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Abstract: The “European Union Training Network for Resource Recovery Through Enhanced Land-
fill Mining (NEW-MINE)” was a European research project conducted between 2016 and 2020 to
investigate the exploration of and resource recovery from landfills as well as the processing of the
excavated waste and the valorization of the obtained waste fractions using thermochemical processes.
This project yielded more than 40 publications ranging from geophysics via mechanical process
engineering to ceramics, which have not yet been discussed coherently in a review publication. This
article summarizes and links the NEW-MINE publications and discusses their practical applicability
in waste management systems. Within the NEW-MINE project in a first step concentrates of spe-
cific materials (e.g., metals, combustibles, inert materials) were produced which might be used as
secondary raw materials. In a second step, recycled products (e.g., inorganic polymers, functional
glass-ceramics) were produced from these concentrates at the lab scale. However, even if secondary
raw materials or recycled products could be produced at a large scale, it remains unclear if they can
compete with primary raw materials or products from primary raw materials. Given the ambitions
of transition towards a more circular economy, economic incentives are required to make secondary
raw materials or recycled products from enhanced landfill mining (ELFM) competitive in the market.

Keywords: enhanced landfill mining; NEW-MINE; waste treatment

1. Introduction

Although landfill mining, “the process for extracting minerals or other solid natural
resources from waste materials that have previously been disposed of by burying them in
the ground” [1], has been investigated since 1953 [2], the interest in this topic only really
started in the 1980s in the USA [3] and the 1990s in Europe [4]. The main reasons for Landfill
Mining towards at the end of the 20th century comprised landfill remediation and landfill
volume recovery [5]. Between 2017 and 2015, several national (research) projects such as
the “Closing the Circle” project (Flanders/Belgium) [6], the LAMIS project (Austria) [7–10],
the MINERVE project (Wallonia/Belgium) [11] and the TönsLM project (Germany) [12]
were conducted, which focused more on material and energy recovery. These projects
covered different process steps ranging from geophysical exploration via exploration to
dry and wet mechanical processing.

In summary, these studies demonstrated that using state-of-the-art technologies can
yield concentrates of metals, inorganic-nonmetallic materials and combustibles. The metal
concentrates can already be sold at the market, since standard pyrometallurgical recycling
routes exist, which makes this fraction a key economic driver for landfill mining [13].
However, the inorganic-nonmetallic and combustible fractions are more challenging, while
the remaining fine fraction represents the final sink for contaminants [14] that have to
be removed from the circular economy [15]. In detail, recycling of inorganic-nonmetallic
materials even from fresh construction and demolition waste is mainly as aggregate [16],

Processes 2021, 9, 394. https://doi.org/10.3390/pr9020394 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-1809-5223
https://orcid.org/0000-0003-1201-3581
https://doi.org/10.3390/pr9020394
https://doi.org/10.3390/pr9020394
https://doi.org/10.3390/pr9020394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9020394
https://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/9/2/394?type=check_update&version=2


Processes 2021, 9, 394 2 of 20

which is a low-value application that is, furthermore, associated with a quality decrease due
to the negative impact on the attached cement paste on concrete properties [17]. Similarly,
energy recovery from calorific fractions of the waste may either occur by classical waste
incineration processes [18] or after mechanical processing to refuse derived fuel (RDF) in
co-incineration plants [19]. Nevertheless, even in the latter case the waste supplier has to
pay for the material instead of obtaining revenues. Finally, regarding the fine fractions
it has to be mentioned that 78% of excavated soils, most of them not contaminated, are
landfilled in Austria [20] due to low landfilling costs and low material values. Therefore, it
seems unlikely that contaminated soil-like materials from landfills would be recycled.

For these reasons the question arose if innovative technology might be an option to
increase the economic feasibility of landfill mining projects. Consequently, in 2013 the
term “enhanced landfill mining (ELFM)” was defined as “the safe conditioning, excavation
and integrated valorization of (historic and/or future) landfilled waste streams as both
materials (waste-to-material, WtM) and energy (waste-to-energy, WtE), using innovative
transformation technologies and respecting the most stringent social and ecological cri-
teria” [6]. To investigate the potential of such “innovative transformation technologies”
and to cluster the existing European expertise in the field of landfill mining, the European
Enhanced Landfill Mining Consortium (EURELCO) was founded in 2014 [21]. From this
consortium the “EU Training Network for Resource Recovery through Enhanced Landfill
Mining (NEW-MINE)” was developed and received funding from the European Union in
2016. For a period of four years, 15 early stage researchers (ESRs) investigated the explo-
ration of and resource recovery from landfills as well as the processing of the excavated
waste and the valorization of the obtained waste fractions using thermochemical processes
(Figure 1).
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The NEW-MINE project yielded a significant output of scientific publications, ranging
from geophysics via mechanical process engineering to ceramics. Although there is already
a review article that links the first NEW-MINE results with previous investigations [22],
there is no comprehensive review assessing the entire research output of NEW-MINE with
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respect to its practical applicability in waste management systems, which is the aim of this
review article.

