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Abstract: In a semiconductor fab, wafer lots are processed in complex sequences with re-entrants 

and parallel machines. It is necessary to ensure smooth wafer lot flows by detecting potential dis-

turbances in a real-time fashion to satisfy the wafer lots' demands. This study aims to identify pro-

duction factors that significantly affect the system’s throughput level and find the best prediction 

model. The contributions of this study are as follows: (1) this is the first study that applies machine 

learning techniques to identify important real-time factors that influence throughput in a semicon-

ductor fab; (2) this study develops a test bed in the Anylogic software environment, based on the 

Intel minifab layout; and (3) this study proposes a data collection scheme for the production control 

mechanism. As a result, four models (adaptive boosting, gradient boosting, random forest, decision 

tree) with the best accuracies are selected, and a scheme to reduce the input data types considered 

in the models is also proposed. After the reduction, the accuracy of each selected model was more 

than 97.82%. It was found that data related to the machines’ total idle times, processing steps, and 

machine E have notable influences on the throughput prediction.  
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1. Introduction 

A semiconductor fab operates continuously to produce wafer lots through a complex 

process. The high complexity comes from the re-entrances of the wafer lots into the same 

machines several times [1]. For effective operating of this complex system, an advanced 

technique is necessary, which allows us to capture the system's dynamics. The purpose of 

this study was to identify production factors that significantly affect the throughput level 

in the semiconductor fab and find the best prediction model. Machine learning techniques 

were applied to understand the relationships between real-time system status and 

planned throughput per week. Identifying important factors that affect the throughput 

prediction is important for production control, because it helps the shop floor managers 

to focus their observations on those important factors and ensure smooth wafer lot flows 

within the system.  

This study used a simulation to observe the real system's behavior to make better 

decisions and improve the system’s performance. Using simulations is effective to contin-

uously analyze the system’s key performance indicators (KPIs), in order to optimize the 

performance of many systems, including in manufacturing industries [2]. Simulations 

also provide a highly accurate estimate for system performance expectations [3]. Consid-

ering the necessity of the simulation to mimic the behavior of the represented real system, 

Waschneck et al. [4] stated that synchronization between the simulation and the real pro-

duction system is possible in the digital twin concept. Based on the concept, the consid-

ered production control system in this study is described in Figure 1.  

Citation: Singgih, I. K. Production 

Flow Analysis in a Semiconductor 

Fab using Machine Learning  

Techniques. Processes 2021, 9, 407. 

https://doi.org/10.3390/pr9030407 

Academic Editor: Pablo Chamoso 

Received: 7 February 2021 

Accepted: 19 February 2021 

Published: 24 February 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the author. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/). 



Processes 2021, 9, 407 2 of 18 
 

 

 

Figure 1. The considered production control mechanism. 

Initially, production plans were generated and implemented to operate the real pro-

duction system. The production execution data was sent regularly to the simulation. In 

the simulation, the real system's behavior was analyzed; for instance, how the number of 

processed products in a machine affects the system’s throughput. Various production con-

trol decisions (e.g., updates in schedules and dispatching rules) could be tested, as well. 

The simulation result that showed the effectiveness of each strategy was sent to the pro-

duction control system. The production control mechanism then determined which up-

date to be applied in the currently running real production system. In this study, the sim-

ulation was developed and utilized to understand the real production system's behavior. 

As a result, the important measures that significantly affected the system’s throughput 

are summarized, e.g., number of products being processed in a specific machine. They 

could then be considered for (1) identifying when to perform changes in the currently 

running real system, and (2) selecting updated production decisions. The measures were 

continuously obtained from the running system, and when the value became lower or 

higher than a certain threshold, some unusual system behaviors that can cause a reduction 

in the system’s performance could be identified. For case (1), this situation triggered the 

simulation to be executed for finding better decisions. For case (2), new production deci-

sions were made to deal with the updated situation.  

In this study, machine learning techniques were used to identify important produc-

tion factors that affect the production system's throughput level. Using machine learning 

for analysis of real manufacturing system behavior was effective, as reported by Morariu 

et al. [5], when dealing with scheduling and resource allocation issues. The usage of ma-

chine learning to model and control manufacturing processes is enabled, because it is pos-

sible to collect a large amount of data in the factory. It allows the production planners to 

analyze production issues without accurate mathematical modeling or a physics-based 

simulation of the system [6]. 

In the proposed production control mechanism (Figure 1), KPIs were identified. 

