.573 ×
1010 5.455 × 104 3.236 × 103

Min 2.377 × 104 1.579 ×
106

2.629 ×
108 3.701 × 104 3.658 × 104 1.538 × 104 5.247 × 109 1.409 × 103 1.203 ×

1010
2.155 ×

1010 1.136 × 104 1.611 × 103

F14

30
Avg 5.166 × 105 1.438 ×

105
8.969 ×

104 9.075 × 105 2.074 × 104 7.665 × 104 3.822 × 105 1.064 × 105 3.622 ×
105

4.148 ×
104 5.267 × 104 6.136 × 103

Min 1.184 × 104 3.679 ×
103

2.197 ×
103 1.364 × 105 6.252 × 103 2.082 × 103 8.651 × 104 5.924 × 103 5.125 ×

104
2.213 ×

103 4.686 × 103 1.533 × 103

50
Avg 5.216 × 105 4.016 ×

105
3.086 ×

105 6.358 × 105 8.151 × 104 2.215 × 105 4.049 × 106 2.251 × 105 1.203 ×
106

3.163 ×
105 5.207 × 105 2.475 × 104

Min 1.101 × 105 4.749 ×
104

1.072 ×
104 9.639 × 104 1.194 × 104 1.658 × 104 1.690 × 106 2.594 × 104 5.706 ×

105
4.727 ×

104 6.023 × 104 8.641 × 103

100
Avg 3.785 × 106 3.480 ×

106
7.558 ×

106 1.876 × 106 3.627 × 105 1.108 × 106 1.595 × 107 6.317 × 105 8.127 ×
106

1.993 ×
107 3.338 × 106 1.466 × 105

Min 2.148 × 106 1.057 ×
106

3.097 ×
105 6.461 × 105 1.387 × 105 3.212 × 105 1.187 × 107 8.401 × 104 5.390 ×

106
6.674 ×

106 1.282 × 106 1.009 × 105

F15

30
Avg 1.744 × 104 3.637 ×

105
3.412 ×

104 8.683 × 104 3.448 × 104 5.245 × 103 2.685 × 106 6.528 × 103 5.743 ×
106

2.428 ×
104 6.098 × 103 2.252 × 103

Min 8.598 × 103 1.847 ×
104

3.640 ×
103 1.368 × 104 2.547 × 103 1.693 × 103 3.185 × 105 1.537 × 103 1.019 ×

106
1.478 ×

104 1.703 × 103 1.508 × 103

50
Avg 2.004 × 104 9.315 ×

106
2.145 ×

107 7.839 × 104 7.164 × 104 9.137 × 103 2.119 × 108 7.314 × 103 1.006 ×
108

3.197 ×
104 7.557 × 103 5.907 × 103

Min 1.128 × 104 1.565 ×
104

4.235 ×
104 2.225 × 104 1.422 × 104 2.035 × 103 1.213 × 108 1.598 × 103 6.005 ×

107
1.979 ×

104 2.315 × 103 2.972 × 103

100
Avg 2.449 × 104 9.478 ×

107
1.045 ×

109 2.527 × 105 9.337 × 104 2.651 × 106 2.409 × 109 2.975 × 103 5.122 ×
109

4.998 ×
109 6.568 × 103 1.821 × 103

Min 1.274 × 104 5.864 ×
105

1.058 ×
105 2.549 × 104 1.223 × 104 3.473 × 103 1.423 × 109 1.621 × 103 1.096 ×

109
1.070 ×

109 3.039 × 103 1.522 × 103

F16

30
Avg 2.908 × 103 2.287 ×

103
2.995 ×

103 3.519 × 103 2.807 × 103 2.581 × 103 3.628 × 103 2.435 × 103 3.456 ×
103

3.700 ×
103 2.334 × 103 1.774 × 103

Min 2.538 × 103 1.744 ×
103

2.487 ×
103 2.728 × 103 2.095 × 103 2.009 × 103 3.221 × 103 1.854 × 103 2.949 ×

103
2.867 ×

103 1.949 × 103 1.602 × 103

50
