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Abstract: This article presents a description of a novel method for the identification of a decrease in
the temperature of a liquid medium transported by railroad tank cars. No exact analytical solution
exists for this phenomenon; therefore, the authors of this article have prepared a mathematical
expression for the cooling process of the transported fluid by applying a dimensional analysis,
which facilitated the identification of the dimensionless criteria using the relevant dimensional
parameters. A functional dependence between the criteria can be identified through a physical or
numerical experiment. In this case, a database of the results from a detailed numerical model was
used; however, its disadvantage is that the calculation takes much longer than in a simpler similarity
model. The output of the similarity model was a function of the average temperature of the fluid at a
time applicable to various alternatives in the geometrical, physical, and boundary conditions. The
standard deviation of the difference between the temperatures predicted by the similarity model and
those calculated by the numerical simulation Tmod − Tsim represented 4.8% relative to the simulated
fluid temperature.

Keywords: cooling; numerical simulation; dimensional analysis; mathematical model

1. Introduction

The cooling process of fluids during their transport or storage in tanks represents a
complex issue in terms of both thermomechanics and fluid mechanics. The whole process
may be described by a system of partial differential equations, which can only be solved
numerically and with the use of advanced software, such as ANSYS. However, this typically
requires extensive computer time, which is sometimes not available in practice.

No analytical solutions are available for such a complex process. For this reason,
efforts have been aimed at finding the mathematical procedures that would describe this
phenomenon with the highest possible degree of simplicity and sufficient accuracy. In this
case, a solution is proposed using a criterion equation. Such an equation may be derived
from the relevant parameters through a dimensional analysis. The equation derivation is
described in detail in Section 3.

Before any new procedure is recommended for practical application, it must be
verified, and the respective boundary conditions must be determined. During the trans-
portation of liquids in large volumes, verification of the description of the liquid cooling
process for different liquids and different transportation distances cannot be carried out
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through a physical experiment. In such cases, a numerical experiment is applied in the
appropriate boundary conditions.

At present, a numerical experiment is normally used in the field of combined heat
transfer and flow when complicated tasks are solved. Numerical modelling has been
applied in specific fields of technology, such as the research on the effects of the addition of
copper oxide nanoparticles on a heat transfer while applying the finite element method
(FEM) in a COMSOL Multiphysics environment [1]. The finite volume method (FVM) was
used, for example, in the investigation of a two-phase laminar mixing layer at supercritical
pressures [2]. This method was also used to solve the increase of a turbulent heat transfer
in a mini-channel cooler [3], in a study on the effects of loop heat pipes on the heat
transfer [4], and in other various applied technology studies [5–10], which describe, for
example, the development and application of advanced technological solutions within
the construction of an experimental vehicle, detailed CFD simulations of pure substance
condensation on horizontal annular low-finned tubes including a parameter study of the
fin slope, a numerical analysis of the thermal conductivity effect on the thermophoresis
of a charged colloidal particle in an aqueous media, and the modelling of a segmented
skutterudite-based thermoelectric generator to achieve the maximum conversion efficiency.

The outputs of the numerical experiment were used by the authors of this article
to find the specific parameters for the criterial equation in the calculation of the average
temperature of the fluid transported in tanks.

2. Problem Description and Analysis

The temperature of the transported fluid was identified by applying a dimensional
analysis. The authors of the present article possess extensive experience with the appli-
cation of this particular method, and the description and modelling of various complex
phenomena. This method was previously applied, for example, to a description of the for-
mation of nitrogen oxides during dendromass combustion. The obtained criterial equation
was verified by a physical experiment carried out in the Werner combustion device with
the power of 13 kW [11]. The results obtained from the model were in agreement with the
results obtained in situ, using the HORYBA ENDA–680P analyser. A relative difference
between the values of the nitrogen oxides obtained by direct measurements and those
obtained from the created model ranged from −0.54 to +0.48%. This method was also
applied to the prediction of nitrogen concentrations in the River Laborec in Slovakia [12].
A sensitivity analysis showed that the air and water temperatures significantly affect the
concentrations of pollutants in rivers. Despite significant variability in the river pollution
conditions throughout the year, the average annual pollution indicators, as monitored by
an accredited laboratory, were in excellent agreement with the results obtained from the
created model. A dimensional analysis was also applied to the evaluation of the profits
generated from the production of electric energy in hydropower plants [13]. The resulting
criterial equation was verified at the Ružín Hydropower Plant located in Slovakia. In this
case, the dimensional analysis was used to provide a description of an economical, not
physical process. This dimensional analysis has proved suitable for use in investigations in
this particular field.