Monitoring the KPIs in real time using smart manufacturing technologies enables auto-

matic problem identification and development of a warning system [7], because the KPIs 

are presented to shop floor staff, managers, and supervisors who are in charge of making 

decisions [8]. KPIs in the manufacturing system have been listed in previous research [8], 

and there are various subcategories, including availability, utilization, and throughput, 

which were measured in this study. Evaluation of such performance evaluation factors in 

the manufacturing system is common, and the evaluation result can be used to identify 

the importance order of those factors when used to evaluate existing systems [9].  

Previous methods have ranked the factors using expert-based evaluation systems, 

such as preference ranking organization method for enrichment evaluation (PROME-

THEE) [10] and the analytic network process [11]. Different from them, this study used 

machine learning techniques to evaluate the effect of removing the factor candidates, 

while maintaining the model's high prediction accuracy. Information about the selected 

factors were recorded in real time using various sensors installed on the production floor, 
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such as radio frequency identification (RFID) [12], and stored as big data. The collected 

data related to the selected factors could then be used for real-time evaluation and predic-

tion in the semiconductor production system. 

The structure of this paper is organized as follows: Section 2 reviews previous studies 

and addresses the contribution of this study. Section 3 explains the developed simulation 

model, data collection scheme, and considered machine learning techniques. Section 4 

presents the numerical experiments and analysis. Finally, Section 5 presents the conclu-

sions. 

2. Literature Review 

Machine learning methods have been used before for analysis and decision making 

in semiconductor fabs. Some examples are work-in-progress prediction [13], lead time 

prediction [14], dynamic storage dispatching [15], vehicle traffic control [16], and wafer 

defect detection using image classification [17,18]. The machine learning method is classi-

fied as a data-driven approach that is suitable for cases with complicated relationships 

between many factors [19]. The studies above are related to predicting or optimizing the 

semiconductor fab operation with predefined factors. When optimizing the production 

parameters, exact decision variables can be controlled; for example, the sequence of wafer 

lots to be produced at the machines, the vehicle sequence to dispatch to a destination node, 

and so forth. Meanwhile, the prediction might consider the production system's decision 

variables and some derived factors that represent the production system's situation. Iden-

tifying important input factors and the appropriate model is necessary to predict the sys-

tem's target values appropriately. Target values to be estimated could be the quality of the 

wafer lots [20] or abnormality in the wafer lot flows [21]. 

In a study similar to this one, Jiang et al. [20] attempted to classify wafer lots based 

on their yield levels. This was intended to minimize the defect wafer lots. Other related 

studies on the yield model are [22,23]. Different from [20], this study focused on predicting 

the production system’s operational factors that have important effects on the system’s 

throughput, instead of observing the quality of the produced wafer lots. Lee and Cho [21] 

and Lauer and Legner [24] detected an abnormality in the semiconductor production line. 

Lee and Cho [21] generated a graph representing the movements of lots and compared 

their prediction graph with the actual graph to identify abnormalities in the flows. In con-

trast, this study focused more on understanding the whole system's overall behavior, in-

stead of observing each individual lot's movement. Lauer and Legner [24] dealt with mas-

ter production planning in the higher production planning phase; this study observed the 

behavior of real-time execution of the production system. 

Unlike in previous studies, in this study, machine learning was applied for analysis 

related to wafer lot production control. A further comparison was made with the research 

listed in a review paper about machine learning implementation in production lines [25]. 

All of the previous studies discussed here in the scheduling optimization field used the 

regression technique to observe the cycle time. Unlike these previous research papers, this 

study observed the potential of applying classification machine learning methods to iden-

tify good and bad cases in production lines and important factors that contribute to such 

case generations. Good cases referred to the weekly production data in which the target 

system throughput (number of wafer lots produced each week) was satisfied, and the bad 

cases were weekly data with the number of produced wafer lots less than the target value. 

The observed important factors were related to number of wafer lots waiting at each ma-

chine, number of wafer lots being processed at each machine, and each machine’s total 

working and idle times in a week. The contributions can be summarized as follows: (1) 

Based on the author’s knowledge, this is the first study that applies machine learning tech-

niques to identify important real-time factors that influence throughput in the semicon-

ductor fab; (2) A test bed in the Anylogic software environment was developed based on 

the Intel minifab system [26]; and (3) A data collection scheme is proposed for the produc-

tion control mechanism within the simulation. The prediction scheme in this study helps 
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to identify important input factors to the throughput estimation. These factors can then 

be set as short-term targets when operating the semiconductor fab, including for how to 

make more detailed decisions, such as scheduling and dispatching. 

