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Abstract: Process, manufacturing, and service industries currently face a large number of non-trivial
challenges ranging from product conception, going through design, development, commercialization,
and delivering in a customized market’s environment. Thus, industries can benefit by integrating
new technologies in their day-by-day tasks gaining profitability. This work presents a model for
enterprise process development activities called the wide intelligent management architecture model
to integrate new technologies for services, processes, and manufacturing companies who strive to
find the most efficient way towards enterprise and process intelligence. The model comprises and
structures three critical systems: process system, knowledge system, and transactional system. As a
result, analytical tools belonging to process activities and transactional data system are guided by a
systematic development framework consolidated with formal knowledge models. Thus, the model
improves the interaction among processes lifecycle, analytical models, transactional system, and
knowledge. Finally, a case study is presented where an acrylic fiber production plant applies the
proposed model, demonstrating how the three models described in the methodology work together
to reach the desired technology application life cycle assessment systematically. Results allow
us to conclude that the interaction between the semantics of formal knowledge models and the
processes-transactional system development framework facilitates and simplifies new technology
implementation along with enterprise development activities.

Keywords: enterprise process architecture; new technologies integration; process intelligence

1. Introduction

Our civilization faces acute and critical challenges, such as climate change, safe drink-
ing water availability, food scarcity, and secure energy supplies, which endanger current
and future generations. Therefore, society and industry need to shape their activities based
on sustainable principles and to efficiently adopt the rapidly evolving new technologies
which can potentially handle the challenges mentioned above. Precisely, this work focuses
on the integration of new technologies in the decision-making of process and manufactur-
ing industries. Thus, the proposed methodology applies to the workflow of any productive
sector or area where decision-making plays a crucial role.

As for the process and manufacturing industries, complex decision-making lurks at
all enterprise levels and the whole product lifecycle, ranging from product conception,
design, development, production, commercialization, and delivery. The need to consider
highly complex scenarios results in involved and non-trivial decision-making. However,
the advent of new technologies supports the successful development and systematization

Processes 2021, 9, 600. https://doi.org/10.3390/pr9040600 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-6930-4841
https://orcid.org/0000-0002-4469-7845
https://orcid.org/0000-0001-6418-5292
https://orcid.org/0000-0001-6133-4029
https://doi.org/10.3390/pr9040600
https://doi.org/10.3390/pr9040600
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9040600
https://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/9/4/600?type=check_update&version=1


Processes 2021, 9, 600 2 of 25

of new structures and frameworks for reaching informed, reasonable, and wise decisions.
Therefore, this work aims to integrate new technologies systematically in the decision-
making workflow of the process and manufacturing industries. Therefore, this work
presents a framework for developing process and product-related activities. Thus, the pro-
posed model allows to unveiling the most efficient way towards integrating enterprise
decision support systems and process intelligence into actual enterprise processes.

As discussed in Section 1.1 Decision making in the enterprise, companies have recently
adopted decision support systems to handle the complexity of decision-making. However,
such systems only tackle part of the complete enterprise structure, and it is necessary to un-
derstand the whole picture to reach sensible solutions, as pointed out in Section 1.2 Enterprise
Integration. Therefore, this work combines Knowledge management (Section 1.3) and Data
management (Section 1.4) to propose a framework for reaching integration of different
systems and efficiently apply new technological solutions for decision-making.

1.1. Decision-Making in the Enterprise

Process and manufacturing industries can be regarded as highly involved systems
consisting of multiple business and process units. The organization of the different temporal
and geographical scales in such units, as well as the other enterprise decision levels, is
crucial to understand and analyze their behavior. The key objectives are to gain economic
efficiency, market position, product quality, flexibility, or reliability [1]. Recently, indicators
related to sustainability and environmental impact have also been included as drivers
for decision-making. The basis for solving an enterprise system problem and further
implement any action is the actual system representation in a model, which captures the
observer’s relevant features. Such a model is the basis for decision-making, which is a
highly challenging task in these industries due to their inherent complexity.

Therefore, companies have devoted efforts to reach better decisions during the last
decades. Indeed, they have invested a large number of resources in exploiting information
systems, developing models, and using data to improve decisions. Decision support
systems (DSS) are responsible for managing the necessary data and information that
allow making decisions. Thus, those systems aim to integrate data transactions with
analytical models supporting the decision-making activity at different organizational levels.
The work in [2] defines DSS as aiding computer systems at the management level of an
organization that combines data with advanced analytical models. The work in [3] presents
four components for supporting classic DSS. The components comprise (i) a sophisticated
database for accessing internal and external data, (ii) an analytical model system for
accessing modeling functions, (iii) a graphical user interface for allowing the interaction
of humans and the models to make decisions, and (iv) an optimization-engine based
on mathematic algorithms or intuition/knowledge. Traditionally, DSS focus on a single
enterprise unit and lack the vision of the boundaries. Thus, DSS rely heavily on rigid
data and model structures, and they are difficult to adapt to include new algorithms and
technologies.

1.2. Enterprise Integration

Current trends in the process industry outline the importance of being agile and fully
integrated to improve decision-making at all scales in the company. Indeed, integration
comprises the whole organizational activities from operation to planning and strategic,
which differ in physical and temporal scope, but are directly related to each other as deci-
sions made at one level directly affect others. Therefore, companies pursuing integration
among different decision levels in the production management environment report sub-
stantial economic benefits [4,5]. Therefore, to coordinate and integrate information and
decisions among the various functions are crucial for improving global performance.

The use of Standards is the primary conducted method for enterprise integration labor.
Groups, commities, and societies have developed those standards in different geopolitical
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areas where they are of application. Next, the use of some standards serves as well as a
brief introduction of their content.

First, the European Committee for Standardization (CEN) and the European Com-
mittee for Electrotechnical Standardization (CENELEC) provide standards to characterize,
guide, and rule SMEs’ activities [6]. CEN standards comprise European Standards (E.N.s),
drafts standards (prENs), Technical Specifications (CEN TSs), sDocuments (HDs), Technical
Specifications (TSs), Technical Reports (TRs), and CEN Workshop Agreements (CWAs).
Finally, CEN work is coordinate with the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC).