This article is structured in the following way: Firstly, the methods for literature
review and discussion of the project results are given. Secondly, the project results are
summarized referring to the individual publications. In this context also the state-of-the-
art before the project and the publications referring to the NEW-MINE publications are
shortly summarized. Thirdly, in the Discussion section, the practical applicability of the
NEW-MINE results in waste management systems is discussed. Finally, a summary of the
project results and the challenges regarding their practical application is given.

2. Materials and Methods

Based on the publications listed on the NEW-MINE website (www.new-mine.eu
accessed on 16 November 2020), additional publications of the authors were identified
using Google Scholar and searching for the names of the NEW-MINE researchers. In
a second step papers citing the NEW-MINE publications were identified and set into
the context of NEW-MINE. The focus was on peer-reviewed publications, but certain
conference proceedings were selected in those cases when the contained information was
not found in a peer-reviewed article. Additionally, the search term “NEW-MINE” was
used to find publications referring to this project. In the Google Scholar searches between
dozens and few hundred articles appeared which were checked for consistency to the
review topic. Publications by authors with similar names who were obviously other
persons than the NEW-MINE researchers were excluded as well as publications referring
to “new mines”, but not to the NEW-MINE project. The entire literature research was
conducted in November and December 2020. Finally, the results of the NEW-MINE project
were checked for practical applicability based on the experience of the authors in waste
management and on personal communications with colleagues over the last years. In this
context, some theoretical reflections on resource classification and varying terminology in
interdisciplinary research were added.

3. Results
3.1. Innovative Landfill Exploration & Mechanical Processing
3.1.1. Landfill Exploration

Landfills have been investigated long before the NEW-MINE project with respect
to environmental problems arising from the landfilled waste [23–25]. With respect to
the recovery of resources from landfills, the task for geophysical exploration is different:
The landfill as a potential anthropogenic deposit shall be explored with respect to the
quality, quantity and “bonitaet” (=geological factors influencing the mining) [26] of the
contained secondary raw materials [27]. In contrast to pollutant-related exploration tasks,
the resource-related exploration task aims not for the identification of individual objects
or leakages but for the estimation of the average material composition. Before the onset
of the NEW-MINE project only few studies focused on these kinds of exploration, e.g.,
for a distinction between landfilled foundry sands and iron-rich materials using magnetic
methods [28]. Parallel to the NEW-MINE project, but not referring to it, another research
group distinguished between metal enrichments and plastic enrichments in a landfill using
a combination of electromagnetic and magnetic methods [29].

The publications within the NEW-MINE project include both applied studies focusing
on the exploration of landfills with respect to the material composition and fundamental
studies focusing on data processing of geophysical sensors.

The first applied study [30] investigated the suitability of electromagnetic induction
measurements and ground penetrating radar to characterize the geometry and electric
properties of waste layers. It was appreciated by scientists of two other EU project on ELFM,
the SMARTGROUND project who cited it with respect to electromagnetic measurements in
their study on ELFM in the UK [31], and the RAWFILL project who cited it with respect to
geophysical exploration in general [32]. The second applied study [33] used magnetic total-
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field measurements to estimate the bulk magnetic susceptibility of the Hollabrunn landfill,
Austria, by inverse modelling and validated the resulting susceptibility by manual sorting
of drill-core samples. In parallel, the magnetic susceptibility of reference materials was
determined by laboratory analyses and the resulting bulk susceptibility of the landfilled
waste mixture was computed using a weighted mean. The differences between the bulk
susceptibility derived from inverse modelling of the field data (0.06 to 0.11 SI) and the
values obtained from computing from the values from the reference materials (0.01 to 0.05
SI) highlight the challenges to determine the iron content in landfills from magnetic data.
This publication has not yet been cited, although two publications released in 2020 have
addressed magnetic exploration in the context of landfill mining [34,35].

Consistent with the overall character of the NEW-MINE project and the requirements
of the Marie Skłodowska Curie Actions, the share of fundamental research was dominant
which is also reflected in the higher number of publications regarding the basic aspects of
geophysical exploration. For example, a probabilistic inversion of electromagnetic data
using the so-called Kalman ensemble generator, was introduced [36]. This approach has
already been already cited twice by other authors [37,38] and was further extended to a
joint inversion of direct current resistivity and small-loop electromagnetic data [39], which
was published in a mathematical journal, Algorithms, highlighting the interdisciplinarity of
the NEW-MINE project. Finally, offset parameters were incorporated into the probabilistic
inversion framework to estimate systematic errors in electromagnetic measurements [40].

In summary, the role of geophysics in post-NEW-MINE projects (e.g., RAWFILL) is
higher than in pre-NEW-MINE projects (e.g., TönsLM), and post-NEW-MINE projects refer
to the results of NEW-MINE.

3.1.2. Mechanical Processing

Mechanical processing of landfilled waste was the main focus in pre-NEW-MINE
projects with dry methods being investigated in the LAMIS project [7] and wet methods in
the TönsLM project [12].

