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Abstract: Uncertainty and variability are inherent to pile design and consequently, there have been
considerable researches in quantifying the reliability or probability of failure of structures. This
paper aims at examining and comparing the applicability and adaptability of Minimax Probability
Machine Regression (MPMR), Emotional Neural Network (ENN), Group Method of Data Handling
(GMDH), and Adaptive Neuro-Fuzzy Inference System (ANFIS) in the reliability analysis of pile
embedded in cohesionless soil and proposes an AI-based prediction method for bearing capacity of
pile foundation. To ascertain the homogeneity and distribution of the datasets, Mann–Whitney U
(M–W) and Anderson–Darling (AD) tests are carried out, respectively. The performance of the devel-
oped soft computing models is ascertained using various statistical parameters. A comparative study
is implemented among reliability indices of the proposed models by employing First Order Second
Moment Method (FOSM). The results of FOSM showed that the ANFIS approach outperformed other
models for reliability analysis of bearing capacity of pile and ENN is the worst performing model.
The value of R2 for all the developed models is close to 1. The best RMSE value is achieved for the
training phase of the ANFIS model (0 in training and 2.13 in testing) and the poorest for the ENN
(2.03 in training and 31.24 in testing) model. Based on the experimental results of reliability indices,
the developed ANFIS model is found to be very close to that computed from the original data.

Keywords: FOSM; ANFIS; pile foundation; reliability analysis; rank analysis

1. Introduction

Pile foundations are used in weak soils to increase its bearing capacity and reduction
of foundation settlements. Due to scarcity of space and demand to build taller and heav-
ier buildings, study on reliability analysis of bearing capacity of the pile foundations is
increasingly attracting attention of geotechnical researchers. Reliability is the probability
of performance of the essential function by the system in consideration, effectively for a
given period of time under specified conditions [1]. It is also defined as (1- probability of
failure). The inability of the system to perform its proposed function adequately under
defined conditions, it is said to have reached the state of failure. To ensure safety, necessity
of assessing calculated risk has been put forward long back [2] owing to different degrees
of uncertainties involved in the geotechnical design. Uncertainties may be classified as
inherent variability (uncertainties in material parameters), Measurement variability (un-
certainties in loads or equipment errors) and transformation uncertainties (uncertainties
in hypothesis or mathematical modeling) [3–5]. Observational method [5] does not allow
the design to be changed during construction based on observed behavior. To address
uncertainties and variability in design, factor of safety (FS) approach has traditionally been
used, based on experience but this approach fails to address the problem in rational way. FS
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approach not only results into conservative analysis but also owns noteworthy probability
of failure [6].

Reliability analysis addresses safety in rational manner. Many major uncertainties
(e.g., material parameters, loads and pore-water pressures) which are not considered in
the FS approach are addressed in Reliability in lucid way. First Order Second moment
Method (FOSM) has been effectively used in reliability analysis pile bearing capacity
problems [7,8]. However, the method has been found to be very time consuming and
requires additional efforts, especially in case of multi-variable relationships, due to large
number of calculation performance functions and/or its partial derivatives with respect
to the random basic variables. For performance functions other than normal distribution,
results tend to be flawed. The multi-tangent-plane surface method, the multi-plane surfaces
method [9] and Response Surface Method (RSM) [10–12] improves the accuracy but its
applicability is limited to nonlinear convex or concave limit state surfaces. Meanwhile,
Artificial Neural Networks (ANN) approaches [13,14] have been adequately applied to
reliability analysis but its performance cannot be expressed in explicit form and implicit
performance function contains partial derivatives which are too intricate to be solved.
It results in low generalization capacity, over-fitting problems, arriving at local minima
and slow-convergence speed. Generalization performance is greatly improved in case of
Support Vector Machines (SVMs) but its major drawback lays in high algorithmic intricacy
and enormous memory necessities in comprehensive tasks [15]. Selection of Kernel is
another major limitation in SVMs [16]. Fuzzy based reliability analysis [17,18] is too
tedious to be formulated due to fuzzy rules and complex membership functions. Moreover,
fuzzy system involves large data requirements and expertise to develop [19].