3. Materials and Methods 

The Intel minifab system [26] was implemented in this study. The used data has been 

considered by many previous studies as well [27–29]. Three types of wafer lots (Product 

Pa, Product Pb, and test wafer lot TW) were processed through six steps at five machines, 

as shown in Table 1. The demands for Pa, Pb, and TW per week are 51, 30, and 3 wafer 

lots. Each wafer lot is processed individually on machines C, D, and E, but the lots must 

form a batch with a size of three before being processed at machine A or B. Rules for the 

batching for both steps 1 and 5 are, at most, only one TW lot can be included in the batch. 

Pa and Pb can be mixed in step 1, but not in step 5. The fab layout consists of five cells. 

Facilities located at each cell from the leftmost to the rightmost are (cell 1) entrance point 

for products, (cell 2) machines A and B, (cell 3) machine E, (cell 4) machines C and D, and 

(cell 5) exit point for the finished product. Machine(s) in each cell share the same buffer 

with the following capacity: 18 lots for cell 2, 12 lots each for cells 3 and 4, and unlimited 

capacity for the entrance and exit points. The transportation time required between two 

adjacent cells is 120 seconds. Thus, an example of movement time from machine E to the 

exit point is 240 seconds. Machine E requires the following setup times: 600 seconds if the 

next step is a different step (e.g., changing from step 3 to step 6), 300 seconds if the product 

type is changed, and 720 seconds if processing steps and product types are changed sim-

ultaneously. 

Table 1. Processing steps, machine eligibilities, and time information for the Intel minifab system. 

Processing 

Steps 

Machine A & B Machine C & D Machine E 

L P U L P U L P U 

step 1 1200 13,500 2400       

step 2    900 1800 900    

step 3       600 3300 600 

step 4    900 3000 900    

step 5 1200 15,300 2400       

step 6       600 600 600 

L = loading time, P = processing time, U = unloading time (in seconds). 

This study introduced an observation mechanism to identify situations that will sat-

isfy the requested throughput and bad conditions that production planners should pay 

attention to ensure throughput fulfillment. The current study focused more on the wafer 

lot movement dynamics and ensured that meaningful observation factors were obtained. 

Thus, the consideration of machine operators was removed from the simulation in this 

study. Some necessary wafer lot dispatching and machine selection rules have not been 

previously defined in [26]. Therefore, rules were added into the simulation as follows:  

• The First-In-First-Out rule was used to select which wafer lot entered each machine. 

In other words, the entrance sequence of the wafer lots into a machine’s queue deter-

mined their sequence when entering the machine. For machine A or B, any batch that 

could be feasibly formed using the earliest arriving products was selected to be pro-

cessed in the machine. As stated previously [26], when forming a batch for processing 

step 1, at most, one TW wafer lot can be included. The possible batch configurations 

for processing step 1 are (Pa,Pa,Pa), (Pa,Pa,Pb), (Pa,Pa,TW), (Pa,Pb,TW), (Pb,Pb,TW), 

(Pb,Pb,Pa), and (Pb,Pb,Pb). Meanwhile, when performing processing step 5, different 

product types cannot be mixed into the same batch, though having one TW lot, at 

most, is acceptable. The possible batch configurations for processing step 5 are 

(Pa,Pa,Pa), (Pa,Pa,TW), (Pb,Pb,TW), and (Pb,Pb,Pb). Every time machine A or B be-

comes empty or a wafer lot enters queue of any machine A or B when the machine is 
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idle; any possible batch is formed using the earliest arriving wafer lots at the ma-

chine’s queue. If the batch is formed, the batch is released for processing in the ma-

chine.  

• The machine with a smaller total number of products waiting in the queue and prod-

ucts being processed is selected as the next machine for the lot or batch (when an 

alternative machine exists). After each wafer lot or batch processing is completed in 

a machine, the lot or batch is delivered to the next processing step (e.g., after a wafer 

lot completes its processing step 4 at machine D, before it starts processing step 5 at 

machine A or B). At this time, it is inserted into the queue of the machine with the 

rule set above. The rule above is less important than the same machine visit rule for 

TW, if applicable. Considering that each TW lot is not allowed to be processed in the 

same machine, if necessary, assigning this TW lot to the next machine with a higher 

number of allocated wafer lots is acceptable.  

A simulation test bed using Anylogic 8.7.0 was developed based on the system above, 

as shown in Figure 2. The wafer lots were released every shift (one shift is 12 hours). Thus, 

the number of wafer lots to be released (per week) was distributed into 14 shifts (Table 2). 