Based on a comprehensive study on state-of-the-art processing of excavated waste
from the Halbenrain landfill, Austria, using an existing mechanical-biological treatment
(MBT) plant [41], a novel processing concept using a ballistic separator as first processing
step for untreated excavated landfilled waste was developed and tested at the Mont-Saint-
Guibert landfill, Belgium [42]. The NEW-MINE approach to use state-of-the-art MBT
was addressed outside NEW-MINE in the context of the problematic character of the fine
fraction [43], its biological treatment to increase the value of the fine fraction [44], and
regarding landfill mining in general [45].

A second key innovation in this field reached by NEW-MINE was the demonstration
of the feasibility of near-infrared (NIR) sorting for the beneficiation of heavy fractions
from dry-mechanical processing [46]. The authors could enrich the inert materials in these
fractions from values between 85.6 to 98.8 wt% in the input to a range between 97.7 and
99.6 wt% in the output, by ejecting the plastics: this represents an important step towards
a possible recycling of the inert fraction. Another finding, i.e., the impact of attached
defilements on sorting performance, was subsequently considered in Austria’s largest
waste management project, ReWaste 4.0 [47]. The applicability of results from mechanical
processing of ELFM materials to “fresh” waste highlights the relevance of NEW-MINE
results in this field. Within NEW-MINE, the influence of surface roughness and surface
moisture of plastics on NIR sorting was investigated [48], and the findings were used
outside NEW-MINE for material flow characterization in sensor-based sorting systems
using an instrumented particle [49] and for a study of the influence of material alterations
and machine impairment [50]. NEW-MINE learnings on the effects of throughput rate and
input composition on sensor-based sorting [51] were subsequently used within the above
mentioned ReWaste 4.0 project [47,52].

Finally, the challenge of the fine fraction, which has been identified in pre-NEW-MINE
projects, e.g., in the LAMIS project [53], was firstly summarized in two review publica-
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tions [54,55]. A post-NEW-MINE study on contaminants in landfills [56], despite using
a misleading soil definition [57], added further information on this topic. Other publica-
tions [44,58] also addressed the observation that the fine fraction makes up the majority of
the landfilled material, but used correct terminology. Further post-NEW-MINE studies on
leachate characteristics [59] and composition of the fine fraction [60] added further informa-
tion to these fields. The need to further process the fine fraction to minimize re-landfilling
was mentioned by a publication on geophysical exploration of landfills [61]. The problem
stated within NEW-MINE that currently no valorization options for the fine fraction exist
because of the possibility of contamination of this fraction [43] was later considered by an
Estonian [62] and by an Indian study [63]. The same statement was also extracted from the
second review [55] but with the suggestion to tackle this problem by further processing [44].
In contrast, a Hungarian group extracted the contradicting statement that fine fractions can
be considered as a relevant source of metals, calorific fractions, inert fractions and soil-like
material recovery [64]. The explanation that the amount of the fine fraction increases over
time due to humification processes was mentioned in an Indian study on the application
of Fourier-transformed infrared spectroscopy for its characterization [65]. The need for a
deeper understanding of the physico-chemical properties of the fine fractions including
their distribution across the different grain size fractions was also applied to shredder fine
fractions [66]. Within the field of landfill mining, the general observations regarding the
fine fractions were considered by authors of the SMARTGROUND project [67].

Then, the fine fraction < 90 mm obtained by ballistic separation was characterized [68]
and further separated into a light fraction, a heavy fraction, ferrous and non-ferrous
metals and a fine fraction < 4.5 mm using windsifting, magnetic separation, eddy-current
separation and screens [69]. The heavy fraction was investigated with respect to the
utilization as construction material and the light fraction with respect to the use as refuse
derived fuel (RDF) [70]. The fine fraction < 4.5 mm was further processed and characterized
with respect to the relationship between mineralogy and leachability indicating the stable
mineralogical bonding of many contaminants (e.g., Pb as metal and Pb-Ca phosphate and
Zn as Fe-Zn alloy, ZnS and ZnSO4) [71].

In summary, novel research results obtained within NEW-MINE, especially using
sensor-based sorting, can be applied to areas beyond ELFM.

3.2. Thermochemical Conversion and Solar Energy Storage
3.2.1. Thermochemical Conversion

Most pre-NEW-MINE landfill mining projects covered the value chain from explo-
ration via excavation and mechanical treatment to the production of concentrates of sec-
ondary raw materials, i.e., metals for pyrometallurgical recycling, mineral wastes for the
production of construction materials and combustibles for energy recovery. These concen-
trates are still wastes (and not products) but state-of-the-art recyling and recovery routes do
exist, which is why the actual recycling or recovery was not part of most of these projects.
With respect to the combustibles these recovery routes include among others:

• Municipal solid waste incineration plants (MSWI plants)
• Refuse derived fuel power plants (RDF power plants)
• Cement works (co-incineration)
• Coal-fired power plants (co-incineration)
• Industrial power plants (co-incineration) [72].