The transportation of different types of fluids in tanks of various sizes performed in
various surrounding environments is accompanied by a spontaneous cooling of the fluids.
A complex physical problem involving heat transfer and the concurrent heat flow cannot
be solved by analytical methods. Therefore, the authors have addressed this problem using
the similarity criteria together with a numerical experiment. The innovative approach
presented in the present solution lies in the simplicity of use of the created model for
identifying the average temperature of a transported fluid. As a result, the application of
time-consuming numerical simulations is unnecessary.

During the creation of the mathematical model, the physical parameters affecting the
cooling of the transported medium were selected following a thorough problem analy-
sis [14–19]. This analysis showed that the cooling process was affected by the parameters
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listed in Table 1, which also details the ranges of values used in the subsequent numerical
simulations. During the model creation, the dimensions of the selected physical parameters
were always converted into seven SI base units (kg, m, s, K, A, mol, and cd). The relevant
parameters of the model contained four base dimensions, i.e., kg, m, s, and K.

Table 1. Input quantities for the numerical calculations.

No. Quantities Range

1 dynamic viscosity η (Pa·s = m−1·kg·s−1) 0.003–100

2 thermal conductivity λ (W·m−1·K−1 = m·kg·s−3·K−1) 0.14–1.00

3 specific heat capacity cp (J·kg−1·K−1 = m2·s−2·K−1) 500–4200

4 density ρ (kg·m−3) 800–2000

5 thermal volumetric expansion βt (K−1) 0.000267–0.003

6 characteristic dimension dch (m) 1.84–3.12

7 time τ (h ≈ s) 0–60

8 baseline temperature T0 (◦C) 48–180

9 ambient temperature Ta (◦C) 0

10 overall heat transfer coefficient
k (W·m−2 K−1 = kg·s−3·K−1) 0.1–0.9

To ensure that the mathematical model was created while taking various tank diame-
ters and lengths into account, the characteristic dimension dch was applied to the model
instead of the basic dimensions of a transport tank. This characteristic dimension may be
determined for a particular object on the basis of its volume V and surface area S, using the
following formula:

dch =
4V
S

(1)

For a cylindrical tank with a length l and diameter d, the characteristic dimension was
calculated as follows:

dch =
4π·d2·l

4·
(

π·d·l + 2π·d2

4

) =
d

1 + d
2l

(2)

At an indefinite length l, dch equals d.

3. Similarity Model Based on the Criterial Equation

A physical phenomenon for which the complete physical equation cannot be directly
solved, or where such an equation is unknown, may be described using a criterial equa-
tion [20]. Within the process for identification of the criterial equation, the dimensional
quantities are replaced with the similarity criteria, and the functional dependencies be-
tween the individual criteria are identified experimentally or by numerical calculation. The
criterial equation is then applicable to the entire group of similar phenomena.

A detailed procedure for applying a dimensional analysis to describe a phenomenon
for which no exact analytical solution is known is described in papers [21,22].

The solution expressed by a criterial equation always gives the number of criteria π
that is smaller than the number of the relevant parameters n. Any phenomenon may be
described by a basic equation expressing the correlations among n relevant parameters
ϕ1 . . . ϕ2 . . . ϕi . . . ϕn of various dimensions, i.e.,

f (ϕ1, ϕ2 . . . ϕi . . . ϕn) = 0 (3)
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For each ϕ quantity, the dimensional formula may be written on the basis of the
defining equation. This is the product of the symbols of the base units with the respective
exponents. For seven SI base units, the dimensional formula is as follows:

[ϕ] = mx1 ·kgx2 ·sx3 ·Ax4 ·Kx5 ·molx6 ·cdx7 (4)

In Equation (4), x1, x2 . . . are the dimensional exponents (rational numbers).
Equation (4) for a particular problem does not have to contain all of the seven base

dimensions. For the area of heat transfer and flow, four dimensions are most frequently
applied (kg, m, s, and K).

Equation (3) is dimensionally homogeneous, so the ϕi quantities in the equation
cannot occur alone, but occur in the form of the products:

π =
n

∏
i=1

ϕ
xi
i (5)

where in

π: is the dimensionless variable (the similarity criterion) (1);
xi: is the exponent (rational number); and
ϕi: are the physical quantities with the respective dimensions.