The demand was released according to the generated schedule until the simulation was 

terminated. The recorded data were related to real-time production parameters, as listed 

in Table 3. The selection of production parameters was based on their importance accord-

ing to previous studies: machine buffer capacity [30], machine utilization, and throughput 

[8]. The number of processing steps performed by each machine was added to consider 

the re-entrance characteristic in the studied semiconductor fab.  

Table 2. Wafer lot release schedule per shift (for one week). 

 Number of Released Wafer Lots 

Shift Pa Pb TW 

shift 1 3 2 1 

shift 2 4 2 0 

shift 3 4 2 0 

shift 4 3 3 0 

shift 5 4 2 0 

shift 6 4 2 0 

shift 7 3 2 1 

shift 8 4 2 0 

shift 9 4 2 0 

shift 10 3 3 0 

shift 11 4 2 0 

shift 12 4 2 0 

shift 13 3 2 1 

shift 14 4 2 0 

total 51 30 3 

The throughput (data no. 43) was measured at the end of each week, in accordance 

with the target set in [26]. A set of data was measured from the start of a week until its 

end. Although there might be a slight effect from the decisions at the end of a shift on the 

earlier part of the next shift, we assumed that such an effect can be ignored. To compensate 

for this, we collected a large data set with various conditions at the start of each week.  

To assess the relationships between the data, analysis using machine learning tech-

niques for classification (Table 4) was conducted. The flowchart of this study is presented 

in Figure 3. In stage 1, the simulation, using Anylogic, was developed based on the Intel 

minifab design and the data collection, as explained above. As a result of this stage, the 

recorded data was obtained and used for training each machine learning model listed in 

Table 4 (stage 2).  
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Figure 2. Intel minifab test bed in the Anylogic software. 
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Table 3. Collected data in the simulation. 

