

Supplementary Materials: Experimental and modeling of dicamba adsorption in aqueous medium using MIL-101(Cr) metal-organic framework

Hamza Ahmad Isiyaka^{1,*}, Khairulazhar Jumbri^{1,2,*}, Nonni Soraya Sambudi³, Jun Wei Lim^{1,4}, Bahruddin Saad¹, Anita Ramli^{1,4}, Zakariyya Uba Zango¹

1. Content list

Fig. S1: (a) Pseudo-second-order kinetics and (b) intraparticle diffusion model kinetics. Table S1: Isotherm parameters for the adsorption of dicamba.

Table S2: Coded range for independent variables for the CCD-RSM design matrix.

Isotherm Model	Parameter	MIL-101(Cr)-Dicamba	
Langmuir	$q_m (mg g^{-1})$	263.157	
	$K_L (L mg^{-1})$	1.9	
	R_L	0.025	
	\mathbb{R}^2	0.939	
	R ² adj	0.924	
	RMSE	0.001	
	AIC	-80.131	
Freundlich	$K_F (mg g^{-1})$	8.712	
	n	2.059	
	\mathbb{R}^2	0.998	
	R ² adj	0.997	
	RMSE	0.023	
	AIC	-43.773	
Temkin	A (mg g^{-1})	38.907	
	b _T (kJmol ⁻¹)	44.379	
	\mathbb{R}^2	0.918	
	R ² adj	0.897	
	RMSE	26.377	
	AIC	40.837	

Table S1. Isotherm parameters for adsorption of dicamba onto MIL-101(Cr)

Table S2. Coded range for independent variables for the CCD-RSM design matrix

Variables	Units	Range and levels					
	_	$-\alpha$	-1	0	+1	$+\alpha$	
Contact time	min	35	5	15	25	45	
Initial concentration	mg L ⁻¹	40	10	20	30	50	
Adsorbent dosage	mg	40	10	20	30	50	
pH		8	2	4	6	10	
Temperature	°C	40	25	30	35	45	

Fig. S1. (a) Pseudo-second-order kinetics and (b) intraparticle diffusion model kinetics for dicamba adsorption (Dosage: 20 mg; 40°C; equilibrium time: 25 min, rpm: 150)

MDPI