Consequently, previous projects investigated the combustibles with respect to the
(co-) incineration in existing facilities considering not only calorific properties but also
the content of heavy metals [7] as these restrict the valorization options of RDF by co-
incineration [19]. For those cases in which the combustibles fulfil the requirements for co-
incineration in the cement industry, the inorganic constituents of the RDF are incorporated
into the mineral phases of the clinker contributing to its desired hydraulic properties, which
justifies to address the share of RDF used on a material level as “recycling index” [73].
In contrast, for those cases in which contaminant concentrations exceed limit values for
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RDF, energy recovery in MSWI plants is the state-of-the-art option. MSWI yields bottom
ashes whose recycling is restricted by limit values for total concentrations and/or leachable
concentrations of contaminants [74,75]. The chemical composition and leachability, as
well as the element-specific limit values significantly vary between individual EU member
states. Table 1 presents the ranges of concentrations relative to ranges of limit values for
material used in road construction, showing that the total contents of Cd, Cu, Cr, Pb and
Zn and the leachable contents of Pb are most problematic.

Table 1. Ranges of total (mg/kg) [76] and leachable (mg/L) [76,77] contents and respective limit
values (CH, DK, SWE, FIN, FRA, AUT, D, NL, BEL for total and DK, ESP, SWE, FIN, FRA; AUT, GER;
NED, BEL for leachable contents) for recycling of MSWI bottom ashes.

Total Content Concentrations Limit Values

Cd 1–177 0.2–10
Cu 738–17620 40–500
Cr 115–852 40–500
Ni 38–850 35–500
Pb 197–6441 20–1250
Zn 1142–9370 120–1250

Leachable Content Concentrations Limit Values

Cl 259–416 80–5000
Cr 0.01 0.006–0.5
Ni <0.05 0.01–0.35
Sb 0.016–0.023 0.006–0.2

SO4 15–106 70–6500
Pb 1.8–6 0.02–0.82

Following the pathway of classic incineration for those calorific fractions exceeding
the threshold values for co-incineration would, therefore, result in the need to re-landfill
significant proportions of the resulting bottom ashes. Disposal of MSWI bottom ash at
increasing scarcity of landfill volume and the need for landfill aftercare for up to more than
100 years [78] is associated with significant costs, which will represent a massive financial
and environmental burden for governments and the public in the future.

This is why within NEW-MINE, despite sharp criticism [79], gasification and pyrolysis
were investigated as alternative thermochemical conversion processes within NEW-MINE
with the background idea to use the produced syngas and to couple these processes to
plasma technology to convert the resulting ashes directly into a vitreous slag, which might
be favorable compared to MSWI bottom ashes with respect to mechanical and leaching
properties. As it was not possible within the project to test plasma technology, vitreous
slag from previous tests was used for further experiments, but also MSWI bottom ash was
melted to obtain a similar slag.

Within NEW-MINE, the light fraction obtained by mechanical processing of excavated
waste from the Mont-Saint-Guibert landfill was subjected to pyrolysis (N2 atmosphere, 900
◦C, 1 h) and the resulting char was subjected to steam gasification using thermogravimetry
analysis (TGA) to study the reaction kinetics [80]. This publication was cited as one of
the few studies on gasification kinetics of MSW chars [81] and regarding the observed
increase in activation of the char by gasification [82]. Furthermore, the study was cited
with respect to the energy savings, low NOx emissions and pollutant reduction of steam
gasification compared to conventional thermochemical conversion technologies [83]. In a
second study, a sample of the fine fraction (<10 mm) and two samples of combustibles (with
different share of defilements) were used for a similar experimental setup [84]. The latter
publication was cited in a review on co-incineration of organic waste and coal [85] and
with respect to the higher production of CO and CO2 in pyrolysis when using finer waste
fractions in a publication on the prediction of gaseous products from RDF pyrolysis [86].
Two further results originated from this NEW-MINE publication: (1) pyrolysis of landfilled
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waste yields less oil and gas than pyrolysis of fresh waste and (2) gasification of char from
pyrolysis of landfilled waste yields waste fuel with a higher reactivity compared to the
same process using fresh waste, which is explained by the catalytic effect of the metals
present in landfilled waste [87]. Further studies citing this publication are on pyrolysis of
pre-treated trommel fines [88]. In the third study on this topic, it was shown that steam
co-gasification of landfilled waste with biochar increases H2 yields [89]. This publication
was mentioned in a review article on waste-to-energy technologies [90] and with respect to
the use of the syngas from gasification for ammonia synthesis [91].

The second issue addressed within NEW-MINE regarding gasification was the crack-
ing of tars from the produced syngas which would restrict its utilization options. At first, a
review on the state of the art regarding the role of plasma in syngas tar cracking [92] was
published, which was cited outside of NEW-MINE by two other review articles [93,94]
mentioning the efficiency, but also the short lifetime and high costs of this technology, as
well as a novel warm gas tar cleaning processing called OLGA. In a next step, naphtha-
lene was used as a model tar molecule and Corona plasma-aided thermal cracking was
demonstrated successfully for its removal at 800 ◦C [95]. This study was cited with respect
to tar generation and conversion kinetics [96], regarding the required high temperatures of
1100 ◦C which represent a disadvantage compared to catalytic reforming [97], and as an
example for thermal tar cracking [98]. Finally, two CaO-rich catalysts doped with Sr were
synthesized from mussel shells and successfully tested for tar cracking in the syngas [99].

