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Abstract: In recent years, manufacturing companies have been continuously engaging in research for
the full implementation of smart factories, with many studies on methods to prevent facility failures
that directly affect the productivity of the manufacturing sites. However, most studies have only
analyzed sensor signals rather than text manually typed by operators. In addition, existing studies
have not proposed an actual application system considering the manufacturing site environment
but only presented a model that predicts the status or failure of the facility. Therefore, in this paper,
we propose a real-world failure prevention framework that alerts the operator by providing a list
of possible failure categories based on a failure pattern database before the operator starts work.
The failure pattern database is constructed by analyzing and categorizing manually entered text to
provide more detailed information. The performance of the proposed framework was evaluated
utilizing actual manufacturing data based on scenarios that can occur in a real-world manufacturing
site. The performance evaluation experiments demonstrated that the proposed framework could
prevent facility failures and enhance the productivity and efficiency of the shop floor.

Keywords: facility failure; pre-failure alert; smart manufacturing; text data analysis; deep learning;
pattern mining

1. Introduction

Recently, manufacturing companies have become increasingly interested in the realiza-
tion of smart manufacturing [1–3], where operation and information technologies are com-
bined to enhance the efficiency and productivity of the manufacturing process [4,5]. The
goals of smart manufacturing include reducing costs, enhancing productivity, improving
transparency in manufacturing sites, and enabling autonomous control of production [6].
These goals can be achieved by utilizing recently introduced artificial intelligence (AI) tech-
nologies and data collected from manufacturing sites [7,8]. Data are particularly essential
for the successful application of AI technologies, from achieving a specific goal to realizing
complete smart manufacturing [9].

Prevention of facility failure is one of the main objectives of the implementation of
smart manufacturing. Facility failure means that a machine or other equipment becomes
inoperable because of such factors as breakdown, material supply shortage, and operator
breaks. Such malfunction is known to be an immediate cause of a decrease in productivity
on a manufacturing shop floor [10]. Facilities are usually interdependent at the shop-floor
level, as a product goes through multiple facilities for manufacturing [11]. Therefore, a
malfunction of one facility is critical to the entire processing line, as it affects other facilities.

Several studies have been conducted to develop a method to prevent equipment
breakdown using failure logs that contain information on previous failures. For example,
Li et al. [12] ] tried to diagnose malfunctions by using bearing vibration, and Li et al. [13]
attempted to predict breakdowns by analyzing text data written by operators. A failure log
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contains multiple factors that describe the situation of each malfunction, with each factor
recorded using either sensor signal data or non-sensor signal data. Sensor signal data is
recorded in a predefined format, such as vibration, voltage, and pressure collected from a
sensor attached to a facility, whereas non-sensor signal data has no specific format, such as
text, images, and video [14].

Previous research on the prevention of facility failure has major drawbacks. First,
few studies have proposed the implementation of systems to prevent malfunctions in
real-world manufacturing sites, to the best of our knowledge. Moreover, most research
has presented methods to predict the occurrence of a failure without listing the categories
of possible malfunctions, which is necessary information to prevent the failure [15,16].
These methods do not allow operators to actively detect breakdowns; rather, the real-time
interaction between an operator and the system can prevent the operator from performing
a task [17]. While a few studies exist that used text data or focused on failure prediction
categories [13,18], they utilized manual approaches, which were highly time-consuming
and not suitable for general applications.

In particular, significant amounts of text written by operators manually are accumu-
lated in manufacturing sites for the following reasons. First, few facilities are systematically
integrated, so events that occur in such facilities must be manually recorded. Even in facili-
ties with well-integrated systems, some of the necessary information is not automatically
collected. Second, due to frequent changes in facilities, a system cannot completely cover
every incident that occurs in the facility. Many of these exceptions can only be logged
through a manual process.

For example, failure logs collected from an actual manufacturing company, Woojin
Industry Co. located in Ansan-si, Gyeonggi-do, Korea [19], contain many operators’ texts.
These logs are composed of factors such as the phenomena, causes of breakdowns, and
repairs. The repairs are neither automatically recorded nor selected using a button with
limited choices. Furthermore, they cannot be strictly categorized, so they are collected
in text form. While the phenomena and causes of failure are provided using a selection
button, operators often write them in the repairs text box because the choices provided by
the selection button do not include all possible phenomena and causes.

Therefore, analyzing text data written manually by operators is essential for failure
prevention, but it is more complicated than analyzing sensor signal data since it requires
a high level of data analysis expertise and has high computational costs. It is even more
challenging than analyzing other types of non-sensor signal data, such as images. Text
data is computationally intractable due to its non-explicit structure, leading to many
exceptions in the analysis process [20] and the characteristics of text data represented as
high-dimensional vectors [21].

There are three specific challenges in analyzing text data collected from manufacturing
sites. First, technical terms related to the manufacturing facilities cannot be analyzed using
traditional term-by-term natural language processing (NLP) because there are many cases
in which multiple terms are combined to represent a specific meaning. For example,
“leakage” refers to the flow of liquids or gases, and “applicator” means a machine that
spreads coatings or adhesives on something, whereas “leak applicator” means a machine
that seals the space between the mating surfaces of facility to prevent leakage, which has
the opposite meaning of the simple combination of the meanings of the two words. Second,
different operators use different expressions to indicate the same thing. For instance,
“breaking of a wire” is expressed as both “wire is broken” and “broken wire”. To cope with
this problem, a method is needed to extract the words that represent important semantic
aspects in texts and summarize their content [22]. Third, misspellings exist, as human
errors occur in the manual writing of records.

Such a method can be used in the real world if the failure prevention system is
designed considering the actual manufacturing shop floor characteristics. Since there are
various facilities with a wide range of failure categories [23,24], it is impossible to manually
define all possible breakdown types in the system. Therefore, automated categorization
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of the breakdowns is required to generalize the application and save time. If the type of
predicted failure is provided, an operator can prepare for the breakdown. Furthermore,
the failure type notification should be given at an appropriate time, such as before the
operation begins or during a break, to avoid interrupting the operation. If the operator is
notified of a potential breakdown during a time that requires their attention, they cannot
respond appropriately to it. There are also failure categories that cannot be responded
to unless the information is provided in advance. For instance, the operator cannot act
immediately after being alerted of “parts breakage”.

