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Abstract: Metal magnesium (Mg) fuels have been widely used in rocket propellants. The combus-
tion study on individual Mg microparticles is crucial to the in-depth unveiling of the combustion
mechanism of Mg-based propellants. In this paper, a new experimental setup was proposed to
directly observe the combustion of individual micron-sized Mg particles, based on laser ignition and
microscopic high-speed cinematography. The combustion process of individual Mg microparticles
could be directly and clearly observed by the apparatus at high temporal and spatial resolutions. Indi-
vidual Mg microparticles took gas phase combustion, and mainly underwent four stages: expansion,
melting, gasification, ignition, and combustion. The ignition delay time and total combustion time
had an exponential decay on the particle diameter, and they had a linear decay on the ignition power
density. The melting took a dominant role in the whole burnout time. The gas-phase combustion
flame seemed thick, inhomogeneous, and ring-like structure. The combustion model of individual
Mg microparticles was built through combining the experimental results with the SEM, XRD, XPS,
and EDS analysis of original samples and combustion residues. This study will be beneficial to
understand the combustion process and reveal the combustion mechanism of metal microparticles
besides Mg.

Keywords: metal fuels; magnesium (Mg); individual microparticles; laser ignition; microscopic
high-speed cinematography

1. Introduction

Compared to metals like aluminum and boron, magnesium (Mg) has the advantages
of lower ignition temperature, shorter burn time, smaller molecular weight of combustion
products [1–3], and lower oxygen consumption, which can burn completely at low oxygen
fuel ratio in ramjet flying at high altitude [4]. Therefore, much more attention has been paid
to the research of Mg-based propellants. The combustion of Mg particles in air is not only
used in conventional ramjet engines, but also widely used in powdered fuel ramjets. In the
conventional ramjet, the reaction of metal particles with the air produces high temperature
gas, the high temperature gas then enters the secondary combustion chamber to drive
the ramjet [5]. However, in a powdered fuel ramjet, the high-energy metal powder can
directly enter the precombustion chamber in the form of two-phase flow under the action of
fluidized gas and react with the ram air [6]. Therefore, it is of great significance to study the
ignition and combustion of Mg particles in air, to further reveal the combustion mechanism
of solid rocket propellant and applied in powdered fuel ramjet.

The performance of propellants largely depends on the combustion details of metal
particles, including deformation, accumulation, ignition, and diffusion of combustion
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products, etc. Many experiments and theoretical studies have been carried out to unveil the
combustion behavior of Mg in different ambiences. In the early 1960s, Cassel [7] carried out
the experiment on the combustion of Mg particles with diameters of 20–120 µm in air or
pure O2. It was considered that the combustion of Mg particles in air was controlled by the
diffusion rate of O2. Prachukho et al. [8] studied the combustion characteristics of single
micron-sized Mg particles in high temperature steam, which observed that Mg particles
took gas phase combustion. Later, Derevyaga [9] studied the combustion mechanism of
large Mg particles with diameters of 3, 4, and 6 mm in high temperature O2. The combustion
of Mg in O2 could be divided into four stages: foam stage, gaseous oxidation stage,
transition stage, and sputtering combustion stage. Shafirovich and Goldshleger [10,11]
investigated the ignition and combustion characteristics of Mg particles in CO2/CO in a
high temperature furnace. It was found that the soot formed on the surface of Mg particles
during ignition and combustion in CO2. During ignition, the particles gradually melted
and volatilized as the temperature elevated. When the temperature rose to a certain extent,
the protective oxide film broke down, and then the particle took the gaseous combustion.

The combustion characteristics of Mg particles depend on not only the ambiences
but also their physicochemical properties. Yuan et al. [12] conducted the thermal analysis
on the reaction of Mg with nitrogen and oxygen mixture, which studied the reaction
characteristics of Mg powder under different nitrogen concentration by thermogravimetric
analysis (TGA) method. The activation energy of Mg powder oxidation in air by the
Kissinger–Akahira–Sunose (KAS) method was 234 kJ/mol. The activation energy related
to the properties of corresponding protective film at the particle surface.