Another NEW-MINE publication focused on further aspects of the pyrolysis process.
Lab-scale pyrolysis tests at 400 to 700 ◦C with the above-mentioned light fraction of the
Mont-Saint-Guibert landfill revealed the enrichment of polycyclic aromatic hydrocarbons
(PAH) in the condensable pyrolysis products, highlighting the need to further treat this
output fraction [100]. Although the main focus of thermochemical conversion technologies
within NEW-MINE was on the treatment of the combustibles, thermal treatment (400/450
◦C, 30 min) was also used to assess the quality of the nonferrous metals obtained from
mechanical processing of the excavated waste from Mont-Saint-Guibert landfill [101].

3.2.2. Solar Energy Storage

In contrast to waste incineration and co-incineration, which produce energy and even
contribute to 3.7% of the German end energy consumption [72], gasification requires exter-
nal energy. The use of energy from renewable sources for this purpose is environmentally
favorable, but requires energy storage. Consequently, within NEW-MINE, MgO-stabilized
SrO was synthesized and successfully tested for heat storage via the SrO/SrCO3 cycle [102].
This research was considered outside NEW-MINE with respect to radiation propagation in
a heat exchanger transforming solar radiation into high-temperature heat [103], thermo-
chemical energy storage in the CaO/CaCO3 [104] and MnAl2O4/MnAl2O4−x [105] system
and two reviews on thermochemical energy storage [106,107]. The most recent NEW-MINE
publication in this field deals with thermochemical heat storage via the CuO/Cu2O redox
cycle and describes the synthesis of granules with a gravimetric energy storage density in
the range of 470 to 615 kJ kg−1 [108].

In summary, NEW-MINE publications on thermochemical conversion and solar energy
storage focused on the organic constituents of gasification chars and of oxide/carbonate
systems for solar energy storage and created a novel state-of-the-art. However, the fate of
inorganic pollutants during gasification was not addressed and the intended production
of vitreous slags via plasma processing that might immobilize these pollutants was not
realized in the project.

3.3. Benefication of Products from Thermochemical Conversion
3.3.1. Melting and Vitrification

Since the intended plasma gasification of ELFM materials was not realized within
NEW-MINE, three groups of input materials were selected for further processing, i.e.,
(1) MSWI bottom ashes, (2) vitreous slag from plasma gasification (“Plasmastone”) from
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a pre-NEW-MINE project and (3) synthetic vitreous slags mimicking the plasmastone
composition. The aims of the beneficiation of these materials comprised the recovery of
metals and the beneficiation of the nonmetallic fractions for specific applications in civil
engineering beyond the state-of-the-art applications of MSWI bottom ashes as low-strength
aggregates [109]. Thermal treatment of MSWI bottom ashes within NEW-MINE aimed
for the recovery of metals and beneficiation of the mineral fraction. For this purpose, two
heating technologies were investigated.

Firstly, a submerged arc furnace (SAF) and an electric resistance furnace (ERF) were
used to melt MSWI bottom ash obtained from a Dutch MSWI plant at 1500 and 1400 ◦C,
respectively. These experiments yielded an Cu-Fe alloy and a vitreous CaO-Al2O3-SiO2
slag, which might be used for the production of glass ceramics or inorganic binders [110]
and were linked to the application of SAF technology in other fields [111].

Secondly, microwave heating was used to study the dielectric properties from the
above mentioned MSWI bottom ash from a Dutch MSWI plant and revealed that MSWI
bottom ash absorbs microwaves with low losses until 320 ◦C but above this temperature
pyrolysis enhances the dielectric loss [112]. This study was cited with respect to microwave
cladding, an emerging surface modification technique [113]. In a next step, flash microwave
vitrification was realized at 2.45 GHz within 1.5 min. The advantage of this technology for
vitrification is that the cooling rate is naturally so fast, due to the inherent cold environment,
that no specific efforts are required for quenching [114].

3.3.2. Alkali Activation

The next group of studies within NEW-MINE dealt with the further benefication
of vitrified MSWI bottom ashes. In one study, the vitrified bottom ash was subjected to
alkali activation (1 M NaOH and 2.5 M NaOH and sinter crystallization (800 ◦C or 900
◦C), thereby yielding porous (70 vol%) glass ceramics with a compressive strength of 3
MPa, which might be used as an alternative to lightweight concrete [115]. Another group
of studies addressed the production of inorganic polymers by alkali activation. Compared
to geopolymers, which are the main subgroup of alkali activated materials, inorganic
polymers differ with respect to their chemical composition.

A synthetic plasmastone analogue was used to study the impact of solid-to-liquid and
K2O/SiO2 ratio and the type of activation solution on the resulting inorganic polymers.
Adjustment of these process parameters yielded inorganic parameters with a compressive
strength of up to 119 MPa [116]. This study was cited in a review article as an example to
valorize vitrified MSWI bottom ash [117]. Based on these findings, strategies to increase the
volumetric stability of inorganic polymers were developed [118]. This work was cited in the
context of alternative cementitious materials for radioactive waste encapsulation, taking
into account that strengthening of inorganic polymers was observed due to radiation-
induced iron oxidation [119]. One approach to increase the volumetric stability is the
addition of CaO-rich materials, which was demonstrated in another study [120].