To this end, we propose a real-world facility failure prevention framework that will
help an operator to prepare for a possible malfunction by providing a pre-failure alert list
that contains information about any breakdowns that may occur during their working
hours. The notification of each possible failure includes the failure category, the part which
may fail, and the probability of malfunction. An operator can prevent facility failures by
preparing for each possible failure noted in the pre-failure alert list before beginning work.

Specifically, the proposed framework consists of two processes: A deferred-time
process and a real-time process. In the deferred-time process, the failure pattern database is
constructed by analyzing past failure logs using four steps. First, to structure the text data
in the facility failure logs, phrases are extracted from the verbiage contained in the logs, and
the logs are vectorized utilizing the extracted phrases. Second, the failures are categorized
using weighted k-means clustering [25], which considers the importance levels of various
factors in the logs. Third, each log is expanded to identify failure patterns by mapping
relevant information such as weather and operator expertise. Finally, the failure patterns
that occur frequently are identified to build a failure pattern database. In the real-time
process, an operator who is about to begin work gets a pre-failure alert list extracted from
the database so they can check the equipment in advance.

The remainder of this paper is organized as follows. Section 2 comprises a literature
review on facility failure prediction and prevention. In Section 3, the proposed facility
failure prevention framework is introduced and explained. In Section 4, experimental
results using real-world data are presented to show the effectiveness of the proposed
framework. In Section 5, the proposed framework is validated by studying real-world
facility failure scenarios that could occur in actual manufacturing sites. Finally, the paper is
concluded in Section 6.

2. Literature Review

Several studies using various data analysis methods have been conducted regarding
the prevention of facility failure. Diverse approaches were adopted for prevention, includ-
ing failure prediction, failure diagnosis, and remaining useful life (RUL) prediction. Failure
prediction is the forecasting of a failure based on historical data, and failure diagnosis is
an examination of the cause of the malfunction [26]. RUL prediction refers to forecasting
the time until failure by analyzing historical data [27]. A study considered the relevance
analysis between breakdowns and environmental factors such as weather conditions, man-
ufacturer, and equipment, but that study was focused on analyzing the textual failure logs
rather than preventing breakdown [28]. Studies on the approaches mentioned above are
listed in Table 1.
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Table 1. Summary of previous studies on facility failure prevention according to types of data, whether failure category
utilizes or not, approach, and method.

Data Type Data Category Failure Category Approach Method Reference

Sensor signal data Pressure Not used Failure prediction Artificial neural networks (ANN) Adedigba et al., 2017 [29]
Failure diagnosis Deep auto-encoder Ma et al., 2017 [15]

Long short-term memory (LSTM) Lindemann et al., 2019 [30]
Remaining useful life (RUL) prediction Bi-directional LSTM Zhang et al., 2018 [31]

Temperature Not used Failure diagnosis ANN Adedigba et al., 2017 [29]
Weightless neural networks Oliveira et al., 2017 [32]

RUL prediction Bi-directional LSTM Zhang et al., 2018 [31]

Vibration Not used Failure prediction ANN Chelladurai et al., 2019 [33]
K-nearest neighbors Jeong and Sohn, 2019 [34]
Similarity measures Liu et al., 2020 [35]

Failure diagnosis Auto-encoder Li et al., 2018 [36]
Stacked auto-encoder Liu et al., 2018 [16]
Convolutional neural networks (CNN) Niu, 2018 [37]
High-order Kullback-Leibler Qian et al., 2018 [38]
Ensemble deep auto-encoder Shao et al., 2018 [39]
Support vector machine (SVM) Zhu et al., 2018 [26]
Stacked auto-encoder and LSTM Li et al., 2019 [12]
Deep neural networks (DNN) Wang et al., 2019 [40]

RUL prediction Auto-encoder and DNN Ren et al., 2018 [41]
Considered Failure diagnosis Sparse deep stacking networks Sun et al., 2018 [42]

Deep residual shrinkage networks Zhao et al., 2020 [43]
Multibranch and multiscale CNN Peng et al., 2020 [44]

Voltage Not used Failure diagnosis LSTM Hong et al., 2019 [45]

Non-sensor signal data Image Not used Failure prediction CNN Zhang et al., 2020 [46]
Failure diagnosis CNN Niu, 2018 [37]
RUL prediction Deep auto-encoder and DNN Ren et al., 2018 [41]

Text Not used Relevance analysis FP-growth Wang et al., 2019 [28]
Considered Failure prediction Sequence to sequence model and SVM Li et al., 2017 [13]

LSTM Zhao et al., 2018 [47]
LSTM and CNN Bai et al., 2019 [18]

The data utilized in previous research are either sensor signal or non-sensor signal.
Sensor signal data have been widely used in research on failure prevention in the manufac-
turing domain. Previous studies used sensor signal data for pressure [15,29–31], temper-
ature [29,31,32], vibration [12,16,26,33–41], and voltage [45] for failure diagnosis, failure
prediction, and RUL prediction. The types of artificial neural networks (ANN) that were ap-
plied are auto-encoder [12,15,16,36,39,41], long short-term memory (LSTM) [12,30,31,45],
convolutional neural networks (CNN) [37], deep neural networks (DNN) [28,41], and
weightless neural networks (WNN) [32]. The k-nearest neighbors (k-NN) algorithm [34],
support vector machine (SVM) [26], and transfer learning with high-order Kullback-Leibler
(HKL) [38] were also used in a few studies, and analyses were performed using similarity
measures [35].