Data No. Data name Description 

1 
total_cap-

tures_queue_A_per_week 

number of wafer lots waiting at machine A’s buffer in one 

week 

2 
total_cap-

tures_queue_B_per_week 

number of wafer lots waiting at machine B’s buffer in one 

week 

3 
total_cap-

tures_queue_C_per_week 

number of wafer lots waiting at machine C’s buffer in one 

week 

4 
total_cap-

tures_queue_D_per_week 

number of wafer lots waiting at machine D’s buffer in one 

week 

5 
total_cap-

tures_queue_E_per_week 

number of wafer lots waiting at machine E’s buffer in one 

week 

6 
total_cap-

tures_queue_AB_per_week 

number of wafer lots waiting at machine A’s and machine 

B’s buffers in one week 

7 
total_cap-

tures_queue_CD_per_week 

number of wafer lots waiting at machine C’s and machine 

D’s buffers in one week 

8 

total_cap-

tures_queue_A_1_per_wee

k 

number of wafer lots with processing step 1 waiting at ma-

chine A’s buffer in one week 

9 

total_cap-

tures_queue_A_5_per_wee

k 

number of wafer lots with processing step 5 waiting at ma-

chine A’s buffer in one week 

10 
total_cap-

tures_queue_B_1_per_week 

number of wafer lots with processing step 1 waiting at ma-

chine B’s buffer in one week 

11 
total_cap-

tures_queue_B_5_per_week 

number of wafer lots with processing step 5 waiting at ma-

chine B’s buffer in one week 

12 

total_cap-

tures_queue_C_2_per_wee

k 

number of wafer lots with processing step 2 waiting at ma-

chine C’s buffer in one week 

13 

total_cap-

tures_queue_C_4_per_wee

k 

number of wafer lots with processing step 4 waiting at ma-

chine C’s buffer in one week 

14 

total_cap-

tures_queue_D_2_per_wee

k 

number of wafer lots with processing step 2 waiting at ma-

chine D’s buffer in one week 

15 

total_cap-

tures_queue_D_4_per_wee

k 

number of wafer lots with processing step 4 waiting at ma-

chine D’s buffer in one week 

16 
total_cap-

tures_queue_E_3_per_week 

number of wafer lots with processing step 3 waiting at ma-

chine E’s buffer in one week 

17 
total_cap-

tures_queue_E_6_per_week 

number of wafer lots with processing step 6 waiting at ma-

chine E’s buffer in one week 

18 
ma-

chine_A_step1_per_week 

number of wafer lots with step 1 processed at machine A in 

one week 

19 
ma-

chine_A_step5_per_week 

number of wafer lots with step 5 processed at machine A in 

one week 

20 
ma-

chine_B_step1_per_week 

number of wafer lots with step 1 processed at machine B in 

one week 

21 
ma-

chine_B_step5_per_week 

number of wafer lots with step 5 processed at machine B in 

one week 

22 
ma-

chine_C_step2_per_week 

number of wafer lots with step 2 processed at machine C in 

one week 

23 
ma-

chine_C_step4_per_week 

number of wafer lots with step 4 processed at machine C in 

one week 
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24 
ma-

chine_D_step2_per_week 

number of wafer lots with step 2 processed at machine D in 

one week 

25 
ma-

chine_D_step4_per_week 

number of wafer lots with step 4 processed at machine D in 

one week 

26 
ma-

chine_E_step3_per_week 

number of wafer lots with step 3 processed at machine E in 

one week 

27 
ma-

chine_E_step6_per_week 

number of wafer lots with step 6 processed at machine E in 

one week 

28 

machine_A_available_pro-

duction_ 

time_with_idle_per_week 

percentage of machine A’s available production time after 

excluding the preventive and emergency maintenances in 

one week 

29 

machine_B_available_pro-

duction_ 

time_with_idle_per_week 

percentage of machine B’s available production time after 

excluding the preventive and emergency maintenances in 

one week 

30 

machine_C_available_pro-

duction_ 

time_with_idle_per_week 

percentage of machine C’s available production time after 

excluding the preventive and emergency maintenances in 

one week 

31 

machine_D_available_pro-

duction_ 

time_with_idle_per_week 

percentage of machine D’s available production time after 

excluding the preventive and emergency maintenances in 

one week 

32 

machine_E_available_pro-

duction_ 

time_with_idle_per_week 

percentage of machine E’s available production time after 

excluding the preventive and emergency maintenances in 

one week 

33 

machine_A_utilization_ 

all_work-

ing_times_per_week 

percentage of machine A’s actual production time after ex-

cluding the preventive maintenance, emergency mainte-

nance, and idle times in one week 

34 

machine_B_utilization_ 

all_work-

ing_times_per_week 

percentage of machine B’s actual production time after ex-

cluding the preventive maintenance, emergency mainte-

nance, and idle times in one week 

35 

machine_C_utilization_ 

all_work-

ing_times_per_week 

percentage of machine C’s actual production time after ex-

cluding the preventive maintenance, emergency mainte-

nance, and idle times in one week 

36 

machine_D_utilization_ 

all_work-

ing_times_per_week 

percentage of machine D’s actual production time after ex-

cluding the preventive maintenance, emergency mainte-

nance, and idle times in one week 

37 

machine_E_utilization_ 

all_work-

ing_times_per_week 

percentage of machine E’s actual production time after ex-

cluding the preventive maintenance, emergency mainte-

nance, and idle times in one week 

38 
machine_A_idle_time_ 

percentage_per week 
percentage of machine A’s total idle time in one week 

39 
machine_B_idle_time_ 

percentage_per week 
percentage of machine B’s total idle time in one week 

40 
machine_C_idle_time_ 

percentage_per week 
percentage of machine C’s total idle time in one week 

41 
machine_D_idle_time_ 

percentage_per week 
percentage of machine D’s total idle time in one week 

42 
machine_E_idle_time_ 

percentage_per week 
percentage of machine E’s total idle time in one week 

43 throughput_per_week number of wafer lot finished in one week 

Table 4. Machine learning techniques applied in this study. 

Machine Learning Technique Reference 

adaptive boosting (AB) [31] 

linear classifiers with stochastic gradient descent training (SGD) [32] 

neural network (multilayer perceptron 1) (NNMLP) [32] 
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gradient boosting (GB) [33] 

random forest (RF) [34] 

k-nearest neighbors (KNN) [35] 

classification and regression tree (CART) [33] 

naive bayes (gaussian 1) (NB) [36] 

support vector machine (C-support vector 1) (SVM) [37] 
1 Specific methods that are considered in this study. 

 

Figure 3. Research flowchart of this study. 

Definitions of the models (Table 4) are provided in previous research [38,39], as follows:  

• Adaptive boosting (AB) 

The purpose of AB is to improve the performance of weak classifiers, such as the 

decision tree. The results of a previous classifier are inserted into the next one in a 

sequential training scheme. During this process, the mistakes of earlier classifiers are 

dealt with to improve the final prediction quality. 

• Linear classifiers with stochastic gradient descent training (SGD)  

In SGD, estimation is conducted using linear models with stochastic gradient descent 

learning. The gradient of the loss is measured using each sample, and the model is 

updated with a certain decreased strength (learning rate). 

• Neural network (multilayer perceptron) (NNMLP) 

NNMLP is a fully connected feed–forward network. The error propagation method 

is used for conducting the training. 