3.3.3. Sintering of Glass-Ceramics

The last group of studies refers to the sintering of vitreous slags from plasma process-
ing of MSW or from MSWI vitrification to glass ceramics, which might be used as building
materials such as aggregates and panels. The most-cited publication of NEW-MINE [121]
dealt with the production of porous glass ceramics from the vitreous slag obtained by
plasma processing of MSW. It was demonstrated how increasing the firing temperature of
glass ceramics can trap chromium in stable pyroxene group minerals and adding borosili-
cate glass can decrease the leaching of Cr, Mo and V as boron acts as a network former. This
paper was cited in publications on the preparation of glass-containing foams from geopoly-
mers [122] and vitrified MSWI bottom ash [123] in which the formation of wollastonite
and the freezing of the microstructural evolution were mentioned. Other papers cited this
publication with respect to the recycling of glass waste into foam glass [124–129], porous
waste glass for lead removal in wastewater treatment [130], lead stabilization through
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alkali activation and sintering of Pb-bearing sludge [131], utilization of waste glass for the
production of sulphuric acid resistant concrete [132], mechanical and alkali activation of
MSWI fly and bottom ashes for the production of low-range alkaline cement [133] and foam
glass-ceramics [134], inorganic gel casting for manufacturing of boro-alumino-silicate glass
foams [135], porous glass-ceramics derived from MgO-CuO-TiO2-P2O5 glasses [136], alkali
activation of coal and biomass fly ashes [137], nickel-based catalysts for steam reforming
of naphthalene utilizing MSW gasification slag as support [138], production of porous
glass ceramics from titanium mine tailings and waste glass [139], porous bioactive glass
microspheres [140], Al-SiO2 composites [141], glass-ceramic foams from alkali-activated
vitrified MSWI bottom ash and waste glasses [142]. Another study used vitrified MSWI
bottom ash as input material to obtain similar porous glass ceramics [143] and was cited by
some of the publications that also cited the first study.

In a next step, dense glass with good mechanical and environmental properties (low
leaching due to stable incorporation of heavy metals in stable hedenbergite, wollastonite
and iron oxides) were obtained from a mixture of “Plasmastone”, recycled soda-lime glass
and kaolin clay by cold pressing and fast heat treatment (1000 ◦C, 40 ◦C/min) [144]. This
publication was referred to as a case study for the influence of crystallization time on glass
ceramics [145].

The crucial linkage between mineralogy and technical and environmental performance
was also investigated in a further study in which low temperatures (800 ◦C) were sufficient
to immobilize heavy metals in a stable matrix using spent borosilicate glasses and additional
electromagnetic shielding functionalities were obtained by magnetite formation [146]. This
approach was cited in a study on the substitution of feldspar by waste glass for porcelain
production [147] and in a paper on cheap pore-generating agents for ceramics [148]. Finally,
the promoting effect of firing in nitrogen atmosphere on the stabilization of pollutants and
novel functionalities was investigated [149]; the paper was cited in studies on the recycling
of iron-rich inorganic wastes into functional glass-ceramics [150] and on the production of
glass ceramics from MSWI bottom ash and coal fly ash by melting and sintering [151].

In summary, the NEW-MINE publications on beneficiation of products of thermochem-
ical conversion of (excavated) MSW, i.e., vitrified MSWI bottom ashes and vitreous slags of
plasma gasification, yielded novel insights into the relation between (crystalline/vitreous)
structure and (mechanical/leaching) properties of waste-derived glass ceramics and inor-
ganic polymers. Although these specific approaches to address MSWI residues might not
be realized in practical waste management, the underlying mechanisms are also relevant
for the mobility of heavy metals in other mineral wastes and allow the eco-design of their
properties and, consequently, enhanced recyclability.

3.4. Multi-Criteria Assessment
3.4.1. Life Cycle Assessment

Already before NEW-MINE, comprehensive methods for landfill mining projects have
been developed. With respect to ecological and socio-economic criteria, this approach was
based on utility analysis and then transferred into a utility-net present value chart [9]. In
contrast, within NEW-MINE, for the ecological assessment life cycle assessment (LCA)
was used, although it was not applied to landfill mining, but to the impact of sanitary
landfills themselves [152]: this approach yields important information regarding the al-
ternative to ELFM, i.e., state-of-the-art landfill aftercare. This LCA publication was cited
with respect to the site selection for landfills [153,154] and in a study which yielded the
controversial statement that “recycling metals except gold had more negative environmen-
tal impacts than mining” [155]. Further citing studies deal with environmental impacts
of combustion-based energy production [156], composting on closed landfill sites [157],
bioreactor landfills [158], suppression of methane generation [159], modelling of landfill
gas production [160], organic waste enrichment [161]. Within NEW-MINE, LCA was also
applied to compare smelting of MSWI bottom ash with the state-of-the-art mineral process-
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ing approach and revealed that the energy demand for smelting processes overrules, with
respect to global warming, the positive effect of secondary raw material production [162].