Among non-sensor signal data, images and text were used for failure prediction,
failure diagnosis, and RUL prediction. Types of neural networks such as CNN [31,37],
DNN [41], and auto-encoder [41] are applied to the image data. There have been a few
studies using text data [13,18,28,47]. Li et al. [13] and Bai et al. [18] predicted failure
categories, which were manually labeled by operators, and Zhao et al. [47] predicted failure
categories that were predefined in the data.

In addition, most studies have predicted facility status—whether the device malfunc-
tions or not—despite the variety of failure categories that can occur [48]. A few studies
predicted facility categories, which were manually annotated [13,18] or predefined [47].
However, manually labeled failure categories cannot be generalized because failure cat-
egories vary for each process. Thus, predefined failure categories are not suitable for
real-world scenarios.

3. Materials and Methods

The proposed real-world failure prevention framework consists of a deferred-time
process that constructs a failure pattern database and a real-time process that alerts op-
erators to prevent facility failures. The deferred-time process constructs a database of
breakdown cause-and-effect pairs from the raw failure logs. The real-time process uses the
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database to extract a pre-failure alert list of breakdown types that can occur during the
operator’s working hours, based on each operator’s real-time logs, including such factors
as the equipment they are using, their proficiency, and the current time.

3.1. Deferred Time Process: Overall Process Description

In the deferred-time process, the failure pattern database is constructed from the raw
facility failure logs (RFFLs), consisting of two data types: Categorical and text data. The
categorical data are collected when one of the predefined categories is selected, and the text
data are entered directly by operators because the failure cause is not entered as categorical
data. RFFLs are parsed into phrase units that include the meaning of the phenomena and
the causes of breakdowns and are categorized in facility failure logs (FFLs). Extended
facility failure logs (EFFLs) include environmental information such as site temperature,
date, operator, and facility information mapped to the FFL records and failure categories.

Subsequently, failure patterns are identified to create cause-and-effect rules based
on the relationships found in the data. A failure pattern consists of the surrounding
environment and the breakdown caused by that particular environment. These patterns
are the final output of the process, and they are accumulated to create the failure pattern
database through the following steps.

First, phrases are extracted from the text data to categorize RFFLs that contain the
failure information. Second, facility failure categories are generated utilizing FFLs by
clustering the logs. Third, three data elements—FFLs, failure categories, and environmental
data—are mapped to each other and EFFLs for pattern mining. Finally, facility failure
patterns are identified by applying FP-growth to the EFFLs. The sub-steps and the specific
approaches of each step are summarized in Table 2. Moreover, an overview of these steps
is shown in Figure 1.

Table 2. Summary of the deferred time process.

Step Sub-Step Approach

Phrase extraction Constructing the word usage-based dictionary Defining four word usages

Extending the word usage-based dictionary
with reference data

Collecting the reference data by crawling
the online dictionary and by interviewing experts

Phrase extraction using the word usage-based dictionary
to generate facility failure logs (FFLs)

Tagging words in text data using the dictionary
and extracting phrases using the tagged words

Failure categorization FFLs vectorization Using phrase2vec for the extracted phrases
and generating one-hot vectors for the categorical data

Failure categorization with the vectorized FFLs Using weighted k-means clustering

Data extension Generating extended facility failure logs (EFFLs) Mapping FFLs, failure categories,
and environment data

Failure pattern mining Mining frequent failure patterns
and constructing failure pattern database

Deriving the frequent failure patterns
using FP-growth algorithm

Figure 1. Overview of the failure pattern database construction process.
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3.2. Deferred Time Process: Phrase Extraction

As mentioned above, the text data in the RFFLs is separated into phrases, which are
the minimum unit in which multiple words are combined to have meaning. For phrase
extraction, we construct a word usage-based dictionary to distinguish the text data. Here,
the reference data, which are composed of mechanical-related terminologies commonly
used in the actual site and the text data, are used to build the dictionary.

Four word usages are adopted to build the word usage-based dictionary. Four items,
WD, ST, SE, and E, are defined as follows. WD is an abbreviation for “word” and indicates
a word that must be expressed in a phrase because it has meaning. ST is an abbreviation for
“separate” and indicates a word in the phrase that has meaning and also separates phrases.
SE and E are abbreviations for “separate and eliminate” and “eliminate”, respectively, and
indicate words that have no meaning and thus are unnecessary for phrase extraction. SE is
also a separator between phrases. We build a dictionary tagging the above items for words
that frequently appear in text data of RFFLs.

Meanwhile, the reference data collected by crawling the online mechanical terminol-
ogy dictionary [49] and by interviewing experts comprise terminologies that are difficult to
understand with general knowledge alone because they are used only in the field. This
online terminology dictionary provides a set of terms related to the specific field. Terms
and definitions from the online terminology dictionary are crawled and added to the word
usage-based dictionary. Facility-related terms are tagged as WD because they should be
expressed in phrases, as are expertise terms acquired from the expert interviews.

The overall steps to extract phrases using the constructed word usage-based dictionary
are as follows. First, each word in the text data is extracted and tagged using the dictionary
and Python language. Phrases are extracted when they contain necessary words, and
unnecessary words are deleted. A phrase is a unit used to identify the phenomenon or
cause of failure and should not include action details. Therefore, the extracted phrases that
contain action descriptions such as “replacement”, “exchange”, “action”, and “change” are
deleted in post-processing. Multiple phrases can be extracted, depending on the amount of
facility information included in the inputs.

Examples of phrases extracted using the word usage-based dictionary are shown in
Table 3. The input in Example 1 is ”Parts wear due to excessive rubbing”. “Parts”, “wear”,
“excessive”, and “rubbing” are WD, and “due to” is SE because the words preceding “due
to” indicate a failure phenomenon and the words following show the cause of breakdown.
Two phrases in the example are derived as “parts wear” and “excessive rubbing”. In
Example 2, “Introduction of white foreign matter into the product protector part” is
extracted from “Operation of the equipment has stopped due to the introduction of white
foreign matter into the product protector part”.