Next, the National Institute of Standards and Technology (NIST) creates the Integrated
Definition Methods (IDEF). IDEF comprises a standard fir function modeling (IDEF 0),
Information Modelling (IDEF 1), Data Modelling (IDEF 1X), Process Modelling (IDEF 3),
Object-Oriented Design (IDEF 4), and Ontology Description (IDEF 5) currently maintained
by the Knowledge-Based Systems, INC. (KBSI) [7]. The standards were funding and
are now in use by the United States Air Force and United States Department of Defense
agencies. Moreover, many organizations for business process capturing and improvement.

Following, the International Electrotechnical Commission (IEC) develops the Inter-
national Standards and Conformity Assessment covering areas such as industrial control
programming standards (IEC 61131-3) or field devise integration (IEC 61804-2). The stan-
dards aim at allowing interoperability, efficiency, the safety of electrical, electronic, and
information systems [8].

The International Organization for Standardization (ISO) standards are well-known
and widely used standards, covering management systems, quality management, informa-
tion security management, etc. [9]. Thus, criteria for integration comprises the Enterprise
Modeling and Architecture (ISO TEC184 SC5 WG1), Electronic Business Extensible Markup
Language (ISO 15000), and the Asset Management System (ISO 55003), among others.

Manufacturing Execution Systems Association (MESA) presents a set of best manage-
ment practices and information technology aiming to improve business. MESA focuses
on asset performance management, lean manufacturing, product lifecycle management,
manufacturing performance metrics, quality, regulatory compliance, and return to invest-
ment [10].

Next, Machinery Information Management Open Systems Alliance (MIMOSA) as-
sociation presents the Open Standards for Physical Asset management for information
management (I.M.), and information technologies (I.T.) applied to manufacturing envi-
ronments [11]. MIMOSA standards recently focus on enabling digital twins, big data,
industrial internet of things, and analytics specifications.

The Object Management Group (OMG) is dedicated to developing technological stan-
dards for enterprise integration and distributed broad-interoperability [12]. The OMG
comprises the following standards: Business Process Model and Notation (BPMN), Com-
mon Object Request Broker Architecture (CORBA), Common Warehouse Metamodel
(CWM), Data-Distribution Service for Real-Time Systems (DDS), Unified Modeling Lan-
guage (UML), and the Model Driving Architecture (MDA) applied to software visual
design, execution, and support.

Next, the Process Industry Practices (PIP) consortium collaborates to define common
industry standards and best practices focused on design, maintenance, and procurement
activities [13]. Besides, PIP practices facilitate knowledge capturing of process control,
mechanical, data management, and Piping and Instrumentation Diagrams.

A key element of integration directly points to enterprise models: computational appli-
cations within organizations aiming to represent processes, activities, resources, or physical
phenomena. These models are essential for driving design, analysis, management, and prog-
nosis in enterprise functions. Nevertheless, the spread of these models confronts several
issues in practice. First of all, the independent creation of systems supporting functions
at the enterprise during past years, resulting in heterogeneous enterprise models; that is,
the so-called correspondence problem. Different enterprise models refer to the same con-
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cept, for example, an activity, each model will probably apply other names, following the
example activity, operation, or task. Therefore, most of the time, interpreting agents are
necessary to allow communication among those enterprise functions. However, no matter
how rational the idea of renaming the concepts is, organizational barriers usually impede
it. Furthermore, these representations lack an adequate specification of what the model
objects mean; they lack the terminology’s actual semantic definition. Instead, concepts are
poorly defined, and their interpretations overlap, leading to inconsistent understandings
and uses of the knowledge. Finally, the cost of designing, building, and maintaining a
model of the enterprise is high. Each model tends to be unique to the enterprise, and objects
are enterprise-specific.

Therefore, some efforts have addressed the issues mentioned above using model
standardization. On the other hand, the American National Standards Institute (ANSI),
developed the Instrumentation, Systems and Automation Society (ISA) standards, known
as ANSI/ISA standards for automation and control within the enterprise [14] with wide
recognition for process integration. Figure 1 presents the main integration aspects of these
standards.

Figure 1. Instrumentation, Systems and Automation Society ISA-95 integration of information
schema.

On the other hand, the Purdue reference model provides an “environment” for dis-
crete parts manufacturing and stands for the basis for the other models [15]. In this case,
certain activities are identified as directly related to shop floor production and organized
in a six-level hierarchical model as depicted in Figure 2. Specific applications may require
more or fewer than six levels, but six was deemed sufficient for identifying where integra-
tion standards are needed. The following list shows the name of each level and gives its
primary responsibility.

• Level 6 Enterprise: Corporate Management (External Influences)
• Level 5 Facility: Planning Production
• Level 4 Section: Material/Resource Supervision
• Level 3 Cell: Coordinate Multiple Machines
• Level 2 Station: Command Machine Sequences
• Level 1 Equipment: Activate Sequences of Motion (Plant Machinery and Equipment)
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Figure 2. The Purdue Enterprise Reference Architecture (PERA).

These activities apply to manual operations, automated operations, or a mixture of
the two at any level. It is worth mentioning the accessible subdivision of the six tasks into
control enforcement, systems coordination and reporting, and reliability assurance. In the
context of any large industrial plant or an entire industrial company based on one location,
the tasks would take place at each level of the hierarchy.

Thus, the Common Information Model (CIM) reference model stands for a reference for
computer-integrated manufacturing. It consists of a detailed collection of generic informa-
tion management and automatic control tasks and their necessary functional requirements
for a manufacturing plant. Nevertheless, the CIM reference model scope is limited to
the integrated information management and automation system elements. As a result,
the company’s management, including planning function, financial, purchasing, research,
development, engineering, and marketing and sales are all treated as external influences.

The adoption of standard models is the basis for the integration of enterprise processes.
Thus, decision-making heavily relies on both the process models and the technologies
which tackle the problem. Therefore, this work considers the systematization of data and
knowledge management to reach integration in decision-making.

1.3. Knowledge Management

The development of better practices, strategies, and policies is highly related to
how organizations use experiences and ideas from customers, suppliers, and employees.
Thus, capturing, storing, sharing, and applying knowledge enables the construction of
organization intelligence and intellectual assets. Two types of knowledge sources can be
generally defined: tangible and intangible. On the one hand, intangible assets are related
to skills, expertise, and human resources knowledge. On the other hand, tangible assets are
related to data, information, historical records found on databases of customers, suppliers,
and employees of the organization [16].