In summary, LCA demonstrated the environmental impact of all scenarios of landfill
management. Landfill aftercare requires a high effort for gas and leachate treatment,
while traditional landfill mining with MSWI yields mineral fractions of MSWI bottom
ashes which cannot substitute for high-value primary raw materials due to the leaching
of pollutants. In contrast ELFM, with the production of vitreous slags–either via plasma
gasification of municipal solid waste (MSW) or via smelting of MSWI bottom ashes, yields
more valuable secondary raw materials which are characterized by a lower leaching, but
their production requires more energy.

3.4.2. Techno-Economic Assessment

Based on a comprehensive study on existing economic assessment methods [163] it has
been suggested within NEW-MINE to follow learning-oriented approaches. Subsequently,
an economic and environmental assessment of a possible ELFM project in Sweden has
been conducted and revealed that none of the scenarios is economically profitable, but of
all them result in net avoided emissions due to the recovery of metals [164]. In a next step,
more than 500,000 landfill mining scenarios were evaluated with respect to their net present
value and the influencing factors were identified via global sensitivity analysis. It was
found that 80% of these scenarios show negative results and that revenues from avoided
landfill management costs are more important than revenues from resource recovery [165].
This study was cited in a review paper on the impact of landfills on the environment [166]
in a study on the environmental and economic assessment of ELFM in Tehran [167] and
with respect to geophysical exploration of landfills [35].

In summary, NEW-MINE results confirm that ELFM is ecologically favorable, but
economically not profitable, which demonstrates the need for an integrated ecological
and economic assessment [9,35]. This means, that for those cases in which this integrated
assessment shows a positive effect of ELFM, economic incentives would be required to
make secondary raw materials or recycled products from ELFM competitive in the market.

3.4.3. Sociological Assessment

Before NEW-MINE, landfill mining was investigated mainly from technological, envi-
ronmental and economic perspectives. However, it is well known that large infrastructure
projects often fail due to public resistance [168]. Therefore, within NEW-MINE, also
stakeholders’ perspectives on ELFM were investigated [169] and stakeholder needs were
identified [170]. The latter study was cited in a study on the characterization of excavated
waste [171]. Finally, stakeholder archetypes for ELFM were defined: The Engaged Citizen,
the Entrepreneur, the Technology Enthusiast, the Visionary and the Skeptic [172]. In sum-
mary, the importance of the involvement of stakeholders in ELFM has been demonstrated
and fundamentals for corresponding strategies have been laid.

4. Discussion
4.1. Disciplinarity and Interdisciplinarity

Within the NEW-MINE project the entire process chain, from landfill exploration via
excavation and mechanical processing to thermochemical conversion and beneficiation of
conversion products, has been investigated. This broad scope constituted a unique feature
of the NEW-MINE project and, correspondingly, many publications do not address the
landfill mining itself, but waste treatment technologies, which may also be used for waste
from other sources than landfills. Some publications, e.g., dealing with energy storage,
are only loosely linked to landfill mining. This broad scope enabled the interdisciplinary
collaboration of researchers, for example between geophysicists and waste scientists [33],
waste scientists and polymer scientists [48], experts in mechanical and thermal waste treat-
ment [84,89,101] and in high and low temperature waste mineralogy [121,144]. However,
the majority of the publications can be allocated to a single scientific discipline. With
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respect to the number of publications citing the NEW-MINE publications, no significant
difference between disciplinary and interdisciplinary publications is visible. Although
most disciplinary publications were cited by researchers from other disciplines (e.g., [165]
by [35]), most of them were cited by colleagues from the authors’ discipline.

Considering that the overall research question of the project was to investigate if
innovative technologies increase the economic and environmental feasibility of landfill
mining, more interdisciplinary cooperation would be required. For example, if the purity
of an inert fraction obtained by sensor-based sorting is increased from 86 to 98% [46], what
is then the impact on the economic, environmental and societal assessment of ELFM? This
and several similar questions demonstrate the need for further interdisciplinary research
in the field of ELFM for which NEW-MINE could have been an excellent starting point.

4.2. Recycling Waste from Landfills

Although a lot of reasons for landfill mining have been identified and excavation of
landfills for environmental remediation has been practiced already for decades, it is the
recovery of resources from landfills, which fostered the landfill mining projects in the last
decade including the NEW-MINE project This is clearly indicated in the project’s name,
i.e., “EU Training Network for Resource Recovery Through Enhanced Landfill Mining”.
During the NEW-MINE project a lot of effort was devoted to treat the excavated waste
by mechanical, thermochemical and chemical methods. The final aim of these treatments
is to obtain either a secondary raw material, which may substitute for a primary raw
material in an industrial process, or a product, which substitutes for a product with the
same functionalities but is made from primary raw materials. Regarding the production of
secondary raw materials, NEW-MINE demonstrated that e.g., the 2D fraction of ballistic
separation can substitute for fossil fuels in co-incineration plants. In contrast, the use of
the inert fraction as raw material for the production of concrete [70] and the use of the fine
fraction as raw material for the production of compost soil [71] fails, due to the exceeded
limit values for total and leachable contaminants.