Table 3. Examples of extracted phrases using the word usage-based dictionary.

Division Example 1 Example 2

Input Parts wear due to excessive rubbing Operation of the equipment has stopped due to
the introduction of white foreign matter into the product protector part

Dictionary

WD Parts wear,
Excessive rubbing WD Introduction of white foreign matter into the product protector part

ST - ST -
E - E Operation of the equipment has stopped

SE due to SE due to

Output Parts wear Introduction of white foreign matter into the product protector partExcessive rubbing
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3.3. Deferred Time Process: Failure Categorization

Vectorization is an essential step in transforming data from non-numeric to numeric [50–52].
The FFL data types, categorical and text data, are embedded into a vector space using
one-hot encoding and phrase2vec [53], respectively. The one-hot encoding algorithm de-
termines the number of dimensions by the number of categories, with the corresponding
category value set to 1 and the other category values set to 0 [52]. Phrase2vec, based
on word2vec [51] which expresses words having the same meaning as adjacent vectors,
generates vector representations of phrases, considering their meanings. Extracted phrases
are represented as vectors reflecting the calculated semantic similarities between phrases.
Therefore, the phrases extracted from the text data that are written differently by each
operator, even though they describe the same type of failure, are expressed as adjacent
vectors using phrase2vec, implemented by the Python package Gensim [54].

The phrase2vec, also known as the continuous skip-gram model, consists of three
neural network layers: The input, projection, and output layers, as shown in Figure 2. The
skip-gram model maximizes the average log probability in Equation (1):

1
T

T

∑
t=1

∑
−s≤j≤s,j 6=0

log p(φt+j|φt), (1)

where φt and φt+j are the center phrase and the j-th word from the center phrase, respec-
tively. T is the number of words and phrases in the learning sentence, s is the window size
of the model, and j is the window size index. The window size refers to the number of
surrounding words before and after the center phrase to represent in the vector.

⋯Output

Projection

Input

𝜙𝑡−𝑠 𝜙𝑡−𝑠+1

𝜙𝑡

𝜙𝑡+𝑠−1 𝜙𝑡+𝑠

Figure 2. Architecture of continuous skip-gram model.

Let u denote the unique words and phrases on the training dataset for the skip-gram
model. In the case of Gensim’s implementation model, Google News dataset [55] consisting
of about 100 billion words is utilized for the model training. For the embedding vector
generation, the phrase transformed into a v-dimensional one-hot vector (the input layer) is
multiplied with the u× d weight matrix, producing a d-dimensional embedding vector (the
projection layer). Finally, the estimated probabilities of u unique words positioned in φt+j is
calculated by multiplying the generated embedding vector by the d× u weight matrix (the
output layer). Model training proceeds so that the estimated probabilities calculated from
the embedding vector becomes close to the one-hot embedding vector of the answer word
positioned in φt+j. Therefore, the embedding vector contains information on surrounding
words since the embedding vector is trained to infer the surrounding words well. In the
case of phrases having similar meanings, in many cases, the words appearing around them
are also similar, so the embedding vectors also become closer. Details on the skip-gram
model can be found in [53].

A log of FFLs is created by concatenating the embedding vectors from text data and
one-hot encoding from categorical data.

ln = on
f ⊕ vn

φ, (2)
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where ln refers to the n-th log of FFLs, ⊕ is the concatenation symbol, on
f is the one-hot

encoding of the categorical data for the n-th log, and vn
φ is the embedding vector of the

extracted phrase for the n-th log.
Failure categorization using the log of FFLs generated from the vectorization step

proceeds to derive significant failure patterns. Failure patterns are identified from the
situations in which a breakdown occurs and the corresponding failure categories. The
more diverse the situation in which the category occurs is, the more reliable are the pattern
results that can be obtained. Therefore, FFLs consisting of multiple phrases should be
clustered into a few failure categories.

For the categorization, weighted k-means clustering is used to assign different weights
to each factor in the FFLs. K-means clustering, which is widely used because of its simple
nature and intuitive advantages, minimizes the variance of the distances between the
cluster center and the data point. Weighted k-means clustering aims to minimize the
distance variance per cluster by grouping the given data into k clusters and assigning
weights to factors. The weights are a directly adjustable parameter.

The objective function of weighted k-means clustering is defined in Equation (3):

K

∑
k=1

N

∑
n=1

M

∑
m=1

in
k wm | ln

m − ck |2, (3)

where ck is calculated by Equation (4).

ck =
∑N

n=1 ∑M
m=1 in

k wmln
m

∑N
n=1 in

k

. (4)

in
k indicates whether ln belongs to the k-th cluster or not, with in

k set to 1 if ln belongs to the
k-th cluster and 0 otherwise. K, N, and M are the numbers of clusters, logs, and factors,
respectively, in the FFLs. wm is a weight vector of the factors in the FFLs. ln

m and ck refer to
a log in the n-th row with m factors and a centroid for the k-th cluster. The entire process
of clustering the vector representation of FFL logs using weighted k-means clustering is
shown in Algorithm 1.

Algorithm 1: Weighted k-means clustering.

Randomly select k centroids from all ln;
Set limit of iterations, MaxIter;
Iter ← 0 ;
repeat

For all ln, calculate the weighted distance to each centroid ck,
∑M

m=1 wm | ln
m − ck |2;

Assign all ln to its nearest centroid;
Compute the new controids by using Equation (4);
Iter ← Iter + 1;

until The centroids do not change or Iter ≥ MaxIter;

Weights should be given for all factors. In our case, a total of six factors, Facility,
Phenomenon, Cause, Location, Part, and Extracted phrases were used. Here, Facility,
Phenomenon, Cause, Location, and Part are categorical data in RFFLs, and Extracted
phrases are generated from text data. Each factor contributes only an assigned weight,
and the given weights are different in the clustering process. Since the extracted phrases
are represented in the vector based on semantic similarity, they are clearly distinguished
from similar and dissimilar phrases. Therefore, extracted phrases have more influence than
other factors.