• Gradient boosting (GB) 

GB is the improved version of the classification and regression tree (CART). Each 

new tree is generated in a serial order to correct the prediction error of the prior tree. 

• Random forest (RF)  

RF uses decision trees for the classification task. The tree's depth is increased by one, 

and this process is iterated for all nodes in the tree until a certain depth is reached. 

• K-nearest neighbors (KNN)  

KNN predicts each data record in the test set by selecting the k nearest training set 

vectors. The classification is performed based on the majority of the votes. 

• Classification and regression tree (CART) 

Training of the CART model includes tree generation through recursive binary split-

ting. Various split points are tested using a cost function, and the lowest cost-split is 

chosen to deal with the organized values.  

• Naive bayes (gaussian) (NB) 
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NB performs the classification based on the conditional probability of each categori-

cal class variable. Such a maximum likelihood method is used for parameter estima-

tion in various problem domains. 

• Support vector machine (C-support vector) (SVM)  

SVM conducts the classification by generating N-dimensional hyperplanes that sep-

arate the data. Penalty factor C is considered to control the trade-off between allow-

ing the existence of training errors and setting rigid margins. 

The Python sklearn library [39] was applied in Visual Studio 2019 Community Plat-

form to implement the machine learning techniques. When training each model, the fol-

lowing steps were conducted: 

1. Division of the collected data into training and testing data; the data before the divi-

sion is shuffled, and the percentage of testing data is set equal to 20%. 

2. Testing accuracy of each model using k-fold cross-validation; the number of consid-

ered splits is ten. The training data are shuffled before the testing.  

In stage 3, models with the best accuracy were selected. Until the current stage, all input 

data (data no. 1–42) were considered, but observing only some input data might be suffi-

cient to predict the system’s throughput. Thus, in stage 4, the effect of reducing the input 

data to the throughput prediction accuracy changes was observed using the second step 

above. Given the complete input data, one input data was iteratively reduced, and the 

difference was observed. After checking all possible candidates in one iteration for reduc-

ing one data, the best accuracy was obtained. If the new prediction accuracy was the same 

or better than the current one, the input data combination was updated. In the end, the 

input data combination that produced the best accuracy was obtained. It was expected 

that identifying the important input data would help practitioners to focus their observa-

tions during the production period. The observation time was shortened, and more sys-

temic insights could be obtained after analyzing the type of remaining input data. Finally, 

the testing data was fitted using the selected input data by calculating the precision, recall, 

f1-score, and support metrics.  

4. Results 

The simulation was run using random seed values from 0 to 30. The data was col-

lected using each seed value after running the simulation for 325 weeks (on average). This 

observation period length was long enough, considering that, in practice, production con-

trol decisions should be made within shorter time periods (less than a year, ideally a few 

weeks or months) to ensure customers’ demand satisfaction is met. Given that the interval 

for capturing the simulation data was set to 1800 seconds and a shift equals 604,800 sec-

onds, the number of data captures for each parameter in a week was 336 (that is, 

604,800/1800). At the end of each week, each recorded parameter's average value was ob-

tained (accumulated value of each parameter in the week divided by the number of data 

captures per week). Data from 10,086 weeks were collected through the simulation after 

removing the records that were obtained during the warmup period. Each weekly data 

were considered to be in the warmup period if their value was less than the minimum 

throughput in the steady-state period; for example, the data in the first week of Figure 4. 

The data are available at https://github.com/ivanksinggih/Intel_mini-

fab_Anylogic/tree/data. 
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Figure 4. Throughput changes during the warmup and data collection periods. 

The system's throughput was between 73–95 wafer lots per week during the data 

collection period. The simulation had an average throughput (amount of lots per week) 

of 84 lots, which is same as the system’s initial design, so the developed simulation model 

was validated. It was expected that the system throughput would be at least equal to 84 

wafer lots per week. Identifying appropriate system parameters to allow for more than 84 

lots to be produced could allow additional demands to be satisfied. Thus, two classes were 

defined for the classification: (1) a “good” case, with throughput between 84–95 wafer lots 

per week, and (2) a “bad” case, with throughput between 73–83 lots per week. It was ex-

pected that using the selected model and input data set allow satisfying the target 

throughput and even having additional capacity to produce more lots.  