To further reveal the combustion behavior of individual Mg particles, Legrand et al. [13]
studied the ignition and combustion performance of Mg particles levitated by an electrody-
namic levitator in CO2 gas. The results showed that the combustion of Mg particles in CO2
consisted of two chemical reaction processes, i.e., gaseous combustion and heterogeneous
reaction at the particle surface, but the whole combustion process of vapor phase was
controlled by the diffusion rate.

In this work, we proposed a novel experimental apparatus to directly observe the igni-
tion and combustion process of individual Mg microparticles by combining laser ignition
and microscopic high-speed cinematography, like thermal expansion, melting, gasification,
and heterogeneous combustion. The apparatus was simplified by optimizing optical design
and integrating optical components, which can acquire the images of combustion at high
temporal and spatial resolutions. Firstly, the physical parameters of Mg microparticles
were characterized by multiple methodology of SEM, XRD, XPS, and EDS, etc. Secondly,
the ignition and combustion characteristics were elaborately demonstrated based on the
self-built experimental setup. The effects of particle diameter and ignition power density
on the ignition and combustion characteristics were summarized. The combustion residues
were characterized by SEM and EDS. Finally, the simple physical model of individual
Mg microparticle combustion was built according to the experimental phenomena and
theoretical analysis.

2. Materials and Methods
2.1. Materials

The Mg microparticles were prepared by melt atomization technique presented in our
previous work [14]. The morphology of as-prepared Mg microparticles was characterized
by SEM (Quanta 600FEG, Thermo Fisher Scientific, Waltham, MA, USA), as shown in
Figure 1. Mg microparticles are spherical, there are a few cracks of reticular structure
at the particle surface. According to PillingBedworth theory, the dense oxide film will
form when the volume ratio of metal oxide to metal atom (Pilling–Bedworth ratio, RPB) is
>1. The RPB of Mg is of 0.8, thus the oxide film is not compact but porous [15], which is
consistent with the present SEM results. Additionally, no significant agglomeration among
Mg microparticles was observed. While it can be observed that few finer particles adhered
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on the surface of large particles, which attributed to the satellite drops produced during
melt atomization.
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The as-prepared Mg microparticles were further characterized by XPS, the spectrum
is shown in Figure 3. At the Mg particle surface, Mg and O elements were observed,
suggesting that the surface of Mg microparticle was covered with the magnesium oxide or
possible magnesium hydroxide. It concluded that the oxide shell outside of Mg microparti-
cle was not compact according to Figures 1 and 3, unlike the compact alumina shell outside
metallic aluminum.

Processes 2021, 9, 1276 4 of 15 
 

 

Figure 2. XRD pattern of Mg microparticles. 

 

Figure 3. XPS spectrum of Mg microparticles. 

The physical depth of interaction (<10 nm) of XPS analysis is less than the thickness 

of magnesium oxide film. Thus, to obtain the purity of Mg microparticles, the EDS analy-

sis (depth of interaction >1 μm, INCA Energy 300, Oxford Instruments, Oxford, UK) was 

conducted. The position of interaction and corresponding spectrum are shown in Figure 

4. It demonstrates that the purity of the Mg microparticle was ~100%, and the oxidation 

only occurred at the particle surface. 

 

Figure 4. EDS spectrum of Mg microparticles, (a) probing position marked as “+“, (b) EDS spectrum. 

  

Figure 3. XPS spectrum of Mg microparticles.

The physical depth of interaction (<10 nm) of XPS analysis is less than the thickness of
magnesium oxide film. Thus, to obtain the purity of Mg microparticles, the EDS analysis
(depth of interaction >1 µm, INCA Energy 300, Oxford Instruments, Oxford, UK) was
conducted. The position of interaction and corresponding spectrum are shown in Figure 4.
It demonstrates that the purity of the Mg microparticle was ~100%, and the oxidation only
occurred at the particle surface.
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2.2. Experimental Setup
2.2.1. Laser Ignition