We use two types of weights in our experiments. One is provided by experts, and
the other emphasizes the extracted phrases. The cluster is configured according to the
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parameter k, which is the number of clusters. In this paper, it refers to the number of failure
categories, with the FFLs clustered into a total of k failure categories. The clustering process
was implemented using the Pycluster [56] package, a module that provides clustering
algorithms in Python.

3.4. Deferred Time Process: Data Extension

In this step, data for identifying significant failure patterns are generated by mapping
the data. Data that include various factors can lead to diverse patterns. Because many
factors can form different combinations, this increases the number of pattern cases. Thus,
the data are extended through mapping to extract meaningful patterns.

Extended data are mapped using three types of data: Environmental data, failure
categories, and FFLs. Environmental data include the shop-floor temperature, operator
proficiency, working hours, and facility information. Operator proficiency means the
competence of each operator working on the shop floor. Working hours indicate the shift
time and meal-break time by shift. Facility information includes items such as the process to
which the facility belongs, the year it was installed on the shop floor, and the facility code.

Data extension proceeds in two steps, as follows. First, the failure categories, which
were output by the failure categorization step, are mapped to the FFLs, the output of
the phrase extraction step. Second, the mapped data in the first step are connected to
the environmental data. The final mapped data from the above two steps are used for
pattern mining.

3.5. Deferred Time Process: Failure Pattern Mining

Facility failure patterns representing situations where failure categories occur are
derived using the frequent patterns growth (FP-growth) algorithm [57], which mines
frequent patterns. The FP-growth algorithm constructs a tree structure containing the
frequency information and mines frequent itemsets through a recursive divide-and-conquer
approach. Details on the FP-growth algorithm can be found in [57]. We utilized the FP-
growth solution of SPMF open-source software [58], specialized in pattern mining, available
at the SPMF website [59].

Patterns consist of antecedent rules, which describe the cause eliciting a consequence,
and a consequent rule, which describes the result. The antecedents in the facility failure
patterns include the part, breakdown situation, temporal information such as the month
and day, location information such as the facility, and environmental information such as
the operator and age of the facility. The consequents in the facility failure patterns are the
failure categories.

There are two indicators for evaluating the mining patterns: Support and confidence,
calculated using the antecedents and the consequent. Support refers to the probability that
a pattern includes a specific environment and failure category in the whole pattern and is
defined by Equation (5):

Support(X → Y) = P(X ∩Y). (5)

In Equation (5), X is the antecedents and Y is the consequent. Confidence is the
probability that the pattern contains a specific environment, including a particular failure
category, and is defined as in Equation (6):

Con f idence(X → Y) =
P(X ∩Y)

P(X)
. (6)

3.6. Real-Time Process: Pre-Failure Alert Based on Failure Pattern Database

Alerting operators during their working hours through pre-failure alert lists, which
include possible malfunction types, allows the operators to prevent potential failures. The
operators enter their real-time logs sequentially into the alert system before beginning work,
and the alert system uses the log to list the corresponding failure categories, which are the
consequents in the matching-pattern rules, confidence values, and support values from the
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failure pattern database. The list is sorted by confidence level, with the highest-confidence
failure types displayed first, so that the operator can check the facility before beginning
work and prevent a potential failure.

Real-time logs include environmental information such as the facility, weather, day of
the week, and the operator who will receive the list. Real-time logs vary from operator to
operator and from time to time. Due to the nature of the manufacturing sites, operator shifts
may occur many times each day. The pre-failure alert list, which is provided based on the
real-time logs, corresponds to the characteristics of a site where the working environment
changes frequently.

The operator can use the given list to act in advance to prevent a potential malfunction
before starting work. Because the failure types are listed in order of confidence level, the
operator can identify the most likely failure category. If the highest-confidence failure type
in the pre-failure alert list given to a particular operator is “leaking”, they can check any
parts that can leak before they begin work. Thus, they can prevent failures by working
through the list provided based on the current real-time logs. This process is illustrated in
Figure 3.

Figure 3. Overview of the real-time process. The real-time logs and pre-failure alert list are examples
generated in our problem setting.

4. Results

The proposed framework was evaluated using a real-world dataset provided by the
manufacturer Woojin Industry [19]. This manufacturer collected failure logs, called RFFLs
in this paper, which recorded the relevant data when a machine malfunctioned. A total
of 1394 RFFLs used in this experiment were collected from the oxygen sensors between
February 2014 and January 2018.

Examples of RFFLs are shown in Table 4. No.1 in Table 4 means that the electric
machine of OZ Application 3 malfunctioned due to the discharge of the sensor battery.
However, there is no category for this cause, so the operator entered the breakdown cause
manually in the comment. No.3 in Table 4 is the log of a failure caused by a foreign
substance contaminating the wiring of OZ Checker 3. Disconnection was not in the
phenomenon category, so the operator added it to the comment.
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Table 4. Examples of raw facility failure logs (RFFLs) composed of facility, phenomenon, cause, location, part, and comment.

No. Facility Phenomenon Cause Location Part Comment

1
OZ

Applicator 3

Incorrect

operation

Unknown

cause
Electric Sensor Shutdown due to battery discharge

2
OZ

Checker 4

Unknown

phenomenon

Component

aging
Machine Heaters Elema is broken since the heater is old

3
OZ

Checker 3

Unknown

phenomenon

Foreign

substance
Electric Wiring Measuring section wire disconnection. Result: Does not work

Specifically, RFFLs include the facility, phenomenon, cause, location, part, and com-
ment. Facility is the facility name where the malfunction occurred, consisting of 25 category
values. Phenomenon is the symptom of failure and is recorded with one of 14 values.
Cause means the fundamental event causing facility failure and takes one of 17 values,
although some causes are not covered by any of the provided values. Location is the group
of parts or components where the failure occurred, with 5 and 19 values, respectively. The
comment is composed of data manually typed by operators to describe the failure because
it is difficult to explain the phenomenon or cause effectively using only the given category
options. A summary of the RFFLs is shown in Table 5.