According to Equation (3), and considering the physical quantities listed in Table 1,
the following must apply:

f
(
η, λ, cp, $, β, dch, τ, T0 − T, T0 − Ta, k

)
= 0 (6)

In general, l criteria may be created for a particular phenomenon. For the n = 10
physical quantities listed in Table 1, with the four base dimensions d of these parameters
(kg, m, s, andK), it is possible to write a system of four equations with ten unknowns.
These equations are linearly independent, because the rank r of the system matrix equals
the number of base dimensions d, r = d. The total number of the criteria being sought π is
then l = n − r = 10 − 4 = 6.

Thus, physical Equation (3) is transformed into the following dimensionless form:

F(π1, π2, π3, π4, π5, π6) = 0 (7)

According to Equation (5), Formula (6) is changed as follows:

π = ηx1 ·λx2 ·cp
x3 ·$x4 ·βx5 ·dch

x6 ·τx7 ·(T0 − T)x8 ·(T0 − Ta)
x9 ·kx10 (8)

for which the dimensional formula is as follows:

1 = (m−1·kg·s−1)
x1 ·(m·kg·s−3·K−1)

x2 ·(m2·s−2·K−1)
x3 ·(kg·m−3)

x4

·(K−1)
x5 ·(m)x6 ·(s)x7 ·(K)x8 ·(K)x9 ·(kg·s−3·K−1)

x10 (9)

The sum of the dimensional exponents for each base unit must equal zero, because the
left side of Equation (9) equals one. Therefore, the individual dimensions of the physical
parameters (m, kg, s, and K), which affect the fluid cooling process, are subject to the
following system of equations:

− x1 + x2 + 2x3 − 3x4 + x6 = 0 (10)

x1 + x2 + x4 + x10 = 0 (11)

− x1 − 3x2 − 2x3 + x7 − 3x10 = 0 (12)

− x2 − x3 − x5 + x8 + x9 − x10 = 0 (13)
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In Equations (10)–(13) there are 10 unknowns. In order to obtain six independent crite-
ria π, it was necessary to perform six independent solutions of the system of
Equations (10)–(13), and to select the values of six unknowns xi each time. It is not possible
to provide explicit instructions for how to select the unknowns. A usual procedure is that
one unknown equals one, and the other unknowns equal zero. There is only one limitation
to this selection method; in particular, the selected unknowns must not be mutually depen-
dent. Therefore, in the system of Equations (10)–(13) it was not possible to arbitrarily select
in the same solution, for example, the unknowns x1, x2, x4, x10 at the same time.

Regarding the phenomenon analysed herein, the first criterion was derived directly,
without solving the system of Equations (10)–(13). The quantities sought for the cooling
of the liquid were the decrease in the baseline temperature of the liquid T0 over the time
τ. At the time τ, the liquid temperature T was lower than the baseline temperature T0.
Hence, the temperature difference ∆T was T0–T. The fact that the physical quantities also
included the ambient temperature Ta, this temperature was directly included in the criteria
of similarity π, for example, using the temperature difference T0–Ta.

In line with the dimensional analysis principles, the quantities with identical dimen-
sions may be expressed as a single criterion, referred to as the simplex. As a result, the
first criterion for the examination of the liquid cooling process was the simplex of the
temperatures that was defined by the following formula:

π1 =
T0 − T
T0 − Ta

(14)

The other criteria of similarity, π2 through π6, were identified by applying the pro-
cedure described above. The difference T0–T was already included in the π1 criterion;
therefore, in all other solutions, x8 equals 0.

If, for example, the selected unknowns are as follows: x7 = 1 and x1 = x5 = x8 = x9 =
x10 = 0, then x2 = 1; x3 = −1; x4 = −1; x6 = −2, while the second criterion is in the form of
the Fourier number:

π2 =
λ·τ

cp·ρ·d2
ch

=
a·τ
d2

ch
= Fo (15)

A similar procedure was applied to obtain the following criteria:

π3 =
k·dch

λ
(16)

π4 = β·(T0 − Ta) (17)

π5 =
ν·ρ·cp

λ
=

ν

a
= Pr (18)

π6 =
cp·ρ2·d2

ch·(T0 − Ta)

η2 =
cp·d2

ch·(T0 − Ta)

ν2 (19)

The quantity being sought T was located within the criterion π1; therefore, this
criterion was expressed as follows, as a function of the remaining criteria:

π1 = ψ(π2, π3, π4, π5, π6) (20)

4. Numerical Solution

The identification of the temperature of the fluid being transported in a tank was car-
ried out through several numerical calculations. The procedure also included a comparison
of the differences in liquid temperatures during the cooling process.