The bases of knowledge management tools can include distributed databases, ontologies,
or network maps. This work focuses on formal domain ontologies development as the
primary technology for knowledge management. Besides, the use of terms Semantic Web or
Web 3.0 can be used to refer to this technology. Ontologies and logic serve as conceptual
graphs for knowledge representation in constructing computable models within a specific
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domain [17]. Additionally, ontologies are defined as formal structures facilitating acquiring,
maintaining, accessing, sharing, and reusing information [18,19]. Over the last decades,
the Semantic Web pursued theoretical bases for developing knowledge-based applications
software: One can communicate

• a shared and common understanding of a domain among people and across applica-
tion systems and

• an explicit conceptualization that describes the semantics of the data.

Finally, knowledge management systems benefit from ontologies that semantically
enrich information and precisely define the meaning of various information artifacts.

1.3.1. Bloom’s Cognition Taxonomy

Bloom’s Taxonomy is a framework that presents how educational objectives can guide
and structure educational goals. This framework’s latest work is entitled A Taxonomy for
Teaching, Learning, and Assessment defining the cognitive processes related to knowledge [20],
shown in Figure 3. The framework considers six major categories, with subactivities for
better understanding, as follows:

• Remember: Recognizing, Recalling.
• Understand: Interpreting, Exemplifying, Classifying, Summarizing, Inferring, Com-

paring, Explaining.
• Apply: Executing, Implementing.
• Analyze: Differentiating, Organizing, Attributing.
• Evaluate: Checking, Critiquing.
• Create: Generating, Planning, Producing.

Figure 3. Bloom’s taxonomy by Vanderbilt University Center for Teaching.

Finally, the framework defines four types of knowledge used in cognition:

• Factual Knowledge
Knowledge of terminology
Knowledge of specific details & elements

• Conceptual Knowledge
Knowledge of classifications and categories
Knowledge of principles and generalizations
Knowledge of theories, models, and structures

• Procedural Knowledge
Knowledge of subject-specific skills and algorithms
Knowledge of subject-specific techniques and methods
Knowledge of criteria for determining when to use appropriate procedures
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• Metacognitive Knowledge
Strategic Knowledge
Knowledge about cognitive tasks (appropriate contextual and conditional knowledge)
Self-knowledge

1.4. Transactional System and Data Management

The performance of enterprise processing activities highly depends on the transac-
tional system’s capacity and how well the data is managing.

1.4.1. Transactional System

A transactional system comprises multiple operations that collect, store, modify,
and retrieve data transactions within an enterprise. These systems must support a high
number of concurrent users and transaction types along the time. Besides, enterprise
data are identified by their purpose and type, comprising transactional, analytical, and
master data. First, transactional data support the daily operations of an organization.
Transactional data refer to data created or modified by the operational systems, such as
time, place, number, date, price, payment methods, etc. Next, define analytical data as
numerical measurements that support activities, such as decision-making, reporting, query,
or analysis. Thus, analytical data are stored and structured as numerical values in some
dimensional models. Finally, master data represent the key business entities, involving
creating a single view of the data in a master file or master record. Master data comprise
data about sites, inventory, levels, demand, products, batches, etc.

1.4.2. Data Management

Enterprise data management aims to govern business data by retrieving, standardiz-
ing, storing, integrating, structuring, and disseminating requested data. The transactional
system supports data management by enhancing data transaction features for control,
analysis, and decision-making. Thus, data management’s essential feature comprises com-
municating all data from different data sources (sensors) and fragmented control systems
with all enterprise applications, processes, and entities that require it. Another critical
aspect of data management is to store and make data available when needed securely.

2. Materials and Methods

New technologies can accomplish their implementation life cycle with a robust base
supported by the proposed architecture, named Wide Intelligence Management Architec-
ture. This presented architecture offers three central systems comprising development
activities: process, knowledge, and transactional systems, shown in Table 1. First, the process
system model introduces seven development activities systematically ordered towards a
formalized process maturity process. Thus, the activities range from process definition.
The main aspects of how enterprise processes perform are process intelligence, where hu-
man and environmental behavior is taken into account to enrich development activities.
Next, the knowledge system model aims to strengthen the integration by formalized
knowledge from three main perspectives: the domain area, the expertise area (functional
activities), and the experience area, enhancing expertise knowledge with success and fail-
ure cases. Finally, the third model is related to the transactional data system. This model
comprises four main areas: data definition, data improvement, data standardization,
and data feeding.
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Table 1. Overall Intelligence Management Architecture for technology integration through process activities.

Process Model Knowledge Model Transactional Model
L1 Process Definition Conceptual Definition

Current process matter Chemical principles
Physics principles
Mechanics principles

Data definition
Data collection

L2 Improvement Improvement
Benchmarking Good manufacturing practices

Standard operational procedures
Data refining
Database

L3 Standardization Standardization
Tear levels definition
world-class process

Process standards
Quality standards
Data standards
Security standards

Data metrics
Data language
Structured data

L4 Optimization Procedural Integration & Feeding
Better performance
Key process variables
Key process parameters

Analytic algorithms knowledge
Analytical methods knowledge

Data to parameters
Data to sets
Planning systems

L5 Automation Expertise
Fixed parameters
Fixed variables
Key indicators
Set values ranges

Good & bad habits algorithms Fixed data collection
Fixed data structuring

L6 Digitalization
Virtual twin processes
New process scenarios

Knowledge-based scenarios Virtual feeding

L7 Intelligence Metacognitive Dynamics
Problem characterization
Problem classification
Intelligent systems
Intelligent agents
Autonomous decision-making

Model knowledge characterization
Model knowledge classification
Knowledge reasoning
Knowledge creation

Automated data collection
Automated data structuring
Intelligent database

2.1. Process System Model

The Modular Process Reference Model aims to define a coherent and structured man-
ner of process evolution to integrate new technologies and business activities. The reference
model comprises seven modules defined by the use of analytical tools and data linked to
enterprise activities, represented in Figure 4.

Figure 4. Maturity echelons of the process system model.
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2.1.1. Process Definition

This module provides a set of activities aiming to assess enterprise processes perfor-
mance and to support systematic formalization. On the one hand, this module verifies
“if” and measures “how much”, existing formalized process follows the current enterprise
activities, named as verification phase. Otherwise, this methodology aims to define, design,
and standardize enterprise processes, called a definition phase. Thus, a process design
phase takes place, considering the followed validation and verification phases. The steps
mentioned above (verification and definition) must apply to the enterprise transactional
system parallel with the processes.