The paper proposes Minimax Probability Machine Regression (MPMR), Emotional
Neural Network (ENN), Group Method of Data Handling (GMDH) and Adaptive Neuro-
Fuzzy Inference System (ANFIS) based reliability analysis as an alternative to the conven-
tional methods. MPMR is a type of regression model which by applying some bound (±ε)
on minimum probability (Ω), maximizes it for all the feasible distributions that comprise
the same mean and covariance matrix as the model data [20]. There have been consid-
erable researches applying MPMR in various fields [21–23]. ENN is developed from the
Emotional Back Propagation (EBP) learning algorithm and simulates emotional parameters
and emotional weights for improved learning and decision-making abilities. The use
of emotions in machine learning is being extensively researched in recent past [24–27].
GMDH is self-organizing type neural networks (NN) which has been found to be reliable
computational method to replace classical methods [28–30]. ANFIS has been applied in
various fields in literature [31–33], and in the current study its developed for pile bearing
capacity detection. Therefore, this study examines and compares MPMR, ENN, GMDH
and ANFIS in reliability analysis of pile bearing capacity as a new soft computing approach.

2. Details of Present Analysis

The bearing capacity of piles (Q) is the addition of soil friction (Qf) caused by the
perimeter area and bearing resistance (Qb) transferred by base area to the ground. Note
that, the bearing capacity of piles depends on the length (L) and diameter (D) of the pile,
and soil properties, such as cohesion (C), angle of internal friction (ϕ), and unit weight (γ)
of soils. For pure sand, i.e., for cohesionless soils, C = 0; and thus, the bearing capacity of
piles in pure sand is the function of L, D, ϕ, and γ only. On the other hand, L and D are
deterministic parameters which are irrelative in reliability analysis; and therefore, the effect
of ϕ, γ on output parameter (Q) can be expresses as follows [34]:

Q = Qb + Q f = qb × Ab ×+q f × A f (1)

For piles in sands:
qb = γ× D f × Nq (2)

q f = Ks × q0 × tanδ (3)
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Here, qb and Ab is the ultimate bearing capacity of the soil and the base area of the
pile respectively. Moreover, qf and Af denotes the ultimate friction resistance of the soil per
unit area and the perimeter of the pile respectively. Df is the embedded depth of the pile, δ
denotes angle of friction between the pile surface and the surrounding sand and q0 is the
average effective over-burden pressure acting along the embedded length of the pile [34].

q0 =
0 + γD f

2
=

γD f

2
(4)

FOSM approach is extremely powerful probabilistic method to deal with calculations.
Most effective application of FOSM is to state the uncertainties in form of reliability index.
FOSM uses first order Taylor series approximation to formulate performance functions [35].
If the resistance or load carrying capacity is ‘R’ and load effect is ‘Q’; Performance function
(Z) is given by [36]:

Z = f (R, Q) = R−Q


> 0 , Sa f e

= 0, Limit state
< 0, Failure

(5)

Steps to evaluate Reliability index [37,38]:
(1) State the basic variables (R, Q) in standard non-dimensional form:

u1 =
R− µR

σR
, and u2 =

Q− µQ

σQ
(6)

(2) Convert the limit state function related by reduced variables which represents a
straight line.

f (R, Q) = R−Q (7)

(3) The shortest distance to the f(R, Q) from the origin gives reliability index (β) (Figure 1).

β =
µR − µQ√

σ2
R + σ2

Q

(8)
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3. Theoretical Background of the Employed Models
3.1. Details of MPMR

MPMR is built improving minimax probability machine classification algorithm (MPMC).
It constructs regression function using Mercer Kernels and by putting a direct bound (±ε) on
minimum probability and maximizing it [20]. MPMR do not make assumptions respecting the
data distribution which leads to lack of validity and generality. The most striking feature of
MPMR is that it is able to provide low bound on probability such that the regression model
remains in a little required error of the regression function when the covariance and mean
matrix of data is known. MPMR algorithm is shown in Figure 2.
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Some unknown regression function g: Rn →R is used to generate the learning data
based on data set (ui,vi); i = 1,2....N. The relationship between ui and vi can be given by:

vi = }(u) + δ (9)

Here, δi represents the fitting error such that E[δ] = 0, Var[δ] = σδ
2.