The schematic of experimental setup is shown in Figure 5, including laser ignition
and microscopic high-speed cinematography parts. A continuous wave Nd: YVO4 near-
infrared laser (wavelength of 1064 nm, TEM00 mode, beam divergence of 1.5 mrad (full
angle) and variable output power of 0–600 mW) was used to ignite individual Mg mi-
croparticles. The laser beam is first split into two beams by the splitter (1:9). The dominant
forward beam transmits through the beam expander (3×) and the dichroic to the objective.
The weak beam enters the probing of power meter to measure the laser power. The ob-
jective (Olympus Plan N 20×, NA of 0.40) focuses the beam to ignite Mg microparticles.
The laser was continuously powered on throughout the test of each Mg microparticle. The
beam power acted on the microparticles (PL) was reduced by ~50% of laser output power
owing to the attenuation of the lens and objective in the optical system. The laser beam spot
profile was acquired by the high-speed camera, and the waist diameter of focused beam
spot (Dfbs) could be measured by Gaussian fitting. The diameter of beam spot is 13.9 µm,
less than those of Mg microparticles. Therefore, the ignition power density (IPD) can be
expressed by the ratio of the beam power to the area of focal spot (IPD = 4PL/(πD2

fbs)).
More details about the setup could be found in our previous work [16].
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Figure 5. Schematic of experimental setup.

2.2.2. Microscopic High-Speed Cinematography

Microscopic high-speed cinematography part was composed of high-speed camera,
filter, lens, dichroic, objective, illumination, and condenser. An individual Mg microparticle
was magnified by the objective (20×). High-speed camera (Phantom Micro M310, Vision
Research Inc., Wayne, NJ, USA) was utilized to record the combustion process. A lens
was installed in front of high-speed camera. The notch filter of 1064 nm was inserted to
minimize the influence of laser beam on the flame images. The illumination (LED lamp)
and the condenser were used to supply uniform bright field for clear imaging of high-speed
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camera. In this work, the recording frame ratios of high-speed camera was set to 11,000 fps.
For all tests, the settings of high-speed camera kept the same.

A synchronizer was used to trigger the laser and high-speed camera. The heating
expansion, melting, gasification, ignition delay time, and burnout time of Mg microparticles
were determined using the time interval between laser onset and each representative stages
occurrence recorded by high-speed camera.

2.3. Experimental Procedures

In the experiments, Mg microparticles were firstly dried in an oven at 120 ◦C for
about 1 h. Then, Mg microparticles were fetched to cool to room temperature. Finally,
Mg microparticles were delivered by the spoon controlled by manual vibration into the
open combustor installed on a sample stage with 3-axis (X, Y, and Z) translation, and were
sparsely distributed on the bottom of the combustion chamber. Mg microparticles were
exposed into the air with natural convection at room temperature (25 ◦C), atmospheric
pressure (1 atm) and relative humidity (39%).

In this work, 60 individual Mg microparticle samples were selected to conduct the laser
ignition experiments. The detailed particle diameters were measured by the microscopy,
their size distribution was shown in Figure 6. It demonstrates that the diameter of Mg
microparticles ranged from 19 to 80 µm, and most of Mg microparticles were 45–75 µm.
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The 3-axis translation platform was adjusted to keep an isolated individual Mg mi-
croparticle appear in the field of vision of the high-speed camera. It was to eliminate
the influence of other Mg microparticles on the present Mg microparticle. Then, Mg mi-
croparticle was moved by 3-axis translation platform and positioned under the laser beam.
The laser and the high-speed camera were synchronously triggered. The ignition and
combustion of individual Mg particles could be clearly observed through the high-speed
camera at high temporal and spatial resolutions.

The ignition and combustion behavior of Mg microparticles depends on the laser
power density and particle size, thus the effects of the Mg particle diameter and the ignition
power density on the ignition delay time and the combustion time were also investigated
by analyzing the images recorded by high-speed camera. The combustion residues were
finally sampled and tested.
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3. Results and Discussion
3.1. Combustion Stages of Individual Mg Microparticles

By observing the whole combustion processes of tens of individual Mg microparticle
samples, it can be found that, under the continuous action of laser, these combustion
processes could be divided into four stages: expansion stage with migration, melting stage,
gasification stage, ignition, and combustion stage. In this work, Supplementary Material
Video S1 was set an example to analyze the combustion process, which demonstrated the
combustion of an individual Mg microparticle (initial diameter of 64.8 µm) induced by a
CW laser with an ignition power density of 0.96 × 105 W/cm2.