Regarding the production of a product, it has been demonstrated that e.g., glass-
ceramics [144] fulfil the mechanical and leaching requirements for building products.
Apart from the problem that several countries, e.g., Austria, have also limit values for total
contents, it has to be mentioned that these products have to compete with products with the
same functionality but are made from primary raw materials. Consequently, comparative
economic and environmental assessments are required to investigate the production costs
and environmental impact of e.g., lightweight concrete made from primary raw materials
(e.g., AiriumTM) and waste-derived glass-ceramics that compete for the same application.
With respect to raw materials, the same applies: e.g., recycled aggregates compete with
natural aggregates (with the problem of decreasing quality with increasing number of
recycling cycles [173]), but also additional challenges occur: The RDF that can be produced
by ballistic separation or windsifting has a negative value, i.e., the producer has to pay
the cement plant to incinerate it. Therefore, within the Halbenrain case study in NEW-
MINE, the lightweight fraction, which could have been delivered to an RDF production
plant was re-landfilled, as this was the cheaper option. The reason for this paradox is
that combustible waste must not be landfilled in Austria and incineration is an expensive
process, considering also the taxes that have to be paid. Therefore, co-incineration plants
can demand negative prices for RDF, as it is still cheaper than incineration. Only for the
specific case study of ELFM, re-landfilling of combustibles is allowed and represents the
cheapest option.

In summary, even if secondary raw materials or recycled products can be produced
from ELFM materials, it remains unclear if they can compete with primary raw materials or
products from primary raw materials. First observations for Austria suggest that this may
often not be the case. Given the ambitions of transition towards a more circular economy,
economic incentives are required to make secondary raw materials or recycled products
from ELFM competitive in the market.
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4.3. Waste Management Meets Mining Economics

Finally, as is already evident in the project name “NEW-MINE” in which terminology
from mining economics (“resources”) and waste management (“landfill”) are used, it
represents a good example to apply a figure illustrating the different terminologies from
mining economics, waste management and process engineering [27] to MSW landfills and
ELFM (Figure 2).
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Often, in the recycling business, the term “waste” is avoided due to its negative
connotations. Instead, the terms “residue”, “anthropogenic resource”, “by-product” or
“secondary raw material” are used, but they have a different meaning.

Waste is precisely defined in the European Waste Framework Directive [174] as “any
substance or object which the holder discards or intends or is required to discard”. Conse-
quently, the material in an MSW landfill is waste, as the (former) holder discarded it. If the
material is recycled, it reaches the end-of-waste at the moment when it substitutes for a
primary raw material. Considering the technologies investigated within NEW-MINE, this
means that the material remains a waste until the waste-derived glass ceramics or inorganic
binders finally substitute for conventional construction ceramics or cement, respectively,
and this only if they fulfil the technical and environmental requirements for the competing
products made from primary raw materials.

A by-product is only a substance or object whose further use is certain [174], i.e., there
cannot be a by-product in a landfill, since if the further use would have been certain, it
could not have been disposed of. In contrast to “waste” and “by-product” which originate
from waste management, the term “residue” stems from process engineering and refers to
“the part that is left after the main part has gone or been taken away” [175]. In some MSW
landfills also residues can be found, as industrial waste has not always been disposed of
in separate landfills. Similar to “residue” also “secondary raw materials” are defined by
the Great Soviet Encyclopaedia as “materials and articles which, after complete initial use
(wear), may be used repeatedly in production as starting material” [176].

The terms “resource” (reasonable prospects for eventual economic extraction in the
foreseeable future) and “reserve” originate from mining economics (current economic
extraction possible) and have been introduced into waste management [13]. If current
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economic extraction is possible, the material will be a secondary raw material for a sub-
sequent industrial process, i.e., “anthropogenic reserve” and “secondary raw material”
are synonyms. With respect to ELFM, only a small fraction of the excavated materials
within NEW-MINE, i.e., the metal fractions from magnetic and eddy current separation or
from smelting processes, fall in this category. Some other fractions, e.g., the combustibles,
might be classified as “anthropogenic resource” if RDF prices rise significantly above zero.
However, the results for the fine fraction do not justify a classification as anthropogenic
resource, as no reasonable prospects for their purification exist [71].

In summary, the quantity of resources that can be recovered from MSW landfills can
be significant, if valorization options for the inert fraction and the combustibles become
feasible. However, quality and “bonitaet” [26] of anthropogenic resources from MSW
landfills represent significant challenges for future ELFM projects.

5. Conclusions

The NEW-MINE project (2016–2020) was a European research project investigating the
entire process chain of ELFM. Within the NEW-MINE project in a first step concentrates of
specific materials (e.g., metals, combustibles, inert materials) were produced which might
be used as secondary raw materials. In a second step, recycled products (e.g., inorganic
polymers, functional glass-ceramics) were produced from these concentrates at the lab
scale. However, even if secondary raw materials or recycled products could be produced at
a large scale, it remains unclear if they can compete with primary raw materials or products
from primary raw materials. Given the ambitions of transition towards a more circular
economy, economic incentives are required to make secondary raw materials or recycled
products from ELFM competitive in the market.
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