Table 5. Summary of RFFLs composed of categorical (excluding comment) and textual (comment) data.

Factor Type The Number of Categories Category Examples

Facility

Category

25 OZ Machine 1, OZ Checker 4, OZ Applicator 1, OZ Applicator 3, OZ Granulator 1

Phenomenon 14 Poor connection, Worn parts, Malfunction, Component damage, Unknown phenomenon

Cause 17 Overload, Foreign substance, Component aging, Process abnormality, Unknown cause

Location 5 Hydraulic equipment, Air equipment, Mechanical equipment, Electrical equipment, Quality abnormality

Part 19 Cylinder, Wiring, PLC, Sensor, Heator

Comment Text - -

4.1. Experimental Settings

There are three parameters to be determined for failure categorization. First, the
dimension of the vector to represent the extracted phrases for categorization is determined.
Second, the number of failure categories, k, is determined. Third, the weight for the k-means
clustering of each factor in the FFLs is set.

Extracted phrases in the FFLs are embedded in a vector of 200 dimensions using
phrase2vec. Vector dimensions that are too large or too small will limit the ability to fully
express the meaning of the text. The vector dimension 200 is commonly used for text
data [60].

The number of failure categories, k, is qualitatively predefined in the range from 15
to 20. With a larger k, the categorization meaning disappears, whereas with a smaller k,
the variance between categories increases [61]. Furthermore, the following two reasons
influenced us in setting the k value in the range from 15 to 20. First, there are 14 phenomena
and 17 causes in the RFFLs. Second, managers and operators at the site judged that from
15 to 20 failure categories were adequate.

In categorizing FFLs into approximately k categories, weights were given differently
for each factor in the FFLs, as shown in Table 6. The weights for the factors were deter-
mined by interviewing experts on-site and by emphasizing the extracted phrases. The
facility weight was the highest, and extracted phrases had the lowest weights in the expert
weighting. Emphasizing phrases had the largest weights among the extracted phrases, and
they had the smallest weights for phenomena and causes that were not properly catego-
rized. The weight values were selected for the best performance after the experiments for
several cases.
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Table 6. Weights of FFL factors indicating weight utilized for the weighted k-means clustering and
compared methods.

Factor
Weights

Given
Equally

Given
by Experts

Emphasizing
Phrases

Facility 1.0 3.0 2.0
Phenomenon 1.0 2.8 1.5

Cause 1.0 2.5 1.5
Location 1.0 2.0 2.0

Part 1.0 1.5 2.0
Extracted phrases 1.0 0.8 3.0

For the performance comparison, k-means clustering, which is not considered weight-
ing by the factors, was selected as the baseline. K-means clustering clustering groups the
given data into k clusters to minimize the variance of the distance from each cluster [62].
The method treats all factors fairly in the clustering process and sets the weights of all
features equally when evaluating dissimilarity, as shown in the “Given equally” column of
Table 6.

Popular cluster evaluation metrics such as the adjusted rand index and V-measure
were employed to identify performance differences between the proposed and comparison
methods. Both metrics are external cluster validation measures and have a value between
0 and 1. External index measures evaluate whether a label is assigned to the correct
class using known data for the labels. Therefore, labeled data is required to use the two
metrics to evaluate the failure categorization. The data were labeled by qualitative failure
categorization by experts, resulting in 708 FFL logs collected, labeled, and assigned to
seven failure categories.

Adjusted rand index [63] is a metric to solve a problem with the rand index [64], which
tends to increase in value as the number of clusters increases. Rand index is the ratio of the
number of pairs that are correctly clustered to the number of all pairs. The adjusted rand
index is shown in Equation (7):

ARI =
(n

2)(TP + TN)− [(TP + FP)(TP + FN) + (FN + TN)(FP + TN)]

(n
2)

2 − [(TP + FP)(TP + FN) + (FN + TN)(FP + TN)]
, (7)

where n is the total number of possible combinations of pairs from the given data. TP (true
positive) is a pair clustered in the same category when the labels are the same. TN (true
negative) refers to a pair clustered in different categories when the labels are different. FP
(false positive) and FN (false negative) indicate incorrect clustering. FP is a pair with the
same label that is clustered in different categories, whereas FN is a pair with different labels
that is clustered in the same category.

V-measure [65] is defined as the harmonic mean of homogeneity and completeness.
Let Q, K be a set of classes categorized qualitatively by experts and a set of clusters,
respectively. Then, the homogeneity score is defined as follows:

homogeneity =

{
1 i f H(Q, K) = 0

1− H(Q|K)
H(Q)

o.w.
, (8)

where H(Q | K) and H(Q) are defined as in Equations (9) and (10), respectively.

H(Q | K) = −
|K|

∑
k=1

|Q|

∑
q=1

bqk

N
log

bqk

∑
|Q|
q=1 bqk

, (9)
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H(Q) = −
|Q|

∑
q=1

∑
|K|
k=1 bqk

n
log

∑
|K|
k=1 bqk

n
, (10)

where bqk is the number of logs in both categorized class q and cluster k, and N and n
are the number of logs and the number of classes, respectively. The homogeneity score
increases when each cluster contains only the same labels as are possible, as shown in
Equation (8). The completeness score aims to include all given labels in one cluster and is
calculated by Equation (11).

completeness =

{
1 i f H(K, Q) = 0

1− H(K|Q)
H(K) o.w.

, (11)

where H(K | Q) and H(K), respectively, are defined as in Equations (12) and (13), respectively.

H(K | Q) = −
|Q|

∑
q=1

|K|

∑
k=1

bqk

N
log

bqk

∑
|K|
k=1 bqk

(12)

H(K) = −
|K|

∑
k=1

∑
|Q|
q=1 bqk

n
log

∑
|Q|
q=1 bqk

n
. (13)

In Equation (14), the parameter β is used to adjust the weights of homogeneity h and
completeness c.