Avg 3.336 × 103 2.791 ×

103
4.150 ×

103 4.689 × 103 3.778 × 103 3.302 × 103 4.712 × 103 3.313 × 103 5.278 ×
103

6.365 ×
103 2.936 × 103 2.003 × 103

Min 2.736 × 103 2.209 ×
103

3.133 ×
103 3.895 × 103 3.014 × 103 2.761 × 103 3.890 × 103 2.592 × 103 4.488 ×

103
3.693 ×

103 2.394 × 103 1.845 × 103

100
Avg 6.038 × 103 5.610 ×

103
8.085 ×

103 9.811 × 103 6.869 × 103 6.627 × 103 1.213 × 104 5.397 × 103 1.224 ×
104

1.873 ×
104 5.155 × 103 2.566 × 103

Min 5.126 × 103 4.748 ×
103

6.389 ×
103 7.513 × 103 4.978 × 103 4.601 × 103 9.757 × 103 3.740 × 103 1.047 ×

104
1.409 ×

104 4.009 × 103 1.851 × 103

F17

30
Avg 2.253 × 103 1.956 ×

103
2.411 ×

103 2.520 × 103 2.315 × 103 2.050 × 103 2.488 × 103 1.941 × 103 2.595 ×
103

2.601 ×
103 1.937 × 103 1.738 × 103

Min 1.884 × 103 1.777 ×
103

1.975 ×
103 1.931 × 103 1.942 × 103 1.805 × 103 2.223 × 103 1.718 × 103 2.277 ×

103
2.085 ×

103 1.771 × 103 1.703 × 103

50
Avg 3.405 × 103 2.676 ×

103
3.708 ×

103 3.892 × 103 3.758 × 103 3.115 × 103 3.827 × 103 2.846 × 103 4.046 ×
103

4.165 ×
103 2.635 × 103 1.931 × 103

Min 2.871 × 103 2.257 ×
103

2.866 ×
103 3.106 × 103 2.932 × 103 2.590 × 103 3.518 × 103 2.326 × 103 3.304 ×

103
3.228 ×

103 2.084 × 103 1.858 × 103

100
Avg 5.589 × 103 4.439 ×

103
7.668 ×

103 7.212 × 103 6.345 × 103 5.366 × 103 1.919 × 104 4.515 × 103 1.341 ×
104

3.461 ×
105 4.401 × 103 2.292 × 103

Min 4.266 × 103 3.338 ×
103

5.623 ×
103 5.421 × 103 4.935 × 103 3.832 × 103 9.150 × 103 3.706 × 103 9.608 ×

103
1.666 ×

104 3.410 × 103 1.868 × 103

F18

30
Avg 4.488 × 105 6.631 ×

105
3.177 ×

106 2.408 × 106 1.734 × 105 4.761 × 105 2.212 × 106 6.722 × 105 1.276 ×
106

6.751 ×
105 9.249 × 105 9.790 × 104

Min 5.229 × 104 8.000 ×
104

3.737 ×
104 1.933 × 105 3.793 × 104 3.856 × 104 3.218 × 105 5.547 × 104 4.340 ×

105
1.206 ×

105 9.952 × 104 5.073 × 104

50
Avg 2.760 × 106 3.300 ×

106
3.443 ×

106 4.272 × 106 4.064 × 105 5.021 × 106 8.705 × 106 2.036 × 106 8.529 ×
106

2.406 ×
107 2.111 × 106 1.126 × 105

Min 3.941 × 105 2.968 ×
105

1.807 ×
105 1.009 × 106 1.509 × 105 8.293 × 105 3.908 × 106 2.080 × 105 3.639 ×

106
8.365 ×

105 6.113 × 105 5.963 × 104

100
Avg 2.777 × 106 4.158 ×

106
1.162 ×

107 2.020 × 106 8.326 × 105 2.307 × 106 2.039 × 107 1.049 × 106 1.063 ×
107

3.147 ×
107 3.743 × 106 1.629 × 105

Min 1.197 × 106 7.431 ×
105

4.881 ×