The result of accuracy testing for each machine learning technique is presented in 

Figure 5 (box plot) and Table 5. The methods with an accuracy of more than 95% are AB, 

GB, RF, and CART. As shown by the box plot, these four best methods also have a small 

deviation in their prediction results, which indicate that they were sufficiently reliable to 

produce good results in multiple runs. This fact is important considering that the selected 

prediction methods should be used to deal with new data obtained continuously from 

semiconductor fab that operates in high uncertainty (e.g., because of emergency mainte-

nances). More observations were conducted to reduce the input data when using those 

four best methods. The final accuracies of those four best methods after reducing the input 

data are shown in Table 6. The AB, GB, and RF methods have slightly better accuracy than 

CART, and each of them considers different input data combinations when predicting the 

throughput. 

Further analysis is required to identify whether a certain data group has more im-

portance than others in the throughput prediction process. The input data are classified 

in two ways based on the following information: (1) data type and (2) machine-related 

data. The definition of each group and the input data inclusion into each group are pre-

sented in Table 7.  



Processes 2021, 9, 407 12 of 18 
 

 

 

Figure 5. Accuracy comparison of the considered machine learning techniques. 

Table 5. Obtained accuracy of each machine learning technique. 

Machine Learning Technique Accuracy 

adaptive boosting (AB) 97.57% 1 

linear classifiers with stochastic gradient descent training (SGD) 67.96% 

neural network (multilayer perceptron) (NNMLP) 77.27% 

gradient boosting (GB) 97.78% 1 

random forest (RF) 97.83% 1 

k-nearest neighbors (KNN) 71.70% 

decision tree (CART) 95.80% 1 

naive bayes (gaussian) (NB) 87.85% 

support vector machine (C-support vector) (SVM) 78.31% 
1 More than 95% accuracy. 

 

Table 6. Accuracy of each machine learning technique after reduction of input data. 

Best  

Model 

Input Data Combination 

(with indices in Table 3) 

Accuracy (with Selected  

Input Parameters) 

AB 2–3, 9, 14, 16, 18, 22, 24–27, 31, 35, 40–42 97.88% 1 

GB 6, 11, 13–14, 16, 18, 21, 26–27, 30–31, 35, 39, 41–42 97.88% 1 

RF 1, 6, 12, 15, 22–23, 26–27, 32, 35, 41–42 97.88% 1 

CART 27 97.82% 
1 Combination of input data with the best accuracy among the best models. 

Each input data's importance was further assessed by observing how long each of 

them was maintained when generating the final model, when using methods with the best 

accuracy (how long each of them remained within the iterations without being removed 

from the models). The analysis framework is presented in Figure 6. In the initial step (left 

part of Figure 6), the iteration index, the point at which each input data was removed, is 

recorded. An example of the AB model is presented in Figure 7. Based on Figure 7, input 

data 1 was removed in the first iteration (because its removal produces a new model with 

the least accuracy), input data 10 in the second iteration, input data 20 in the third itera-

tion, and so on. The input data removal was stopped at iteration 28, because any input 
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data removal at that iteration reduced the accuracy. When the iterations stopped, the final 

model's remaining input data were marked as not removed until the end of the iterations 

(iteration 42).  

Table 7. Input data groups based on (1) data type and (2) machine-related data information. 

Grouping Rule Groups and Definitions Included Input Data 

(1) data type  

(group 1A) number of wafer lots waiting at 

each machine  

(without processing step consideration) 

1–7 

(group 1B) number of wafer lots waiting at 

each machine  

(with processing step consideration) 

8–17 

(group 1C) number of processed wafer lots 

(with processing step consideration) 
18–27 

(group 1D) percentages of available ma-

chines’ production times after excluding 

maintenance times 

28–37 

(group 1E) percentage of machines’ total 

idle times 
38–42 

(2) machine 

(group 2A) machine A-related input data 1,6,8–9,18–19,28,33,38 

(group 2B) machine B-related input data 2,6,10–11,20–21,29,34,39 

(group 2C) machine C-related input data 3,7,12–13,22–23,30,35,40 

(group 2D) machine D-related input data 4,7,14–15,24–25,31,36,41 

(group 2E) machine E-related input data 5,16–17,26–27,32,37,42 

In the next step of Figure 6 (right part of the figure), the obtained results from above 

are summarized based on the groups defined in Table 7. The values at the rightmost part 

of Figure 6 show the average iteration index, at which point the input data (in the group) 

were removed from the four best models. The data groups with larger average values 

contained input data that remained longer in the model. Input data in such groups had 

more effects on the predicted throughput.  