The numerical solution was carried out in the ANSYS_CFX environment, in which the
flows inside the fluid were described using a continuity equation and the Navier–Stokes
equation. The lift force was described using the Boussinesq approximation. The thermal
field inside the fluid was analysed with the Fourier–Kirchhoff equation, while the thermal
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field inside the tank wall was analysed with the Fourier equation. The contact between
the fluid and the tank was subject to a “conservative interface flux”. It was assumed that
the outer surface of the tank exhibited heat loss through convection and radiation. The
baseline conditions included the zero speed of the fluid, a defined baseline temperature of
the fluid, and a defined static pressure. The task was solved in a time-dependent manner,
with a total time of 60 h in 30 s increments.

In total, 51 simulations of the cooling of liquids with different physical properties
were performed. Physical properties that varied included the dynamic viscosity, density,
specific heat capacity, volumetric thermal expansion, and the thermal conductivity. The
simulations were carried out while also taking into account the different baseline fluid
temperatures and different tank dimensions. Two boundary conditions were identical in
all the simulation solutions; in particular, the ambient temperature and the percentage of
the tank volume filled with the fluid. The ambient temperature Ta was 0 ◦C, and the tank
was always filled to 90% of its volume. The remaining 10% of the tank volume above the
fluid level contained air.

The objective was to obtain a database of the effects of all the physical properties of
the particular fluids, the conditions of the surrounding environment, and the size of a
tank on the drops in the fluid temperature relative to the transport duration. The criterial
equation may only contain one, i.e., the mean, temperature of the fluid. This was identified
by a numerical simulation as the average value of all fluid temperatures identified at the
relevant times.

As the fluid spontaneously cools in the tank, it circulates due to natural convection
(a cooler fluid has a higher viscosity and descends along the internal circumference of
the tank to the lower part), and this enhances the homogeneity of the thermal field. Such
an enhancement of the homogeneity depends primarily on the fluid’s viscosity. The
effect of viscosity was verified in more detail for the following physical and boundary
conditions: the density of the transported liquid was 1800 kg·m−3; the overall heat transfer
coefficient k was 0.3965 W·m−2·K−1 (applicable to an insulation thickness of 100 mm, with
a thermal conductivity of 0.04 W·m−1·K−1, and an overall heat transfer coefficient αc of
45 W·m−2·K−1 on the tank jacket surface); the thermal conductivity of the liquid was
0.14 W·m−1·K−1; the heat capacity of the transported liquid was 1310 J·kg−1·K−1; and
the coefficient of volumetric expansion of the liquid β was 2.67·10−4 K−1. The dynamic
viscosity varied within the range from 0.0003 to 100 Pa·s, while the baseline temperature of
the fluid was 180 ◦C, and the characteristic dimension was 2.5 m. The ambient temperature
taken into account was 0 ◦C.

The numerical calculations showed that at a low dynamic viscosity (0.01 Pa·s), as
shown in Figure 1, the temperature gradient along the tank height in its vertical axis after
60 h was negligible. With an increasing dynamic viscosity, the liquid circulation ceased,
and after reaching the value of approximately 6 Pa·s, the liquid exhibited thermal layering
(Figure 2a). In the case of a liquid with a dynamic viscosity of 100 Pa·s, the layering
is significant, as is shown in Figure 2b. After 60 h of cooling, the liquid temperature
difference along the tank height was as much as 42.9 ◦C (Figure 3). The lower temperatures
at the bottom of the tank may even cause the transported liquid to solidify. With the low
viscosities of 0.01 and 0.0003 Pa·s, the temperature difference was as low as 0.5 ◦C; as a
result, the two curves overlap on the graph.

As presented above, at the dynamic viscosity of 100 Pa·s, the temperature difference
along the liquid height was significant. The liquid temperature in the lower part of the tank
dropped sharply as the colder liquid from the boundary layer flowed down along the tank
circumference to the lower part of the tank. The largest temperature drop was observed
within the height of 0.20 m from the tank bottom, whereas the temperature gradient was
significantly smaller above this height (Figure 4).