105 8.476 × 105 3.782 × 105 6.200 × 105 1.197 × 107 2.595 × 105 5.745 ×

106
9.728 ×

106 1.203 × 106 1.177 × 105

F19

30
Avg 1.127 × 105 2.913 ×

105
4.071 ×

106 2.647 × 106 3.223 × 104 1.816 × 104 8.962 × 106 4.640 × 103 4.874 ×
107

1.068 ×
106 9.241 × 103 6.433 × 103

Min 5.515 × 103 9.466 ×
103

2.093 ×
103 1.744 × 105 2.168 × 103 2.460 × 103 4.803 × 106 2.110 × 103 2.507 ×

106
8.696 ×

105 1.968 × 103 1.946 × 103

50
Avg 2.440 × 105 2.362 ×

106
6.151 ×

106 2.457 × 106 2.362 × 104 8.702 × 104 1.443 × 108 1.438 × 104 3.026 ×
108

4.636 ×
105 1.433 × 104 1.566 × 104

Min 2.445 × 104 6.908 ×
104

5.031 ×
103 1.534 × 105 2.700 × 103 4.883 × 103 7.728 × 107 3.740 × 103 3.919 ×

107
4.438 ×

105 2.057 × 103 9.683 × 103

100
Avg 5.676 × 105 1.003 ×

108
3.561 ×

108 1.529 × 107 7.032 × 104 5.510 × 104 2.661 × 109 2.871 × 103 2.968 ×
109

4.646 ×
109 9.029 × 103 2.852 × 103

Min 8.460 × 104 2.250 ×
106

2.761 ×
106 5.273 × 106 1.223 × 104 2.334 × 103 1.245 × 109 2.008 × 103 7.255 ×

108
1.529 ×

109 2.774 × 103 1.974 × 103
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Table A3. Cont.

F D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

F20

30
Avg 2.550 × 103 2.288 ×

103
2.600 ×

103 2.702 × 103 2.468 × 103 2.494 × 103 2.587 × 103 2.319 × 103 2.932 ×
103

2.647 ×
103 2.306 × 103 2.128 × 103

Min 2.254 × 103 2.154 ×
103

2.215 ×
103 2.327 × 103 2.073 × 103 2.162 × 103 2.485 × 103 2.165 × 103 2.560 ×

103
2.341 ×

103 2.053 × 103 2.028 × 103

50
Avg 3.263 × 103 2.736 ×

103
3.557 ×

103 3.628 × 103 3.432 × 103 3.030 × 103 3.441 × 103 2.889 × 103 3.933 ×
103

3.363 ×
103 2.955 × 103 2.082 × 103

Min 2.765 × 103 2.422 ×
103

2.897 ×
103 2.664 × 103 2.655 × 103 2.476 × 103 3.173 × 103 2.403 × 103 3.576 ×

103
2.634 ×

103 2.549 × 103 2.027 × 103

100
Avg 5.414 × 103 4.469 ×

103
5.692 ×

103 5.875 × 103 5.740 × 103 5.074 × 103 6.761 × 103 4.910 × 103 6.915 ×
103

5.748 ×
103 4.560 × 103 2.504 × 103

Min 4.508 × 103 3.301 ×
103

4.194 ×
103 4.326 × 103 4.438 × 103 4.031 × 103 6.164 × 103 3.965 × 103 6.030 ×

103
4.700 ×

103 3.218 × 103 2.288 × 103

Summary

30 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 8|0|2

50 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 9|0|1

100 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 10|0|0

Table A4. Results of the comparative algorithms on composition test functions.