2.1.2. Process Improvement

The process improvement module makes an exhaustive study of current processes to
perform a re-design phase. This re-design phase considers new tendencies on standards,
methods, and technologies. Moreover, good manufacturing practices (GMPs) and stan-
dard operating procedures (SOPs) are of paramount importance in the improvement task.
Moreover, at the same time, a transactional data system must pass through a re-design
phase to support the process improvements realized. Finally, updates and documen-
tation regarding enterprise processes, resources, and data improvements must follow
(Focus on management).

2.1.3. Process Standardization

This module performs research over standards and models strongly related to main
enterprise processes to consider future implementation. Finally, as exposed in the previous
module, data and structures from the transactional system are correctly standardized.

2.1.4. Process Optimization

The process optimization module comprises processes by using different rigorous
and non-rigorous method approaches for optimization. The process optimization phase
aims to provide necessary data and information due to fundamental calculations based on
engineering approaches to decide on specific objectives and goals within processes. Thus,
as the first step, knowledge, data, and information on processes and systems are crucial
to understanding the problem. The development of model design occurs by defining
an objective or multi-objective function, a single or multiple purposes, and single or
multiple scenarios as a convenience. Finally, WIMa’s optimization solutions are enriched
by semantics, mathematical, and process semantics model, allowing easier integration
within the enterprise.

2.1.5. Process Automation

The process automation module comprises applications such as business process
automation (BPA), digital automation (DA), and robotic process automation (RPA). First,
BPA makes use of advanced technologies to reduce human intervention in processing
tasks across the enterprise. Thus, BPA aims to enhance efficiency by automating (initialize,
execute, and complete) the whole or some parts of a complicated process. Next, DA takes
the BPA system, aiming to digitalize and improve processes automation, thus meeting
the market dynamics customer environment. Finally, software agents carry out RPA,
thus pointing to mimic human actions within digital systems to optimize business processes
by using artificial intelligence agents.

2.1.6. Process Digitalization

The digitalization module creates a digital integration of all the systems found in
business processes. Digitalization encompasses process simulation, industrial augmented
reality, predictive systems, proactive systems, industrial internet of things, expert sys-
tems, and process virtual twins. Finally, WiiMa’s solutions facilitate the digitalization
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technologies development due to the semantic structure that supports easy access to raw
or structured data and processes’ formal knowledge.

2.1.7. Process Intelligence

This module aims to understand human behavior principles by reasoning for de-
veloping programs for problem solutions by machines, using artificially intelligent tools,
computational intelligence systems, and formal knowledge models. One of the first tasks
is to manage structured knowledge, which can facilitate and empower the system’s un-
derstanding. Furthermore, this module is directly affected by the transactional system’s
efficiency, which considers the collection, structuring, and data communication.

2.2. Data System Model

The transactional system architecture set up data management activity. We have de-
scribed data management comprising five main activities: data system definition, data sys-
tem improvement, data standardization, data integration and feeding, and data system
dynamics, as shown in Figure 5.

Figure 5. Maturity echelons of the data system model.

2.2.1. Definition

This activity takes into account the process definition (link) to create the data model.
The data model establishes the relationship between the process model and the data gen-
erated by signals sources, such as process equipment, environment sensors, suppliers,
or customers. Even more, transaction data protocols are defined, and the supported physi-
cal architecture must be capable of carrying those protocols. Finally, the data management
plan is set, providing guidelines and procedures for enhancing security, compliance, quality,
efficiency, and access.

2.2.2. Improvement

The data improvement activity refines the relationship between data signals and
process models, and explains missing and necessary data. The data system requirements
reside in process improvement activity. One can then calculate required data by making
analytical computations, adding new technologies, or adding other sensors.

2.2.3. Standardization

The data standardization activity is the process of setting data systems into standard
formats. It comprises the selection of common data language, structure, engineering met-
rics, and time/space Scales. Besides, data conciliation is a crucial task of data integration.
Finally, the four language categories data structure comprises data definition language,
data query language, data manipulation language, and transaction control language,
in compliance with a processes database system.
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2.2.4. Integration and Feeding

Data integration and feeding aim to link and integrate the transactional system and
analytical systems or models. On the one hand, integration connects data among devices
with analytical models, devices with devices, and analytical models with analytical models.
On the other hand, data feeding is in charge to structure, send, and deliver data. Thus,
integration and feeding tasks focus on support optimization based on decision-making and
process action execution that maximize the business’s benefit. Besides, material resource
planning, distribution requirement planning, or enterprise resource planning systems,
as part of the analytical procedure, are setting up if required. As a result, the definition
of data-to-parameters and data-to-sets is established, required by transactional models.
Finally, at some point, this task considers the feed and integration of virtual systems.

2.2.5. Dynamics

The data system model’s last task replaces fixed data parameters and selected data
sets by a mechanism for data collecting and structuring. Usually, these mechanisms refer
to algorithms, which can become intelligent agents. Finally, the dynamics can enhance
the database system, reaching intelligent databases. Intelligent databases are in constant
change adapting to the dynamics of process systems and other business features.

2.3. Knowledge System Model

The knowledge system model organizes how the cognition process evolves, focusing
on knowledge management. This cognition process integrates and adapts Bloom’s taxon-
omy types of knowledge (Section 1.3.1) and ontologies, applied to computational systems.
Thus, the resulting model comprises four main modules: conceptual, procedural, expertise,
and metacognitive, as shown in Figure 6. Finally, the knowledge model system acts as an
integrator between the process and data system models.

Figure 6. Maturity echelons of the knowledge system model.

2.3.1. Conceptual

The conceptual knowledge aims to develop a formal domain ontology. The on-
tology considers domain terminology, elements, categories, principles, and generaliza-
tions, which can consider chemical, physics, and mechanics phenomena. All those do-
main information is retrieved from standards, books, handbooks, etc., derived from
Sections 2.1.1 and 2.2.1. Additionally, information gathering can consider good manufac-
turing practices and standard operating procedures derived from Section 2.1.2. Thus,
the ontology models those elements in the form of classes (elements involved in the domain
area), data-properties (data from specifications and sensors), classes-properties (the relation
among elements), axioms (assumptions on behavior), and rules (restrictions on behavior).
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2.3.2. Procedural

Procedural knowledge focuses on the interaction that processes and humans have
through analytical methods and tools, usually from procedural models, to perform the
processing activity. Thus, the primary sources of information are techniques, methods,
theories, models, structures, and procedural recipes (general, site, master, and control
recipes). Besides, previous knowledge is stored and well identified within the data system.
Finally, procedures, analytical models, and analytical tools translate to computational
algorithms for the reasoning task.