After a short heating time, the individual Mg microparticle firstly underwent a small
degree of thermal expansion. During expansion, Mg microparticle took a migration owing
to the photophoretic force resulting from uneven temperature distribution at two sides
of microparticle along the laser propagation direction [17,18]. As Mg microparticle was
consistently heated by the laser till melting temperature (648 ◦C), it began to deform due
to melting. The microparticle with high sphericity became irregular, and the melting
stage lasted for a long time. Before the particle completely melted, it is considered that
there was no gasification of Mg. When the temperature continued to rise to the boiling
point (1107 ◦C), molten Mg began to gasify. In the gasification stage, the vapor cloud
can be clearly observed and quickly diffused. Finally, the gaseous Mg was heated till
ignition temperature, and ignited by the laser. The flame brightness gradually intensified,
resulting from gas phase combustion [19]. The evolution of combustion depended on the
natural diffusion of O2 in air. The flame gradually extinguished and the whole combustion
process completed.

To demonstrate more details of the whole combustion of the Mg microparticle, each
stage was separately discussed in the following sections.

3.1.1. Expansion with Migration

The results show that the ignition of individual Mg microparticles can be induced
by the continuous radiation of 1064 nm laser. The position of the laser spot remained
unchanged, and the expansion and deviation did not make the Mg microparticle escape
from the irradiation of laser spot, as shown in Figure 7. After the laser irradiated for
2.91 ms, the position of the microparticle slightly shifted (Figure 7c), which is caused by the
photophorestic force. Under the laser light field with high energy level, the microparticle
absorbs or reflects light energy, which causes uneven energy distribution and temperature
rise inside the particle. The gas molecules near the microparticle will also be heated,
resulting in a temperature gradient, which leads to the unevenly heating of the local gas
molecules, and thus makes the microparticle migrate irregularly. The similar migration
phenomenon also occurred at 11.36 ms (Figure 7h), which is possible due to the temperature
difference between two side of Mg microparticle. One side of the Mg microparticle was
settled on a cold slide, while the other one was heated by the laser beam to keep a high
temperature. The movement displacement was so small that the Mg microparticle still
stood under the laser beam, and the Mg microparticle can be ignited by the laser beam. If
the Mg microparticle escaped from the laser beam, the ignition would be stopped.

After the laser irradiated on the Mg microparticle for 5.82 ms (Figure 7d), a wisp
of smoke was observed, which is attributed to H2 release by analyzing XRD pattern
(Figure 2). Upon heating, the solubility of hydrogen in Mg will increase with the increase in
temperature, and the hydrogen will be released [20]. However, the solubility trend is only
valid for the interstitial solid solution of H in Mg, and hydrogen may exist as a component
of different phases, such as Mg(OH)2. Some researchers [20,21] have shown that there is
always Mg(OH)2 film on the surface of Mg, and it begins to decompose at 350 ◦C. The
decomposition products of Mg(OH)2 are MgO and H2O below 420 ◦C, and MgO and H2
above 440 ◦C. Shevtsov et al. [22] also reported the existence of hydrogen in Mg. At 6.73 ms
(Figure 7e), the obvious expansion of the Mg microparticle was observed. The expansion
ratio depended on the temperature rise.
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(Images acquired from Supplementary Materials, Video S1, recording frame: 11,000 fps; exposure
time: 99 µs). (a) Sample, (b) Laser on, 0 ms, (c) 2.91 ms, (d) 5.82 ms, (e) 6.73 ms, (f) 8.55 ms, (g) 8.64 ms,
(h) 11.36 ms, (i) 12.36 ms, (j) 12.45 ms, (k) 12.64 ms, (l) 17.45 ms.