F D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

F21

30
Avg 2.416 × 103 2.383 ×

103
2.476 ×

103 2.558 × 103 2.493 × 103 2.396 × 103 2.564 × 103 2.352 × 103 2.569 ×
103

2.619 ×
103 2.352 × 103 2.312 × 103

Min 2.366 × 103 2.352 ×
103

2.421 ×
103 2.463 × 103 2.398 × 103 2.347 × 103 2.509 × 103 2.326 × 103 2.503 ×

103
2.531 ×

103 2.331 × 103 2.303 × 103

50
Avg 2.541 × 103 2.485 ×

103
2.694 ×

103 2.888 × 103 2.694 × 103 2.489 × 103 2.892 × 103 2.401 × 103 2.885 ×
103

3.012 ×
103 2.409 × 103 2.328 × 103

Min 2.470 × 103 2.440 ×
103

2.575 ×
103 2.744 × 103 2.580 × 103 2.403 × 103 2.831 × 103 2.342 × 103 2.819 ×

103
2.890 ×

103 2.379 × 103 2.315 × 103

100
Avg 3.338 × 103 2.845 ×

103
3.594 ×

103 3.884 × 103 3.539 × 103 2.998 × 103 4.083 × 103 2.600 × 103 4.037 ×
103

4.558 ×
103 2.707 × 103 2.376 × 103

Min 3.166 × 103 2.751 ×
103

3.262 ×
103 3.502 × 103 3.233 × 103 2.781 × 103 3.882 × 103 2.525 × 103 3.916 ×

103
4.276 ×

103 2.639 × 103 2.356 × 103

F22

30
Avg 2.785 × 103 4.413 ×

103
5.843 ×

103 5.949 × 103 6.637 × 103 2.373 × 103 4.016 × 103 2.471 × 103 9.177 ×
103

7.685 ×
103 2.318 × 103 2.300 × 103

Min 2.300 × 103 2.420 ×
103

3.150 ×
103 2.315 × 103 5.330 × 103 2.315 × 103 3.476 × 103 2.300 × 103 8.622 ×

103
5.492 ×

103 2.307 × 103 2.300 × 103

50
Avg 1.029 × 104 8.634 ×

103
1.029 ×

104 1.208 × 104 1.002 × 104 8.679 × 103 1.031 × 104 7.647 × 103 1.654 ×
104

1.475 ×
104 5.348 × 103 2.506 × 103

Min 8.693 × 103 7.065 ×
103

7.958 ×
103 8.721 × 103 8.609 × 103 2.525 × 103 7.356 × 103 2.300 × 103 1.554 ×

104
1.304 ×

104 2.436 × 103 2.300 × 103

100
Avg 2.000 × 104 1.778 ×

104
2.032 ×

104 2.397 × 104 1.943 × 104 2.156 × 104 3.032 × 104 1.604 × 104 3.373 ×
104

3.089 ×
104 1.910 × 104 6.538 × 103

Min 1.641 × 104 1.413 ×
104

1.778 ×
104 2.087 × 104 1.671 × 104 1.965 × 104 2.877 × 104 1.392 × 104 3.258 ×

104
2.791 ×

104 1.574 × 104 5.211 × 103

F23

30
Avg 2.910 × 103 2.732 ×

103
2.801 ×

103 3.032 × 103 2.785 × 103 2.828 × 103 3.095 × 103 2.705 × 103 3.015 ×
103

3.313 ×
103 2.718 × 103 2.662 × 103

Min 2.800 × 103 2.695 ×
103

2.762 ×
103 2.886 × 103 2.721 × 103 2.764 × 103 2.992 × 103 2.680 × 103 2.966 ×

103
3.093 ×

103 2.699 × 103 2.647 × 103

50
Avg 3.407 × 103 2.907 ×

103
3.135 ×

103 3.592 × 103 3.104 × 103 3.133 × 103 3.617 × 103 2.844 × 103 3.525 ×
103

4.337 ×
103 2.885 × 103 2.754 × 103