The goal of MPMR is to come across a model in which the minimum probability is
maximized under the constraint of error ±ε.

v̂ = }̂(u) (10)

The bound on minimum probability (Ω) is defined as below:

Ω = infPr{|v̂− v| ≤ ε} (11)

Similar to the kernel formulation for minimax probability machine classification
(MPMC), MPMR formulation is represented as:

v̂ = }̂(u) =
N

∑
i=1

βiK(ui, u) + b (12)

Here, K(ui, u) = ϕ(ui), ϕ(u) is Mercer’s Kernel where ui, i = 1, 2 . . . N. denotes the
learning data whereas βi, b ∈ R represents output of the MPMR algorithm. Here, W is
weight and b is bias.



Processes 2021, 9, 486 5 of 18

3.2. Details of ENN

ENN is the evolved form of neural network based on emotions aimed at improving
the decision-making abilities and learning capacity. Although we don’t expect machines to
feel emotions and react emotionally, regulatory signals and information signals do travel
within them. Emotions can be simulated in machines similar to machine intelligence. It
makes the model more user-friendly, quick learning and prompt reacting. The proposed
model is rooted in Emotional Back Propagation (EBP) and simulates emotional parameters
(such as confidence, stress and anxiety) and emotional weights in emotional neurons. The
neural network possesses numerous hormone glands which emits virtual hormones and
which in turn affects the performance of the specific nodes of neural system [24].

ENN consists of three layers based on the flow of information e.g., input layer, hidden
layer and output layer (Figure 3) Input layer, hidden layer and output layer contains i, h
and j neurons respectively. Here, Xi and Xi and Yi denotes input and output values of i
neurons respectively such that Xi = Yi. Input and output values of hidden neurons for the
hidden layer are denoted by Xh and Yh respectively and are related by formula:

Yh = (
1

1− exp(−Xh)
) (13)
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Furthermore, input and output values of hidden neurons for the output layer are
denoted by Xj and Yj respectively and are related by formula:

Yj = (
1

1− exp
(
−Xj

) ) (14)

3.3. Details of GMDH

GMDH is a self-organizing feed-forward neural network algorithm which have capa-
bility of solving very complex non-linear problems having several inputs and one output
(Xi,yi) (=1,2, . . . .,M). Neuron layers define the GMDH model. In this algorithm, the ef-
fective input variables, the number of layers, neurons within the hidden layers and the
optimum model configuration are calculated automatically. Through quadratic polynomi-
als, each neuron layer has many data points connected to each other, and new neurons are
created in the process [39,40]. The general structure of the model is depicted in Figures 4
and 5 by Cai et al. [28]. Input parameters are entered in the first layer and some functions
are defined. Some parameters are selected and transferred to the next layer and some are
left out.
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The general form of the function in the first layer is given in Equation (13), and the
output can be expressed as follows:

ŷi = f (Xi1, Xi2, Xi3, . . . .Xin), (i = 1, 2, 3, . . . M) (15)

In this modelling, one of the fundamental steps is to obtain the parameters in Equation
(14), and the output of the proposed model can be formulated as:

y = a0 +
n

∑
i=1

aixi +
n

∑
i=1

n

∑
j=1

aijxixj +
n

∑
i=1

n

∑
j=1

n

∑
k=1

aijkxixjxk + . . . (16)

For detailed study about the modelling, refer [41].
In each layer, the computational functions are described with the help of neurons. In

order to choose parameters, the selection pressure criterion is defined in several layers. If
the built function has the desired conditions on the basis of the stated criteria (Equation
(15)), it is passed to the next layer or otherwise, left out. The criteria vary in the range [0, 1]
and can be calculated as follows:

ec = α× RMSEmin + (1− α)× RMSEmax (17)

Here, for minimum error, α is taken close to one and vice-versa.
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3.4. Details of ANFIS

A neuro-fuzzy technique called ANFIS is a data driven procedure and fusion of fuzzy
interface systems and neural networks [42]. In a neural network platform, the method gives
the solution to function approximation problems. A fuzzy inference method consisting
of an initial fuzzy model is initially generated here, based on the fuzzy rules derived
from the data set of the input output. The neural network is used in the next step to
fine-tune the rules of the initial fuzzy model that was constructed. The input-output
pairs defined are generated by using a collection of if-then fuzzy rules. Training phase in
ANFIS methodology is very rapid due to hybrid rule of learning. By applying an optimal
criterion for data collection, the number of training data used in ANFIS is significantly
decreased. Three layers of the neuro fuzzy network’s classic construction are: input layer;
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single hidden layer; and output layer. The input layer normalizes into the lattice structure,
while the hidden layer consists of basic functions and specifies their dimension, shape and
overlap. The output layer generates network output by summing up the basis function’s
weighted outputs [43]. If x and y are inputs and A and B are fuzzy sets, the ANFIS structure
is depicted in Figure 6. Output is Z = f (x, y). For more detailed study, refer [44].
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4. Details of Data Set