2.3.3. Expertise

Knowledge expertise aims to collect and manage the criteria that determine the best
use of analytics or procedures. This criterion is based on learning on good habits and how
to replicate them. Besides, it is built on learning over bad habits and how to avoid them.
Finally, expertise knowledge considers creating multiple scenarios to account for the power
of knowledge about relations and behavior in the domain based on the conceptual and
procedural knowledge activities.

2.3.4. Metacognitive

Metacognitive knowledge aims to go beyond current understanding. The current
knowledge system is the one in charge of this metacognitive process. The metacognitive’s
main comprises the characterization, classification, reasoning, and creation of knowledge
to enhance and reach process intelligence.

Finally, Figure 7 represents the interaction among three system models. Thus, the pro-
cess system model drives the diagonal’s general maturing process, reaching from process
definition to process intelligence. Next, the X-axis represents how the data system model
supports the process and matures, starting from data definition to data dynamics. Last,
the Y-axis shows the knowledge system model developing, which interacts with the other
two system models and allows an intelligent technological implementation, reaching from
conceptual knowledge to metacognitive knowledge.

Figure 7. Maturity model system integration: Wide Intelligence Management Architecture’s process, data, and knowledge.

3. Results

This section presents the application of the methodology previously described in a
process manufacturing case study.
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3.1. Case Study

This case study aims to illustrate the WIMa framework’s application for the lifecycle
assessment (LCA) of an acrylic fiber production plant. The objective is to demonstrate
how the three models described in Section 2 work together to reach the desired technology
application (in this case, LCA). Life cycle assessment requires a correctly defined process
and consistent data to provide sensible results. Furthermore, this is a meaningful example
to understand the framework at the process definition level (Section 2.1.1).

The acrylic fibers polymerization process considered in this work is presented initially
in [21]. Acrylic fibers’ production takes 14 stages in a batch production plant, represented
in Figure 8, which involves different material and energetic resources. Two alternative
production processes are assessed: acrylic fiber A uses acetone as a solvent in the polymer-
ization, and acrylic fiber B uses benzene. This case study describes the process and data
definition required to perform a life cycle assessment according to the WIMa procedure.
Still, the actual evaluation is beyond the scope of this contribution. For further details
regarding the life cycle assessment, please refer to the work in [21].

Figure 8. Flowsheet for acrylic fibers’ production process (it contains 14 recipe elements, divided into eight recipe unit
procedures and six recipe operations).

First of all, define the requirements and objective of the case study. Thus, suppose that
“Polymer A.C.” wants to develop a high-level decision model agent based on optimization
approaches. Besides, they want to standardize their processes to maintain relations with
their industrial partners. These requirements comprise the performance of certain levels
presented in Table 1:

1. Level one (L1) regarding process definition, conceptual knowledge (process principles,
process standards, and data standards), and data definition.

2. Level three (L3) regarding process standardization and data standardization.
3. Level four (L4) regarding process optimization, procedural knowledge, and integra-

tion and feeding data.
4. Level seven (L7) regarding process intelligence, metacognitive knowledge, and data

dynamics.

Next, present every activity performance in detail structured in each three main
models: process model, data model, and knowledge model.

3.1.1. Process Model of Polymer Plant

L1. Process definition: Process definition tackles the formalization of the polymerization
process itself according to the technical requirements. On the one hand, the process
consists of a complete polymerization plant that produces acrylic fibers using acetone as
solvent. The existing documentation comprises the plant flowsheet (Figure 8) and the
process recipe, which are the current formalization of the plant process activities. Finally, a
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characterization of the organization is performed, and the results, presented in Tables 2–4,
summarize the features related to the general, tactic, and strategic levels of the organization
in which the polymerization plant is installed. Overall, previous information provides
clear boundaries of the process and includes all material and energy flows required to
perform a life cycle assessment. Therefore, the process considered is according to the
process definition model requirements.

Table 2. General features of the organization for system characterization.

General Feature Value

Production capacity Medium
Company size Medium
Supply chain type Good availability
Production type Multi-stage
Market competition type Low
Environmental regulations Defined
Demand levels High volume

Table 3. Tactic features of the organization for system characterization.

Tactic Features Value

Transport type Land
Supply chain objective Economic
Production policies Defined
Customer features -
Suppliers features -
Process flow type Forward
Material storage type Limited

Table 4. Strategic features of the organization for system characterization.

Strategic Features Value

Production processing Sequential
Technology Multitask
Material storage Limited
Material resource Not perishable
Processing resources Limited
Scheduling objective Timing
Scheduling mode On-line

L3. Process standardization: The standardization requires following the ANSI/ISA 88
standard. Thus, a semantic model is based on ANSI/ISA 88 standard, the so-called Batch
Process Ontology (BaPrOn). The use is related to the instantiation task, which allows a
faster and accurate manner to standardize the process. As a result, formulas of the master
process recipes were extracted, as shown in Tables 5 and 6. The production plant con-
siders four stages in batch production mode, eight recipe unit procedures, and six recipe
operations, as well as twenty-seven different resources (considering material and energy
flows). The master recipe’s instantiation results in a set of recipe unit procedures and recipe
operations, along with their formula and input, output, and other process parameters.
Thus, the environmental performance metrics parameters appear included. Overall, the
instantiation results in 934 instances concerning 295 classes, 257 object properties, and 33
data properties. The description logic expressivity of the ontology is SHIN(D), where S
refers to attributive language with complement of any concept allowed, not just atomic
concepts (ALC); H refers to role hierarchy (subproperties); I refers to inverse properties; N
refers to cardinality restrictions a special case of counting quantification; and (D) refers to
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the use of data-type properties, data values or data types. As an example of class instantia-
tion, the RawMaterial class has Input1_1 (Acrylonitrile), Input1_2 (MethylMethacrilate),
Input1_3 (VinilChloride), Input1_4 (Solvent-Acetone) as instances.

Table 5. The formula for the master recipe of acrylic fiber A production process 1/2.