Min 3.157 × 103 2.835 ×
103

3.046 ×
103 3.377 × 103 2.980 × 103 2.983 × 103 3.310 × 103 2.808 × 103 3.373 ×

103
3.850 ×

103 2.822 × 103 2.737 × 103

100
Avg 4.708 × 103 3.405 ×

103
3.716 ×

103 4.823 × 103 3.545 × 103 3.819 × 103 6.555 × 103 3.061 × 103 4.657 ×
103

6.793 ×
103 3.255 × 103 2.912 × 103

Min 4.375 × 103 3.289 ×
103

3.547 ×
103 4.263 × 103 3.306 × 103 3.603 × 103 4.878 × 103 2.974 × 103 4.424 ×

103
6.011 ×

103 3.123 × 103 2.872 × 103

F24

30
Avg 3.105 × 103 2.904 ×

103
2.974 ×

103 3.167 × 103 2.978 × 103 2.928 × 103 3.304 × 103 2.877 × 103 3.198 ×
103

3.704 ×
103 2.871 × 103 2.827 × 103

Min 3.007 × 103 2.855 ×
103

2.910 ×
103 3.021 × 103 2.928 × 103 2.877 × 103 3.241 × 103 2.851 × 103 3.128 ×

103
3.490 ×

103 2.848 × 103 2.820 × 103

50
Avg 3.663 × 103 3.087 ×

103
3.227 ×

103 3.733 × 103 3.231 × 103 3.237 × 103 3.899 × 103 3.010 × 103 3.721 ×
103

4.772 ×
103 3.026 × 103 2.910 × 103

Min 3.484 × 103 3.000 ×
103

3.152 ×
103 3.545 × 103 3.135 × 103 3.070 × 103 3.726 × 103 2.955 × 103 3.588 ×

103
4.385 ×

103 2.985 × 103 2.894 × 103

100
Avg 5.770 × 103 3.963 ×

103
4.272 ×

103 5.854 × 103 4.293 × 103 5.163 × 103 6.815 × 103 3.598 × 103 5.906 ×
103

1.083 ×
104 3.769 × 103 3.309 × 103

Min 5.279 × 103 3.819 ×
103

4.124 ×
103 5.238 × 103 4.048 × 103 4.336 × 103 6.235 × 103 3.463 × 103 5.543 ×

103
9.106 ×

103 3.590 × 103 3.275 × 103

F25

30
Avg 2.912 × 103 2.957 ×

103
3.107 ×

103 2.945 × 103 2.894 × 103 3.004 × 103 3.300 × 103 2.890 × 103 3.934 ×
103

4.463 ×
103 2.928 × 103 2.888 × 103

Min 2.884 × 103 2.913 ×
103

2.889 ×
103 2.898 × 103 2.884 × 103 2.933 × 103 3.160 × 103 2.887 × 103 3.456 ×

103
3.760 ×

103 2.890 × 103 2.887 × 103

50
Avg 3.091 × 103 3.371 ×

103
4.930 ×

103 3.155 × 103 3.041 × 103 3.954 × 103 6.400 × 103 3.050 × 103 8.767 ×
103

1.387 ×
104 3.240 × 103 3.070 × 103

Min 3.036 × 103 3.055 ×
103

3.159 ×
103 3.039 × 103 2.962 × 103 3.482 × 103 5.561 × 103 2.965 × 103 6.928 ×

103
1.199 ×

104 3.158 × 103 3.017 × 103

100
Avg 3.376 × 103 5.277 ×

103
1.123 ×

104 3.590 × 103 3.321 × 103 5.786 × 103 1.404 × 104 3.319 × 103 1.347 ×
104

2.325 ×
104 4.234 × 103 3.340 × 103

Min 3.228 × 103 4.686 ×
103

4.792 ×
103 3.464 × 103 3.206 × 103 4.182 × 103 1.131 × 104 3.201 × 103 1.142 ×

104
2.080 ×

104 3.774 × 103 3.261 × 103
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Table A4. Cont.