Vβ =
(1 + β) ∗ h ∗ c
(β ∗ h) + c

(14)

The failure patterns derived from pattern mining were evaluated using two values:
Support and confidence. The two values are calculated from the antecedents and conse-
quents, which are the environment and failure categories, respectively. The higher the
two values, the more frequently the pattern occurs, with the patterns with the highest
values judged as the most significant. Therefore, we evaluated the quality of the failure pat-
terns by identifying and comparing the distributions and maximum values of confidence
and support.

4.2. Experiment Results
4.2.1. Phrase Extraction Results

In the phrase extraction step, significant phrases were extracted from RFFL comments
using a word-usage dictionary. The dictionary was constructed by dividing phrases, which
are the smallest units with meaning contained in the comment, by their word usage. In
addition, technical jargon for the apparatus, included in the reference data or obtained by
crawling, was added to the dictionary. The phrases were extracted by matching the words
in the comment by defined word usages using the dictionary.

Table 7 shows examples of phrases extracted from RFFLs. Since multiple phrases
were extracted from a single row of the comment factor, total 2446 phrases were extracted
from 1394 RFFLs. The frequency of appearance (as a percentage of the total) by clustering
2446 phrases into 17 representative types is shown in Figure 4. It is confirmed that phrases
related to wiring break were extracted the most.
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Figure 4. Bar graph showing the frequency of appearance as a percentage of the total by clustering all 2446 phrases into
17 representative types.

Table 7. Examples of extracted phrases from comment in RFFLs. Multiple phrases are extracted from a single comment.

Comment Extracted phrases

Cause: Cylinder sensor error
Symptom: Cylinder malfunction
Action: Replace sensor

Cylinder sensor failure
Cylinder malfunction

Symptom: Elema heater current not flowing
Cause: Breakdown of Paracon

Elema heater current not flowing
Breakdown of Paracon

Abnormal operation of old cylinder No. 7 Abnormal operation
Old cylinder No. 7

Failure in supply cylinder of heat unit Failure in supply cylinder of heat unit

Straight line stopped due to compressor failure Compressor failure

Detection of a faulty heater due to breakage Elema Breakage Elema

Replacement of heater due to Impurity No. 1 disconnection Impurity No. 1 disconnection

4.2.2. Failure Categorization Results

The results of the performance measurement are depicted in Figure 5. As mentioned
above, V-measure and rand index were used to compare k-means clustering (black line
in Figure 5), weighted k-means clustering with the weights given by experts (green line
in Figure 5), and weighted k-means clustering with the weights emphasizing phrases
(light blue line in Figure 5). The average, minimum value, and maximum value after
repeating the calculation 15 times are displayed together on each data point. Weighted
k-means clustering using the weights emphasizing phrases generated better results than
the other methods. In particular, the result shows the best performance when k is 17. The
rand index result tends to increase as k increases, and the range of weighted k-means
focused on extracted phrases is smaller than that of others. A similar trend is found in the
V-measure results.
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K-means

Weighted k-means (experts)

Weighted k-means (phrases)

Figure 5. Experiment results of the proposed and compared methods in failure categorization using rand index and
V-measure according to diverse k.

4.2.3. Data Extension Results

EFFLs, which consist of antecedents and a consequent, are generated by matching
three data elements: FFLs, failure categories, and environmental data. The input data
for pattern derivation and the factors are shown in Table 8. There are 21 factors in total,
with 20 antecedents and one consequent. Morning or afternoon or night indicates the
time period when the breakdown occurred. Lunch time or not, dinner time or not, and
midnight mealtime or not indicate whether the facility fails in a mealtime as defined at the
site. Average temperature is the site temperature at the time of failure. The cumulative
failure number of the facility is the cumulative number of times the facility failed, and the
cumulative failure number of the operator is the cumulative number of times any facility
failed while being controlled by the operator. The degree of facility aging is the time from
when the facility was installed at the site to when it failed.

Table 8. List of factors in EFFLs with 20 antecedents and one consequent.

Rule Factor

Antecedent

Facility
Location
Person of action
Action time(minutes)
Operator
Operator proficiency
Shift time or not
Time
Morning or afternoon or night
Lunch time or not
Dinner time or not
Midnight mealtime or not
Day of the week
Season
Average temperature(◦C)
The cumulative failure number of facility(times)
Failure interval(days)
The cumulative failure number of operator(times)
The number of monthly failures
Degree of facility aging

Consequent Failure category
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4.2.4. Pattern Mining Results

Failure patterns were obtained by applying FP-growth to EFFLs. Table 9 shows
examples of failure patterns that have high confidence values. The pattern in the first
row of the table can be described as follows. When the antecedents are “OZ Machine 1”,
“Person of action 1”, “Air equipment”, “Not shift time”, “Not lunch time”, “Not dinner
time”, and “Not midnight meal time”, the failure category “aging” accounted for 29% of
the total patterns. The confidence value is 97%, indicating that the failure category “aging”
accounts for over 90% of the overall patterns that satisfy the antecedents.

Table 9. Examples of the extracted failure patterns sorted by confidence value.

Antecedents Consequent Support Confidence

“OZ Machine 1”, “Person of action 1”, “Air equipment”,
“Not shift time”, “Not lunch time”, “Not dinner time”, “Not midnight mealtime” Aging 0.29 0.97

“OZ Machine 11”, “Machine equipment”, “Person of action 1”,
“Not shift time”, “Not lunch time”, “Facility aging: The worst” Part damage 0.25 0.76

“OZ Machine 4”, “Electronic equipment”, “Operator proficiency: B”,
“Not lunch time”, “Not dinner time”, “Failure interval: 0 (days)” Cylinder breakage 0.30 0.63

The maximum confidence and support values among the derived patterns are 100%
and 53%, respectively. A total of 2653 patterns were derived, and the failure categories
derived in these patterns accounted for 11 out of the 17 possible failure categories.