Recipe ID Recipe Type Element ID Procedural Element Type Parameter ID Parameter Name
MR-01 Master RE-3 Unit procedure I15 Output3_2
MR-01 Master RE-14 Unit procedure I56 Output14_1
MR-01 Master RE-14 Unit procedure I57 Output14_2
MR-01 Master RE-2 Operation I61 CleaningWater_total
MR-01 Master RE-1 Unit procedure I62 CoolingWater_total
MR-01 Master RE-1 Unit procedure I63 Electricity_total
MR-01 Master RE-13 Unit procedure I50 Output13_1
MR-01 Master RE-1 Unit procedure I1 Input1_1
MR-01 Master RE-1 Unit procedure I2 Input1_2
MR-01 Master RE-1 Unit procedure I3 Input1_3
MR-01 Master RE-1 Unit procedure I4 Input1_4
MR-01 Master RE-1 Unit procedure I5 Input1_5
MR-01 Master RE-7 Unit procedure I26 Output7_2
MR-01 Master RE-3 Unit procedure I65 Steam_total

Table 6. The formula for the master recipe of acrylic fiber A production process 2/2.

Resource Type Subtype Resource Name Procedural Information Value Unit
Material By-product ByProduct1 Output Parameter 1750 kg
Material By-product ByProduct3 Output Parameter 1217 kg
Material By-product ByProduct4 Output Parameter 1734 kg
Material CleaningWaterT1 Process Parameter 240,000 kg
Energetic Cooling water CoolingWaterT1 Process Parameter 8,613,983 kg
Energetic Electricity ElectricityT1 Process Parameter 458,979 kWh
Material Final product FinalProduct1 Output Parameter 1000 kg
Material Raw material RawMaterial1 Input Parameter 100 kg
Material Raw material RawMaterial2 Input Parameter 50 kg
Material Raw material RawMaterial3 Input Parameter 25 kg
Material Raw material RawMaterial4 Input Parameter 0 kg
Material Raw material RawMaterial5 Input Parameter 0 kg
Material Residue Residue1 Output Parameter 1974 kg
Energetic Steam SteamP1 Process Parameter 441,323 kg

L4. Process optimization: This case study tackles the optimization of multistage batch
plants’ scheduling problem under sequence-dependent changeovers presented by Capon
et al. (2011, 2012). The problem can be defined as follows: given a set of process opera-
tions planning data, including (i) time horizon, (ii) set of product recipes, (iii) equipment
technologies for processing stages, (iv) product demands, (v) changeover methods, (vi) eco-
nomic data related to costs and prices, and (vii) environmental data related to raw material,
equipment, and product manufacturing environmental interventions; all of them provided
by the data model. Four objective functions are relevant for decision-making: productivity
(P), total environmental impact (TEI), makespan (M), and total profit (TP). The problem’s
modeling uses an immediate precedence mathematical formulation, managing the pos-
sible use of different product changeover cleaning methods; multiple alternative pieces
of equipment at each stage; limited storage policies; and product batching, allocation,
and timing constraints. Such problem representation is suitable for applying any of the
three different optimization strategies considered in this case study. Specifically, we will
solve the multi-objective problem using mathematical programming with a normalized



Processes 2021, 9, 600 16 of 25

constraint method (MP), a genetic algorithm (GA), and a hybrid optimization approach
(HA). Each solution method’s suitability depends on the combination of problem features
and objective function, and will be further explored in level 7 related to process intelligence.
At this level, the solution techniques are considered independently, and the knowledge
model supports the implementation of the optimization providing adequate data from the
data model.

L7. Process intelligence: This level comprises the development of intelligent agents
for the scheduling problem. Indeed, one can use different problem representations for
optimization purposes, and which is the most suitable depends on the issue features. That
is precisely the function provided by the process intelligence framework using agents.
The agents perform different functions and are integrated, allowing communication among
them. The agent’s functions include communication, search, classification, and solution.
A common vocabulary is necessary to achieve communication, and all the agents rely on
the ontologies described in the knowledge model.

The solution mechanism consists of the following steps: (i) problem definition,
(ii) modeling process for reaching a problem model, (iii) model analysis, (iv) model so-
lutions, and (v) problem implementation. Based on the answers in (iv), we can make
inferences and reach decisions about the problem (v). The assessment of decisions good-
ness feeds back to the intelligent system to enable learning.

Next, the communication agent prepares the classification agent for analyzing the
problem using a knowledge-driven classification procedure. Next, a solution strategy is
proposed based on a similitude measure resulting from the problem instance compared
with (i) existing problems tackled in the past and stored in the database and (ii) existing
problem approaches from the state-of-the-art. The problem instances solved in the original
papers are the basis for the database of this problem. A total of 415 problem solutions
are included with different problem descriptions and objective function values. As a
result of the similitude measure, a set of ranked solution approaches is proposed to the
decision-maker. Finally, a solution agent uses the solution algorithms to reach the optimal
solution for the problem instance. The solution agent also sends problem solutions to the
decision-maker and stores them in the future reasoning database.

The framework testing with new problem instances and results are shown in Table 7.
The first column describes the problem size (number of batches for each problem). The sec-
ond column specifies the objective function. The third column presents the solution
implementation method’s selection, while the fourth column includes the objective func-
tion’s Value. Finally, the fifth column stands for the distance to the best optimal solution
found. For small problem instances, the rigorous mathematical programming approach has
been selected, whereas problem instances with many variables are solved using a genetic
algorithm. Thus, the objective function also has an essential role in the selection of the
solution strategy. Indeed, for productivity maximization, the hybrid approach is selected.
In most cases, the solution proposed by the agent-based system is close to 5% to the optimal
solution. Overall, this framework stands for a systematic approach to scheduling model
selection and solution implementation, thus supporting the engineers’ high-level decision,
who do not need to have a thorough understanding of advanced optimization techniques.

Programming the different agents uses Jython because it combines Python as a pro-
gramming language and uses Java APIs for communicating with the ontological models.
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Table 7. Results for different problem instances from the agent-based framework at Polymer plant.

Number
Batches
(A/B/C)

Objective
Function Solution Approach

Solution
Value

Optimal So-
lution Value

4/4/4 Productivity Mathematical pro-
gramming

2170 2174

4/4/4 Environmental
impact

Mathematical pro-
gramming

48,200 48,200

4/4/4 Makespan Mathematical pro-
gramming

48,000 48,000

17/10/13 Productivity Hybrid approach 1301 1302
17/10/13 Environmental

impact
Mathematical pro-
grammin

218,814 217,236

17/10/13 Makespan Genetic algorithm 199,507 197,686
20/18/15 Productivity Hybrid approach 1354 1356

3.1.2. A Knowledge Model of the Polymer Plant

L1. Conceptual knowledge: A knowledge system harmonizes and manages sets of
valuable information, making them accessible for their use considering specific purposes.
In this case study, knowledge conceptualization uses the Enterprise Ontology Project
(EOP) [22]. EOP is an ontology containing three active ontologies: batch process ontology,
environmental ontology, and enterprise ontology.