F D Metrics KH
(2012)

GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021) M-MFO

F26

30
Avg 6.150 × 103 4.424 ×

103
5.689 ×

103 7.599 × 103 5.447 × 103 4.227 × 103 6.845 × 103 4.117 × 103 6.353 ×
103

9.214 ×
103 4.425 × 103 3.408 × 103

Min 2.800 × 103 3.954 ×
103

4.921 ×
103 5.975 × 103 4.955 × 103 2.936 × 103 5.878 × 103 2.900 × 103 5.882 ×

103
7.702 ×

103 2.876 × 103 2.800 × 103

50
Avg 9.583 × 103 5.735 ×

103
8.121 ×

103 1.306 × 104 8.059 × 103 8.552 × 103 1.102 × 104 5.018 × 103 1.034 ×
104

1.537 ×
104 5.531 × 103 4.065 × 103

Min 3.154 × 103 5.192 ×
103

6.910 ×
103 9.977 × 103 7.062 × 103 5.725 × 103 8.677 × 103 4.540 × 103 9.266 ×

103
1.326 ×

104 4.905 × 103 3.899 × 103

100
Avg 2.471 × 104 1.263 ×

104
1.741 ×

104 3.111 × 104 1.752 × 104 2.406 × 104 3.573 × 104 9.328 × 103 2.508 ×
104

5.006 ×
104 1.123 × 104 6.251 × 103

Min 2.085 × 104 1.124 ×
104

1.526 ×
104 2.326 × 104 1.518 × 104 1.981 × 104 3.232 × 104 8.106 × 103 2.276 ×

104
4.357 ×

104 9.727 × 103 5.989 × 103

F27

30
Avg 3.402 × 103 3.229 ×

103
3.236 ×

103 3.346 × 103 3.228 × 103 3.286 × 103 3.200 × 103 3.224 × 103 3.492 ×
103

4.337 ×
103 3.241 × 103 3.221 × 103

Min 3.316 × 103 3.212 ×
103

3.208 ×
103 3.282 × 103 3.201 × 103 3.232 × 103 3.200 × 103 3.202 × 103 3.355 ×

103
3.959 ×

103 3.222 × 103 3.210 × 103

50
Avg 4.359 × 103 3.471 ×

103
3.550 ×

103 4.305 × 103 3.504 × 103 4.243 × 103 3.200 × 103 3.375 × 103 4.257 ×
103

6.617 ×
103 3.509 × 103 3.312 × 103

Min 4.013 × 103 3.342 ×
103

3.407 ×
103 3.678 × 103 3.377 × 103 3.769 × 103 3.200 × 103 3.293 × 103 3.997 ×

103
5.870 ×

103 3.448 × 103 3.281 × 103

100
Avg 5.732 × 103 3.854 ×

103
3.867 ×

103 4.945 × 103 3.607 × 103 5.277 × 103 3.200 × 103 3.493 × 103 5.696 ×
103

1.182 ×
104 3.809 × 103 3.422 × 103

Min 4.974 × 103 3.594 ×
103

3.655 ×
103 3.909 × 103 3.482 × 103 4.288 × 103 3.200 × 103 3.437 × 103 5.303 ×

103
9.541 ×

103 3.644 × 103 3.369 × 103

F28

30
Avg 3.235 × 103 3.339 ×

103
3.721 ×

103 3.303 × 103 3.194 × 103 3.451 × 103 3.694 × 103 3.196 × 103 4.272 ×
103

6.044 ×
103 3.295 × 103 3.110 × 103

Min 3.197 × 103 3.269 ×
103

3.318 ×
103 3.269 × 103 3.100 × 103 3.247 × 103 3.300 × 103 3.101 × 103 3.565 ×

103
4.603 ×

103 3.251 × 103 3.100 × 103

50
Avg 3.338 × 103 3.873 ×

103
8.080 ×

103 3.424 × 103 3.298 × 103 4.172 × 103 6.043 × 103 3.306 × 103 6.053 ×
103

1.079 ×
104 3.739 × 103 3.292 × 103

Min 3.271 × 103 3.653 ×
103

5.324 ×
103 3.344 × 103 3.259 × 103 3.761 × 103 3.300 × 103 3.259 × 103 5.216 ×