Figure 6 is a scatter plot demonstrating the support and confidence values for each
pattern. The x-axis shows the support, the y-axis shows the confidence, and one point
corresponds to one pattern. The more patterns with the same support and confidence
values, the darker the color of the point. The scatter plot shows that the confidence values
are distributed over a large area for the same support value. In particular, it can be seen
that clear failure patterns are detected through the dark points that exist in the area of more
than 80% confidence.

1.0

0.8

0.6

0.4

0.2

C
o
n
fi
d
en

ce

0.25 0.30 0.35 0.40 0.45 0.50 0.55

Support

Figure 6. Scatter plot of patterns according to confidence and support values, where the darkness of
a point indicates the frequency of the pattern.

We also classified 17 possible failure categories from a 124-dimensional one-hot vector
representing antecedents using an ANN, implemented with scikit-learn [66] package of
Python. The ANN, composed of one 100-dimensional hidden layer and rectified linear
units (ReLU) activation function, was trained using Adam optimizer [67] with β1 = 0.9,
β2 = 0.999, and ε = 10−8. L2 regularization with weight decay of 10−4 was also used to
prevent overfitting. All 2653 data were randomly split into training set and test set at a
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ratio of 8 to 2, and the ANN model was trained for 30 epochs through cross entropy loss.
As a result of measuring the classification accuracy for the test set after model training with
the training set, accuracy of 85.2% was obtained.

5. Real-World Facility Failure Scenario

The proposed framework can be applied to real-world scenarios at actual manufac-
turing sites. For real-world applications, we compared the pre-failure alert lists of two
operators controlling the same facility. Let Operators 1 and 2 have different job proficien-
cies—high expertise and low expertise, respectively. The examples are shown in Table 10,
the pre-failure alert list for Operator 1, and Table 11, the pre-failure alert list for Operator
2. The scenario shows the failure types in Operator 1’s list are more diverse than those
in Operator 2’s. Assuming the preceding rule is the same, the difference in failure types
implies that the confidence values are low, so the list for Operator 1 shows more types than
that for Operator 2.

The pre-failure alert lists for the two operators included in this scenario are visualized
in Figure 7, which shows the pre-failure alert list patterns for Operator 1, and Figure 8,
which shows the same for Operator 2. White nodes denote the antecedents, and gray
denotes the consequent. The edges indicate the confidence value for the pattern with
the antecedents and the consequent, where the higher the value, the thicker the edge.
The visualization confirms that Operator 1’s list has low confidence values with more
breakdown types than Operator 2’s.

Table 10. Pre-failure list of Operator 1 with high expertise.

Antecedents Consequent Support Confidence

Failure location: Electronic equipment
Not lunch time
Not midnight mealtime

Aging 0.23 0.37

Location: Electronic equipment
Not lunch time
Failure interval (days): 3∼5
Facility aging: Good

Center shift 0.26 0.34

Location: Electronic equipment
Not lunch time
Not dinner time
Failure interval (days): 0

Malfunction 0.29 0.19

Location: Machine equipment
Not shift time
Not lunch time
Not dinner time
The cumulative failure number of operator (times): 121∼180

Substance 0.20 0.12
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Table 11. Pre-failure list of Operator 2 with low expertise.

Antecedents Consequent Support Confidence

Failure location: Air equipment
Not shift time
Not dinner time
Not midnight mealtime
Person of action 1

Aging 0.39 0.97

Location: Machine equipment
Not shift time
Not lunch time
Facility aging: Good

Part damage 0.35 0.76

Location: Machine equipment
Not lunch time
The cumulative failure number of operator (times): 45∼58
The cumulative failure number of facility (times): 41∼90

Part damage 0.35 0.70

Location: Machine equipment
Not shift time
Failure interval (days): 0

Part damage 0.45 0.56

Not shift time

Machine equipment

Not lunch time

Electronic

equipment

Failure interval(days) : 3~5
Failure aging : Good

Failure interval(days) : 0

Not dinner time

Not midnight meal time

Center shift

Malfunction

Aging

Foreign substance

The cumulative failure number of operator(times) : 

121~180

Figure 7. Visualization of a pre-failure list for Operator 1, where white and gray node respectively
represent antecedent and consequent and thickness of edge represent the confidence value of patterns.
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Failure aging : The worst
Failure interval(days) : 0

Machine equipment

The cumulative failure number of facility(times) : 

41~90

The cumulative failure number of operator(times) : 

45~58

Not lunch time

Not shift time

Person of action 1

Not dinner time

Air equipment

Not midnight meal time

Part damage

Aging

Figure 8. Visualization of a pre-failure list for Operator 2, where white and gray node respectively
represent antecedent and consequent and thickness of edge represent the confidence value of patterns.

6. Conclusions

In this paper, we proposed a real-world facility failure prevention framework based
on failure logs to prevent facility failures that directly affect the production rate at manufac-
turing sites. Specifically, operators are alerted with pre-failure alert lists at every shift time,
reflecting that many manufacturing sites have multiple shifts and the work environment
changes frequently. The failure logs containing text data were categorized and mapped
to environmental data to build a failure pattern database to generate the list. When the
real-time logs are searched in the failure pattern database via the alert system, a pre-failure
alert list corresponding to the real-time logs can be provided.

To determine the failure phenomena and causes from the text data input directly by
the operator, phrases were extracted to determine the meaning. In the failure categorization
step for pattern mining, the weight of each factor in the failure logs was assigned to give
more weight to phrases that indicate the breakdown phenomenon or cause. The data have
been extended to vary the number of pattern cases by mapping to various environmental
information. When the list was extracted for two operators with different proficiencies
given the environmental information, we found that high-confidence-value breakdown
types were extracted for less skilled operators.

Even when a pre-failure alert list has been given, breakdowns can occur for a variety
of reasons. Therefore, our future work will be building a system that provides repair
methods for the corresponding breakdowns so that, even if a malfunction occurs, it can be
managed successfully.
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