First, batch process ontology (BaPrOn) tackles features such as physical, procedural,
recipe, and process models based on the ANSI/ISA 88 standard. It focuses on the pro-
duction operation management of batch processes. Next, environmental ontology (EVO)
considers life cycle assessment and environmental impact categories features, which al-
lows the trace and calculation of environmental impact produced by product or processes
activities. Finally, the enterprise ontology project (EOP) is based on the ANSI/ISA 95
standard. It considers the integration of enterprise activities, such as quality, maintenance,
and inventory management. Additionally, EOP also considers financial features to tackle
supply chain management activities.

Besides, the EOP model takes into account and models the following key knowledge:

• Production system characterization: comprising physical, procedural, and recipe (site
and general) models.

• Products contemplated: according to the processing order activity in the industry
recipes defining the production requirements and production path for the products in
the physical, process and recipe (master and control) models.

• Resource availability and plant status: provided by the process management and
production information management activities.

Finally, Figure 9 shows the first classes found in the taxonomy of the enterprise
ontology project.

L4. Procedural knowledge: Mathematical programming has been choose as strategy for
making optimization knowledge explicit and available. Thus, this case study makes use of
the mathematical modeling ontology (MMO) [23,24] and the operation research ontology
(ORO) [25].

On the one hand, MMO aims to represent knowledge of mathematical domain based
on mathematical structures comprising elements, terms, and operations. Thus, the math-
ematical term is the atomic part of a mathematical expression. Mathematical elements
and expressions are related through mathematical operations, which can be logic or alge-
braic types. An element or expression can define specific conceptual meanings, such as
processing time, the opening Value of the valve, the effort calculation equation, etc. In
the same manner, an element or expression has a behavior that is related to variables,
constants values, etc. Finally, MMO allows the definition of object-oriented mathematical
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modeling relating mathematical elements and expression with concepts from other seman-
tic representations. In this case study, MMO is integrated with EOP. That allows linking
mathematical models and equations with instances of the acrylic fiber process. Figure 10
shows the first classes found in the taxonomy of the mathematical modeling ontology.

On the other hand, ORO aims to capture the knowledge of operation research area that
is a branch of mathematics. This ontology structures mathematical expressions fed by MMO
in the form of mathematical programming. That allows a formal study and solution of
complex problems for decision-making activity. As a result, an enriched semantic structure
is obtaining. It considers the main parts of mathematical programming, such as the
objective function in the form of an equation, a set of constraints in the form of mathematical
equations. In the same manner, logic and algebraic operations are supported by MMO.
Figure 11 shows the first classes found in the taxonomy of the operation research ontology.

Figure 9. First taxonomical representation of the Enterprise Ontology Project classes.
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Figure 10. First taxonomical layer representation of the Mathematical Modeling Ontology classes.

L7. Metacognitive knowledge: This level aims to create an autonomous problem defini-
tion agent to construct a semantically enriched problem statement [26]. The agent works in
a semantic environment where machines can access explicit knowledge codified in Python
and Jython. The strategy comprises the following: (1) Semantic definition of the system. (2)
Recognition of current situation. (3) The setting of key process features and variables. (4)
The setting of confidential intervals for monitoring task. (5) Searching for relation to key
features. (6) Definition problem statement.

First, the system’s semantic definition refers to Tables 2–4 presented in Section 3.1.1.
Based on the system instantiation, the current process is introduced semantically, indicators,
related key features, and engineering metrics are set, such as resource availability, energy
consumption, demand un-accomplishment, and cleaning overtimes desired. Table 8 shows
a brief example of the resulting process of system setup for monitoring. This table performs
a SWOT analysis defining strengths (S), weaknesses (W), opportunities (O), or threats
(T). The following two rows show indicators and related features coming from classes
representing the process domain concepts. The next row shows the engineering metrics
associated with indicators. Finally, the last two rows refer to the upper and lower bounds
values defined for evaluating the current performance.

Table 8. The semantic search of key features and confidential intervals, where SWOT refers to a strength (S), weakness (W),
opportunity (O), or threat (T) and EOP refers to Enterprise Ontology Project.

SWOT Indicator Related Feature Metric UBV LBV

DataString EOP_Class EOP_Class EOP_DataProperty EOP_DataProperty EOP_DataProperty

W Time delivered hauler Tardiness finish orders u/month 15 45
W Demand unacomplishment Unfinished orders u/month 5 15

Next, the intelligent agent defines optimization goal statements (maximization or
minimization). Then, using previous decision variables definitions, the system is ready
for construct or semantic problem statement definition. Finally, the agent fills the problem
statement template automatically to present it in the form of natural language, as follows:

Empty template. “Taking into account -EOP classes found as key variables- variables,
and -EOP classes found as key parameters- parameters; -Goal statement- - EOP class defined as
decision variable- related to -EOP class defined as an indicator- indicator.”
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Filled template: “Taking into account Processing start time, Storage level variables,
and Maximum storage capacity, Batch processing time, Batch due date parameters; Minimize
Makespan related to Number of late jobs indicator.”

At this level, intelligent agents provide additional capabilities for reasoning us-
ing semantic technologies. The main task focuses on decision-support for industry 4.0
microenvironments.

Figure 11. First taxonomical layer representation of the Operations Research Ontology classes.

3.1.3. The Data Model of the Polymer Plant

L1. Data definition: The data definition is concerned with the data collection and data
system architecture. Accordingly, the transactional system needs to be verified. In this
case study, the information related to the recipe, namely, the energy and material flows,
is stored in aStructured Query Language (SQL) database. All flows are listed, identified,
and quantified in the database, and their sign (positive or negative) indicates whether they
enter or leave the process boundaries. The data relating to the material and energy flows
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stems from the factory floor, and only process engineers have access and permission to
modify the data.