A single pile embedded in pure sandy soil (i.e., C = 0) of diameter 300 mm and length
12 m is taken to explore a new methodology for stability analysis of pile (Figure 7). The
data has been generated randomly in MATLAB using ‘randn’ command. Specifically, input
variables, i.e., ϕ and γ have been generated to estimate the values of output variable, Q.
For this purpose, the range of γ has been taken from 14 KN/m3 to 21 KN/m3 and that of
ϕ from 33◦ to 43◦ [29]. The descriptive statistics of the input and output parameters are
provided in Table 1 and histogram is presented in Figure 8. As can be seen, the ϕ content
mostly covers the range of 0 to 60% and the γ content covers the whole range of 0 and
100%, respectively. The range of output parameter, Q lies between 0 and 80%.
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Table 1. Descriptive statistics of input and output variables.

Particulars ϕ (KN/m3) γ (◦) Q (kN)

Mean 17.30 36.44 3416.24
Standard Error 0.22 0.25 62.05

Median 17.28 36.28 3375.33
Standard Deviation 1.95 2.24 554.99

Sample Variance 3.81 5.04 308,019.10
Kurtosis −1.16 0.07 −0.77

Skewness 0.03 0.59 0.31
Minimum 14.00 33.00 2547.35
Maximum 21.00 43.00 4766.35
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80 data sets were taken and divided into 2 sub-sets for the purpose of investigation.
(1) Testing (TS) dataset: 70% of dataset i.e., 56 was taken to construct the model.
(2) Training (TR) dataset: To validate the model performance, 30% of dataset i.e.,

24 was taken.
Following formula was used to normalize the data:

Xnorm =
Xact − Xmin
Xmax − Xmin

(18)

5. Models Accuracy Assessments
5.1. Statistical Parameters

To validate the accuracy of the models used, the widely used multiple statistical
approaches have been used which are listed below.

Weighted mean absolute percentage error (WMAPE).
WMAPE is a statistical measure of the accuracy of a simulation model. It is an

improvement over mean absolute percentage error where weighted errors are calculated

WMAPE =
∑n

i=1

∣∣∣ di−yi
di

∣∣∣× di

∑n
i=1 di

(19)

Nash–Sutcliffe efficiency (NS) [45].
NS is the ratio of residual error variance (noise) to measured variance in observed

data. NS values less than one are unacceptable. The ideal value of this index is 1. It’s an
important parameter recommended in literature by various scientists.

NS = 1− ∑n
i=1(di − yi)

2

∑n
i=1(di − dmean)

2 ; −∞ < NS ≤ 1 (20)

Root mean square error (RMSE).
RMSE is one of the most commonly used parameters for evaluating error. Its ideal

value is zero and a higher value indicates lower performance.

RMSE =

√
1
N

n

∑
i=1

(di − yi)
2 (21)

Variance account factor (VAF).
VAF is accounted for among original and predicted values of regression models.

Perfect models have a value of 100%.

VAF = (1− var(di − yi)

var(di)
)× 100 (22)

Coefficient of determination (R2).
R2 gives the proportion of the predicted values in agreement to the observed data.

R2 =
∑n

i=1(di − dmean)
2 −∑n

i=1(di − yi)
2

∑n
i=1(di − dmean)

2 (23)

Adjusted determination coefficient (Adj. R2).
Adj. R2 indicates how well a predictive model predicts the desired output based on

the number of input variables used to develop the model. The addition of an insignificant
input variable decreases the Adj. R2 value, while the addition of useful variable increase
its value.

AdjR2 = 1− (n− 1)
(n− P− 1)

(
1− R2

)
(24)
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Bias factor (BF).
Bias factor value of 1 means balanced prediction, a value greater than 1 means over

prediction, and a value less than 1 means under prediction.