103
9.575 ×

103 3.481 × 103 3.259 × 103

100
Avg 3.496 × 103 6.692 ×

103
1.749 ×

104 3.721 × 103 7.644 × 103 6.790 × 103 1.916 × 104 3.381 × 103 1.189 ×
104

2.947 ×
104 5.306 × 103 3.331 × 103

Min 3.393 × 103 4.771 ×
103

1.485 ×
104 3.598 × 103 3.333 × 103 4.646 × 103 1.478 × 104 3.346 × 103 9.983 ×

103
2.587 ×

104 4.502 × 103 3.295 × 103

F29

30
Avg 4.170 × 103 3.645 ×

103
4.003 ×

103 4.751 × 103 3.965 × 103 4.050 × 103 4.246 × 103 3.575 × 103 4.362 ×
103

5.610 ×
103 3.669 × 103 3.319 × 103

Min 3.680 × 103 3.460 ×
103

3.603 ×
103 4.062 × 103 3.650 × 103 3.631 × 103 3.690 × 103 3.346 × 103 4.057 ×

103
4.626 ×

103 3.475 × 103 3.312 × 103

50
Avg 5.252 × 103 4.214 ×

103
5.076 ×

103 7.281 × 103 4.671 × 103 5.028 × 103 6.835 × 103 3.673 × 103 6.978 ×
103

1.520 ×
104 4.272 × 103 3.380 × 103

Min 4.165 × 103 3.750 ×
103

4.271 ×
103 6.025 × 103 3.992 × 103 3.985 × 103 5.129 × 103 3.267 × 103 6.045 ×

103
8.818 ×

103 3.748 × 103 3.219 × 103

100
Avg 8.699 × 103 7.229 ×

103
1.370 ×

104 1.413 × 104 7.986 × 103 1.004 × 104 1.509 × 104 5.944 × 103 1.936 ×
104

8.177 ×
104 6.761 × 103 4.020 × 103

Min 6.637 × 103 6.385 ×
103

7.555 ×
103 1.053 × 104 7.019 × 103 8.335 × 103 8.825 × 103 4.620 × 103 1.268 ×

104
3.350 ×

104 5.675 × 103 3.753 × 103

F30

30
Avg 1.679 × 106 7.020 ×

106
3.271 ×

105 6.709 × 106 2.812 × 104 8.574 × 105 6.234 × 107 8.098 × 103 3.332 ×
107

6.074 ×
107 1.629 × 104 6.645 × 103

Min 7.205 × 104 8.830 ×
105

1.393 ×
104 4.463 × 105 1.582 × 104 7.507 × 104 2.348 × 107 5.539 × 103 1.030 ×

107
5.150 ×

106 7.769 × 103 6.062 × 103

50
Avg 5.532 × 107 6.713 ×

107
8.852 ×

107 8.102 × 107 2.475 × 106 2.565 × 107 5.469 × 108 8.623 × 105 4.466 ×
108

7.074 ×
108 1.839 × 106 8.164 × 105

Min 2.289 × 107 3.536 ×
107

2.389 ×
106 4.041 × 107 1.155 × 106 6.414 × 106 3.572 × 108 7.148 × 105 2.097 ×

108
1.864 ×

108 9.999 × 105 7.640 × 105

100
Avg 1.233 × 107 3.958 ×

108
1.283 ×

109 1.922 × 108 1.932 × 106 1.750 × 108 7.461 × 109 1.123 × 104 1.216 ×
10+10

3.109 ×
10+10 8.500 × 105 9.592 × 103

Min 3.908 × 106 5.455 ×
107

3.821 ×
107 7.264 × 107 3.637 × 105 2.473 × 106 4.267 × 109 6.600 × 103 8.263 ×

109
1.450 ×
10+10 1.517 × 105 7.153 × 103

Summary

30 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 9|0|1

50 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 8|0|2

100 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 1|0|9 0|0|10 0|0|10 0|0|10 8|0|2
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