L3. Data standardization: This level aims to standardize data properties. Data proper-
ties comprise data metrics, data language, and data structure. In general, properties are
related to specifications within the processing system. Many of the systems are ruled by
the technology implemented. In contrast, this methodology pursues defined, choose and
consensus data properties desired for the processing system. In this particular case study,
ANSI/ISA standards define those properties, standardizing the data through the instantia-
tion process. The data model provides specifications for developed interfaces, software
requirements. Table 9 presents properties, detail of Boolean, and Direction Type data from
EOP (based on ANSI/ISA standards).

Table 9. ANSI/ISA standard properties for enumeration members.

Enumeration Set Enumeration Value Enumeration String Description

Boolean
0 FALSE

Definition of a Boolean value.1 TRUE

Direction Type

0 Invalid Entry not valid
1 Internal Identifies how a parameter is handled. Internal = only avail-

able within the Recipe Element. Defined at creation or cre-
ated as an intermediate value.

2 Input The Recipe Element receives the Value from an external
source.

3 Output The Recipe Element creates the Value and makes it available
for external use.

4 Input/Output The Recipe Element and external element exchange the
Value, and may change its Value.

5–99 Reserved
100+ User defined

Next, Table 10 presents data details from the polymer process.

Table 10. Data properties from EOP within the Polymer process system.

Object/Data Property Range

hasParameterSource Resource
hasID_ParameterID ParameterID
parameter_type constant; variable
hasEquationAsReferenceValue MathematicalElement
value float
engineering_units string
description string
scaled float

L4. Data integration and feeding: This level performs the definition of data and data sets
required by the optimization software or other software. We consider software specialized
in mathematical programing and solving by optimization software, which contains strict
and non-strict approaches. Thus, Tables 11–13 show some structure data or data sets
required by the polymer process plant’s optimization activity. Besides, optimization
software can call for single data at any time.
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Table 11. Capacity data set of the Polymer plant, structuring two columns: Unit_ID and Data value.

ID_R1 4000
ID_P1 13,000
ID_C1 4000
ID_P2 5000
IN001B 5000
IN002A 5000
IN002B 11,000
ID-FP00A 36,000
ID_FP00B 36,000
ID_R001 36,000
ID_R002 36,000

Table 12. Subtasks time of product A of the Polymer plant, structuring seven columns: Task number,
Unit_ID, Preparation time, Load time, Operation time, Unload time, and Cleaning time.

1 ID_R1 0.20 0.00 2.00 0.30 0.25
2 ID_P1 0.20 0.00 0.30 0.75 0.25
3 ID_C1 0.50 0.30 2.50 0.00 0.75
4 ID_P2 0.20 0.00 0.75 0.00 0.25
5 IN001B 0.50 0.00 0.75 0.00 0.50
6 IN002A 0.20 0.00 0.75 0.75 0.25
7 IN002B 0.30 0.75 1.00 0.00 0.25
8 ID-FP00A 0.20 0.00 0.75 0.00 0.25
9 ID_FP00B 0.30 0.00 0.75 0.00 0.25
10 ID_R001 0.20 0.00 0.75 0.00 0.50
11 ID_R002 0.20 0.00 0.75 0.00 0.25

Table 13. Subtasks time of product B of the Polymer plant, structuring seven columns: Task number,
Unit_ID, Preparation time, Load time, Operation time, Unload time, and Cleaning time.

1 ID_R1 0.20 0.00 3.00 0.75 0.25
2 ID_P1 0.00 0.00 0.00 0.00 0.00
3 ID_C1 0.00 0.00 0.00 0.00 0.00
4 ID_P2 0.50 0.00 0.75 0.00 0.25
5 IN001B 0.20 0.00 0.75 0.00 0.50
6 IN002A 0.30 0.00 0.75 0.00 0.25
7 IN002B 0.20 0.75 0.74 0.74 0.25
8 ID-FP00A 0.20 0.00 0.74 0.00 0.25
9 ID_FP00B 0.50 0.00 0.74 0.00 0.25
10 ID_R001 0.20 0.00 0.74 0.00 0.50
11 ID_R002 0.20 0.00 0.74 0.00 0.25

L7. Data dynamics: This level aims to develop an algorithm based on Jython being
capable of structuring data. For this specific case study, the algorithm was under construc-
tion. The strategy focuses on queries and the structure of triples from the semantic models,
which can dynamically define data sets as shown in L4. Data structuring and feeding.
Finally, we want to point out that ontologies have a database structure but are semantically
enriched and supported by knowledge.

4. Discussion

This work introduces the wide intelligent management architecture and the applica-
tion to acrylic fiber production as a case study. As a result, the production process first
creates a process definition (system characterization and flowsheet of the plant), data defini-
tion (database based on the semantic model), and knowledge conceptualization (a semantic
model for representing concepts and data of the process and system). The standardization
of data and concepts has been done using the semantic model to represent the process
(ANSI/ISA standards). Thus, using the architecture for data structuring and feeding fa-
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cilitates the integration of the Life Cycle Assessment approach improvement. From this
point, the acrylic fiber production plant has the basis for developing process automation,
developing process digitalization, or developing intelligent agents for decision-making.
Figure 12 shows the process activities performed in the case study regarding process defini-
tion, standardization, optimization, and intelligence (yellow boxes and blue arrows path).
Moreover, the acrylic fiber company can perform process improvement, automation, or
digitalization based on the current plant status (green arrows pointing gray boxes). Finally,
using a comprehensive intelligent management architecture model can be adapted to any
company necessity by choosing how to evolve their processes.

Figure 12. Potential activities derived from the case study, where GMPs refers to Good Manufacturing Practices, SOPs
refers to Standard Operating Procedures, and GUI refers to Graphical User Interface.

5. Conclusions

This work presents a novel architecture for technology integration on process activities
and systematically manages processes and their related data using formal knowledge.
Knowledge models provide additional reasoning capabilities to support decision support
systems for the wide optimization and industry 4.0 approaches. The architecture comprises
and structures three critical systems: process system, knowledge system, and transactional
system. As a result, analytical tools belonging to process activities and transactional data
systems can be guided by a systematic development framework consolidated with formal
knowledge models. Thus, the model improves the interaction among process life cycles,
analytical models, transactional systems, and knowledge. A comprehensive intelligent
management architecture model can be seen as an ordered, adaptable, and configurable tool
for integrating technologies and processes maturity. A critical aspect of this method regards
formal knowledge models that become usable and reusable in technology integration and
maturity. Finally, this method is a new alternative supporting companies when they need
to decide ”what to do” by explaining to them ”why to do” and ”how to do it”, taking as
starting point their processes and characteristics.
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