BF =
1
N

n

∑
i=1

yi
di

(25)

RMSE to observation’s SD ratio (RSR).
RSR [46] is a model evaluation statistic which standardizes RMSE by dividing it with

standard deviation. It varies from the ideal value of 0 to large positive values. RSR > 0.7 is
desirable result.

RSR =
RMSE√

1
N ∑n

i=1(di − dmean)
2

(26)

Normalized mean bias error (NMBE) [47].
NMBE compute the correlation between predicted value and the mean value.

NMBE(%) =
1
N ∑n

i=1(yi − di)
1
N ∑n

i=1 di
× 100 (27)

The mean absolute percentage error (MAPE) [48].
MAPE relates the residual error for each data point regarding the observed value.

MAPE =
1
N

n

∑
i=1

∣∣∣∣di − yi
di

∣∣∣∣ (28)

Mean bias error (MBE).
MBE is a statistical parameter used to estimate whether the model is overestimated

(MBE greater than one) or underestimated (MBE less than one). Values close to zero
indicates perfect agreement, however, overestimated and underestimated values may
cancel out, which is a significant drawback of the parameter.

MBE =
1
N

n

∑
i=1

(yi − di) (29)

Willmott’s index of agreement (WI) [49].
It is a measure of the degree of model prediction error. It varies from 0 to 1, where 0

signifies the null model while 1 confirms perfect agreement.

WI = 1−
[

∑N
i=1(di − yi)

2

∑N
i=1(|yi − dmean|+ |di − dmean|)2

]
, 0 < WI ≤ 1 (30)

where di and yi = the observed and forecasted ith value, respectively; dmean = average of
observed value; SD is the standard deviation; n = number data samples; and p = model
input quantity.

Legate and McCabe’s index (LMI) [50].
For model evaluation purposes, LMI is superior to the R2 because it is more sensitive

to variations in observed and model-simulated means and variances. It may also be overly
sensitive due to squared differences of observed and predicted values. The ideal value of
the index is 1. Value of zero indicates that the observed mean 0 is as good a predictor as
the observed mean. Value of less than zero is undesirable.

LMI = 1−
[

∑N
i=1|di − yi|

∑N
i=1|di − dmean|

]
, 0 < LMI ≤ 1 (31)

t-statistic (t-stat) [51].
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It was proposed by Stone [51] to be used along with MBE and RMSE to determine
if predicted values agree with measured values. t-statistic relates sample mean(s) to
the null hypothesis. This parameter inspects predictions of the model at some specific
confidence level.

t− stat =

√
(N − 1)MBE2

RMSE2 −MBE2 (32)

5.2. Taylor Diagram

Taylor diagrams [52] are simple graphical representation of how the predicted values
of are in correspondence with the observed values and compares the performance of
various models used for simulation. It presents statistical comparison of various models in
a 2-D graph by plotting standard deviations, correlation coefficient and centered root-mean-
square difference (RMS). Standard deviation is denoted by the radial distance from the
origin. The RMS error is relational to the distance between observed and simulated fields
assessed in the identical units to standard deviation. Correlation coefficient is represented
by the azimuthal angle.

5.3. REC Curve

Regression Error Characteristic (REC) curve [53,54] gives the graph of error tolerance
versus percentage of points that are predicted within the tolerance. The x-axis and the
y-axis represent the error tolerance and the accuracy of a regression function respectively.
The area over the REC curve (AOC) gives the approximation of the expected error. Lesser
the AOC, better is the performance of the models. Thus, ROC curves allow easy and
reliable visual estimate of the performance of the models.

5.4. AD Test and M-W Test

To test the normal probability distribution of the datasets, Anderson–Darling (AD) test
is carried out. If the p-value is within level of significance (≤0.05), the model is conformed
to follow Normal distribution. Mann–Whitney U (M–W) test is carried out to examine
the homogeneity in the outcomes of different independent models. The nonparamet-
ric test is used to determine whether two independent samples have same distribution.
p value > 0.05 rejects null hypothesis.