When observed from the groupings based on the data types, the results show that 

the three most important data groups are the percentage of the machines’ total idle times 

(Group 1E), the number of processed wafer lots (with processing step consideration) 

(Group 1C), then the number of wafer lots waiting at each machine (with processing step 

consideration) (Group 1B). Input data in the machines’ total idle times group are im-

portant, because an appropriate idle time balance between the machines is required for 

processing the wafer lots and ensures smooth flows of the lots. Data in the number of 

processed wafer lots (with processing step consideration) group had more influence on 

the throughput prediction than the number of wafer lots waiting at the machines’ queues 

(input data in Group 1A and 1B). Thus, the wafer lot dispatching to the machines became 

an important decision to increase the system’s throughput. Regarding the number of wait-

ing wafer lots data, input data in Group 1B were more important than that in Group 1A. 

This shows that ensuring an appropriate amount of wafer lots based on their processing 

steps was important to increase the throughput. Having wafer lots with a balanced 

amount of different processing steps ensured a more continuous flow of wafer lots com-

pared with extreme cases, in which more wafer lots with earlier processing steps (steps 1, 

2, 3) only, or with later processing steps (steps 4, 5, 6) only, were available in the machines’ 

queues. An unbalanced amount of wafer lots of each processing step could also disrupt 

the smooth flow of lots. An example of this was when more wafer lots with next pro-

cessing steps 1, 3, and 5 were ready at the machines’ queues. In such a situation, the system 

produced fewer wafer lots with next processing steps 2, 4, and 6, which caused an insuf-

ficient supply of lots for executing processing steps 3 and 5. 
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Figure 6. Framework for analysis of each data group’s importance based on data and machine 

types. 
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Figure 7. Iteration indices at which each input data is removed from Model AB. 

When observed from the groupings based on the machine types, input data related 

to machine E (Group 2E) had slightly more importance than input data for other machines. 

The reason for this might be because machine E handles a higher workload (processing 

steps 3 and 6) than machines A and B (that together handle processing steps 1 and 5) and 

machines C and D (that handle processing steps 2 and 4). Having a good production plan 

and control for machine E will increase the throughput compared to focusing treatments 

on other machines.  

The analysis above is derived from understanding how the system works. Future 

studies must conduct more detailed experiments, supported with statistical analysis, to 

identify the exact reasons the input data in some groups are more important than in oth-

ers.  

The four best machine learning techniques allowed good prediction of the real sys-

tem. The results obtained using the testing data are presented in Table 8.  

Table 8. Precision, recall, f1-score, and support values obtained using the testing data. 

Best Model Data Class 

Evaluation Metrics Number of  

Correctly  

Classified Data 
Precision Recall F1-score Support 

AB 
good 0.98 0.95 0.96 729 691 

bad 0.97 0.99 0.98 1289 1275 
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GB 
good 0.98 0.96 0.97 729 699 

bad 0.98 0.99 0.98 1289 1272 

RF 
good 0.98 0.96 0.97 729 699 

bad 0.98 0.99 0.98 1289 1272 

CART 
good 0.98 0.96 0.97 729 699 

bad 0.98 0.99 0.98 1289 1272 

5. Conclusions 

In this study, a simulation of a semiconductor fab based on the Intel minifab design 

was developed. The contributions of this study are as follows: (1) this is the first study to 

apply machine learning techniques to identify important real-time factors that influence 

throughput in the semiconductor fab; (2) this study developed a test bed in the Anylogic 

software environment based on the Intel minifab layout; and (3) this study proposed a 

data collection scheme for the production control mechanism.  

To analyze production states that cause a high possibility of satisfying the required 

throughput, a data collection scheme was designed, and several machine learning tech-

niques were compared. After training the model candidates, the four best models (adap-

tive boosting, gradient boosting, random forest, decision tree), with accuracies of more 

than 95%, were selected; and after reducing the input data, the models' accuracy became 

97.88%, 97.88%, 97.88%, and 97.82%, respectively. Further analysis showed that the ma-

chines’ total idle times and the number of wafer lots in the machines and their queues 

(with their processing step information), and data related to machine E, have more influ-

ence when predicting the throughput.  

The following topics are recommended for future studies: (1) development and test-

ing of actual production decisions (e.g., lot dispatching and rescheduling functions of the 

machines), considering the importance of the input data; and (2) the inclusion of the op-

erators’ working time and limitations in the available material handling equipment. This 

study limited the observations to weekly data. It would be interesting for future studies 

to measure each shift's input data (instead of each week’s). It is necessary to consider the 

sequence of values (or accumulated values) for the input data measured in consecutive 

shifts within each week. This is because decisions made in a shift have a great influence 

on the input data values in the next shift, considering the shorter length of a shift (com-

pared with a week). Understanding the effect of each shift's decisions will help practition-

ers achieve more accurate production control in each shift, while still reaching the re-

quired throughput at the end of each week. 
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