At the viscosity of 0.01 Pa·s, the temperature along the tank height remained virtually
unchanged, except for the temperature changes that were observed within the height of
0.024 m from the tank bottom (Figure 4). Above this height, the calculated temperature
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gradient approached zero. The thermal profiles for the remaining investigated values
of dynamic viscosity were located between the curves of the maximum and minimum
viscosity. See the curve for a viscosity of 6 Pa·s in Figure 4.
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5. Identification of the Criterial Equation Parameters

Provided that the correlations between the dimensionless arguments in Equation (20)
are power correlations, the equation is as follows:

π1 = C·πz2
2 ·πz3

3 ·πz4
4 ·πz5

5 ·πz6
6 (21)

In the logarithmic coordinates, such a correlation is linear, as follows:

ln π1 = ln C + z2· ln π2 + z3· ln π3 + z4· ln π4 + z5· ln π5 + z6· ln π6 (22)

The C constant and the individual exponents z2 through z6 were identified using
multiple linear regression. The results of the numerical simulations were used as the input
data for the regression. The numerical simulation revealed that the average temperature
of the fluid decreased over time very slowly. Therefore, temperature values in the longer
time intervals were used when setting the constant and the exponents. In 31 simulations,
this interval was 5 h, while in 20 simulations, the interval was 2 h. For the total period
of 60 h, 972 values of the average temperature were obtained. These temperatures were
calculated for various times and various combinations of the relevant parameters. The
ranges in which the individual parameters were changed are presented in Table 1 above.

The values of the constant and the exponents are listed in Table 2. The coefficient of
determination for the multiple linear regression represented 0.9978. The regression sum of
squares was 958.83, and the residual sum of squares was 2.1096.

Table 2. Parameters of the regression function.

Constant Exponent

C z2 z3 z4 z5 z6

5.349 × 10−1 1.080 × 100 9.638 × 10−1 3.880 × 10−3 8.740 × 10−2 4.990 × 10−2

The long version of criterial Equation (18) is as follows:

π1 = C·
(

a·τ
d2

ch

)z2

·
(

k·dch
λ

)z3

·[(β·(T0 − Ta)]
z4 ·
(ν

a

)z5
·
[

cp·d2
ch·(T0 − Ta)

ν2

]z6

(23)
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The sought temperature T was calculated using the temperature simplex π1, as defined
by Formula (11), using the following equation:

T = T0 − (T0 − Ta)·π1 (24)

6. Discussion and Conclusions

The results of the numerical solution exhibited an excellent accordance with the results
of the similarity model. Figure 5 shows a correlation between the Tmod, calculated using
Formula (24), and the Tsim obtained from the numerical simulation. It may be described
by a regression line with the slope approaching one, in particular 0.9997, at the reliability
value (square power of the correlation index) R2 = 0.9999. The standard deviation of the
difference Tmod–Tsim for 972 pairs of values was 0.27 K, which represents 4.8% relative to
the average simulated temperature.
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Figure 5. Correlation between the temperature of the liquid predicted by the model and the tempera-
ture calculated by the numerical simulation.

The regression model was validated using the Student’s t-test and the f-test. A critical
threshold for 972 pairs of values at the significance level of 0.05 was 1.962 according to the
Student’s t-test distribution. The test criterion value 1.171 did not exceed this value; this
means that the numerical model and the similarity model provided consistent results. The
Fisher–Snedecor distribution F with 6 regression parameters and 972 − 6 = 966 degrees
of freedom was used as the test criterion. As its value 1.9 × 106 is much higher than the
quantile value 2.58 of the Fisher–Snedecor distribution for the level of significance 0.05, the
regression model is significant.

The model, Equation (21), represents a universal formula for expressing the correlation
between the temperature of a cooling fluid and the transport duration. The ranges listed in
Table 1 are subject to the formula that is applicable to all the combinations of values for the
physical parameters.

The benefit of defining the mean temperature of a fluid in the form of a criterial
equation, depending on the transport duration, is that it fills the gap between the partial
analytical procedures applied in the field of heat and mass transfer, and flow. Therefore, it
is not necessary to apply numerical methods to each tank with a different fluid in different
boundary conditions and with different transport durations.

The created model may be used by carriers responsible for transporting fluids. By a
simple programming of the Equations (20) and (21), for example, in an Excel document, it
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is possible to quickly identify how long a particular fluid with certain physical properties
may be transported without the risk of solidification.
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