5.5. Rank Analysis

Rank analysis is the easiest and most popular method to conclude the effectiveness
of the simulation models and compare their robustness. In this process, the score value is
given to the probabilistic parameters, using their ideal values as the benchmark. It depends
on the number of models used. The best model results get the highest score and vice versa.
Two models with the same results may get the same ranking ratings. A model’s overall rank
score is determined by summing up the rank scores in all phases (testing and training).

6. Results and Discussion

MATLAB have been used to construct the program of MPMR, ENN, GMDH and
ANFIS. The REC curves, Taylor diagrams are drawn in R-studio. The analysis of M-W test
and AD test also is done in R-studio. Figures 9–12 shows the performance of the ENN,
MPMR, GMDH and ANFIS model respectively. The value of R for all the models in the
both training and testing phases is very close to one, so both the models are robust for
predicting the strength of the piles embedded in sandy soil.

The training dataset was used to construct the ENN model, while the testing dataset
was used to validate the developed ENN model. The developed ENN model attained
99.9% prediction accuracy in terms of R2 in both phases (R2 = 0.999).
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In MPMR modelling, a trial-and-error approach was followed to compute the design
values of σ and ε. The design values of ε and σ were obtained as 0.004 and 1, respectively.
The obtained results show that the developed MPMR model almost 100% accuracy in both
phases (training R2 = 0.99 and testing R2 = 0.99). The values of RMSE also support the
same for the training dataset (RMSE = 0.32), however, a slight deviation was observed in
the testing phase (RMSE = 8.29).

The GMDH model is trained with various sets of the number of neurons and number
of layers and the best combination, giving the best value of R2 is taken. For the optimal
model, the number of neurons was 20 and the number of layers was 10. The developed
GMDH model attained the prediction accuracy R2 = 1 in both phases. The values of RMSE
in the training and phases are obtained as 0.60 and 2.13, respectively.

In ANFIS modelling, the design value of the number of epochs is 3 and the type of
membership function used was Sugeno for each input and linear for each output. In the
developed model, “and method” is prod and “or method” is probor. In the training phase,
the developed ANFIS model attained 100% prediction accuracy with R2 = 1 and RMSE = 0
while a slight deviation was observed in the testing phase (RMSE = 2.13).

Table 2 represents the performance of ENN, MPMR, GMDH and ANFIS models. Com-
paring the results of the performance parameters with their ideal values, it is ascertained
that all the developed models are very reliable for the prediction of the bearing capacity of
the piles. However, RMSE value is poorest for ENN in the testing phase (31.24) and best for
ANFIS in the training phase (0). RMSE value for both ANFIS and GMDH in testing phase
is 2.13, which is slightly better than MPMR (RMSE = 8.29). To compare the performance of
the different developed models, we undertake rank analysis (Table 3). The results conclude
that the ANFIS is the best performing model followed by GMDH, MPMR and ENN. The
ENN’s performance in both testing and training phases is worst among the developed
models. The heat map of the rank analysis presents simple understanding of comparison
of performance of the developed models.

Regression Error Characteristic (REC) curve for both the models, drawn using MAT-
LAB is given in Figures 13–15 represents the area over the REC curve (AOC) values of
both the models for both the phases. Values of AOC enumerate the expected error of the
regression models. Better models have lower values. The AOC values are quite analogous
to each other for both the models. All the models give excellent AOC values and so all the
models are robust models for prediction. Comparing the models, ENN’s reliability is worst
compared to companion models. ANFIS in training phase possess least value of AOC.

For all the models in M-W test, in both testing and training; we are getting p value
close to one (Table 3). Thus, all the models are confirmed to follow Normal distribution.
For AD test, we get p values close to one, thus null-hypothesis is rejected (Table 4).
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Reliability indices are calculated as per Equations (5)–(8) using the predicted outputs
for all the models and compared with the reliability index calculated from observed outputs
calculated using Equation (1). Reliability index values of both the models (Figure 16) are
very close to the observed value. Hence, both the models are reliable to be used for the
reliability analysis of pile foundation.

Table 2. Comparison between the developed models.

Indices ENN
(TR)

ENN
(TS)

MPMR
(TR)

MPMR
(TS)

GMDH
(TR)

GMDH
(TS)

ANFIS
(TR)

ANFIS
(TS)

Ideal
Value

WMAPE 0.005 0.006 0 0.001 0 0 0 0 0
NS 0.999 0.999 0.999 0.999 1 1 1 1 1

RMSE 2.03 31.24 0.32 8.29 0.6 2.13 0 2.13 0
VAF 99.94 99.92 99.99 99.99 99.99 99.99 99.95 99.99 100
R2 0.999 0.999 0.999 0.999 1 1 1 1 1

Adj. R2 0.999 0.999 0.999 0.999 0.999 0.999 1 0.999 1
BF 1.0 1.0 1.0 0.999 0.999 0.999 1 0.999 1

RSR 0 0.01 0 0.002 0 0 0 0 0
NMBE 0.05 0.16 0 0.025 0 0.012 0 0 0
MAPE 0 0 0 0 0 0 0 0 0
MBE 0.57 −6.9 0.036 1.09 0 0.53 0 0.53 0
LMI 0.99 0.955 0.998 0.998 0.999 0.999 1 0.999 1
t-stat 0.09 1.09 0.039 0.64 0.034 1.25 0 1.25 0
WI 0.999 0.9996 0.999 0.999 0.999 1 1 1 1

Table 3. Rank analysis of the developed models.

S.No. Parameters
ENN MPMR GMDH ANFIS

TR TS TR TS TR TS TR TS

1 WMAPE 1 1 2 2 2 3 2 3
2 NS 3 3 1 1 1 1 1 1
3 RMSE 1 1 3 2 2 3 4 3
4 VAF 1 1 3 2 3 2 2 2
5 R2 1 1 1 1 3 3 3 3
6 Adj. R2 1 1 1 1 1 1 4 1
7 BF 1 1 1 2 4 2 1 2
8 RSR 1 4 1 3 1 1 1 1
9 NMBE 1 1 2 2 2 3 2 4
10 MAPE 1 1 1 1 1 1 1 1
11 WI 1 1 2 2 3 3 3 3
12 MBE 1 1 2 2 3 3 4 3
13 LMI 4 2 3 1 2 3 1 3
14 t-stat 1 2 1 1 1 3 4 3

Total rank 19 21 24 23 29 32 33 33

Finial rank 40 47 61 66

Table 4. M-W statistics for all the models.

Models Phase M-W Test
U Value

M-W Test
p Value

AD Test
U Value

AD Test
p Value

ENN Testing 1570 0.99 0.04 1
Training 1559 0.96 0.05 1

MPMR Testing 1559 0.96 0.04 1
Training 1570 0.99 0.04 1

ANFIS Testing 1564 0.98 0.28 1
Training 1564 0.98 0.28 1

GMDH Testing 1568 1.00 0.04 1
Training 1568 1.00 0.04 1
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7. Conclusions

The paper demonstrates the application of four machine learning algorithms (ENN,
MPMR, GMDH and ANFIS) in the reliability analysis of pile foundation embedded in
a cohesionless soil. Input parameters are Φ and γ and its effect on output parameter Q
has been studied. The soil data has been divided into training (70% of the main dataset)
and testing (30% of the main dataset) phases. Various statistical performance parameters
have been applied and their results been discussed to ascertain the performance of both
the models. The performance of both the models in both the phases has been found to
be excellent and on par with each other. The predicted values of β are very close to the
observed value; however, that of MPMR, GMDH and ANFIS are better than ENN. ANFIS
is concluded to be most reliable model for prediction of bearing capacity of pile foundation.
The REC curve was plotted, and the AOC values were excellent. The reliability index
values of all the models are very close to that of traditional method. Thus, the paper
proposes that both the models are robust models for prediction, however, compared to
each other, ANFIS is the best and ENN is the poorest.

It is needless to mention that the outcome of a predictive model using randomly gen-
erated datasets may differ from case to case; however, a randomly generated dataset with a
predefined range of maximum and minimum values can be quite useful for computational
modelling. The models developed in the present study can be used to predict the bearing
capacity and its corresponding reliability index for the piles with 450 mm diameter installed
in a cohesionless soil medium with a specified range of ϕ (from 33◦ to 43◦) and γ (from
14 KN/m3 to 21 KN/m3). Nevertheless, this study may also consider as a reference due to
the fact that the nature of soil varies from place to place, and hence may not applicable for
those soils which are originated from a completely different environment. In such cases, the
concept presented in this study can be considered as a reference to perform the reliability
analysis of pile foundations in cohesionless soils.
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