3.1.2. Melting

Figure 8 shows the melting process of the individual Mg microparticle. At 17.55 ms,
the shape of Mg microparticle became irregular. Dreizin et al. [19] believed that the release
of hydrogen might lead to deformation and fracture of metal particles. Even in the absence
of hydrogen, the expansion would also lead to the rupture of the oxide shell on the surface
of Mg. Derevyaga [6] studied the combustion of a single millimeter-sized spherical Mg
particle, and it was found that the expansion of particle led to the rupture of the surface
oxide layer and the exposure of liquid Mg. It suggests that the broken Mg particles reached
the melting point temperature and began to melt. The partial solid phase Mg transformed
into liquid phase Mg and outflowed the surface, so the shape of the microparticle became
irregular. The whole melting process took a relatively long time (~93 ms) and completed
until 110.64 ms in Figure 8j.
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Figure 8. Representative snapshots of melting stage of individual Mg microparticle. (Images acquired from Supplementary
Materials, Video S1, recording frame: 11,000 fps; exposure time: 99 µs). (a) 17.55, (b) 18.27 ms, (c) 23.09 ms, (d) 33.73 ms,
(e) 53.00 ms, (f) 62.55 ms, (g) 84.73 ms, (h) 95.91 ms, (i) 110.09 ms, (j) 110.64 ms.
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3.1.3. Gasification

When the laser continuously acted on the Mg microparticle for 110.73 ms shown in Fig-
ure 9a, it can be found that a lot of gaseous matters released from the microparticle surface
(see Supplementary Material Video S1 for details). It suggests that the molten Mg reached
the boiling point and began to vaporize, and the gasification process gradually proceeded.
At 117.36 ms in Figure 9g, the vaporized Mg appeared as a smoke cloud. Compared to the
melting time (~93 ms), the gasification time (~7 ms) was further shorter, indicating that the
melting took a dominant role in the combustion process of the Mg microparticle.
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3.1.4. Ignition and Combustion

The ignition and combustion process of the individual Mg microparticle is shown
in Figure 10. The ignition position depended on the focal point of laser. In this case,
the ignition delay time of the Mg microparticle of 64.75 µm in air was 118.18 ms at a
laser ignition power density of 0.96 × 105 W/cm2. After ignition, the flame of the Mg
microparticle appeared circle and homogeneous, and the initial diameter of flame front was
31.50 µm at 118.27 ms (Figure 10b). Then, the flame front quickly propagated. At 119.45 ms
(Figure 10f), the diameter of flame front increased to 50.10 µm. Thus, at the rate of natural
diffusion of oxygen in air, the flame propagation velocity reached ~15.8 mm/s. At the
brightest moment of flame, the diameter of front was 52.08 µm, while the flame structure
kept heterogeneous (Figure 10g). After that, the flame brightness gradually weakened and
finally extinguished. The combustion time of gaseous phase Mg was 4.37 ms. The total
combustion time was 122.55 ms.

It can be observed that the initial flame structure of the Mg microparticle after ignition
seemed rings (Figure 10a–c). Among these pictures, Figure 10b was selected to analyze the
flame structure for the best observation. In Figure 11a, the gray values along horizontal
and vertical lines through the center of flame ring were extracted by self-programming
digit imaging treatment method, as shown in Figure 11b,c, respectively. They clearly
demonstrated that the brightness inside the flame was obviously lower than that of the
flame edge, suggesting that the temperature of inner flame was lower than that of outer
flame. The phenomenon kept good agreement with the flame structure studied by Legrand
et al. [13], which revealed that the Mg microparticles take gas phase combustion despite in
air, in H2O or in CO2, and the flame structure or the reaction zone is relatively thick.
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Figure 10. Representative snapshots of ignition and combustion stage of individual Mg microparticle.
(Images acquired from Supplementary Materials, Video S1, recording frame: 11,000 fps; exposure
time: 99 µs). (a) 118.18, (b) 118.27 ms, (c) 118.36 ms, (d) 118.55 ms, (e) 119.27 ms, (f) 119.45 ms,
(g) 119.64 ms, (h) 119.73 ms, (i) 119.82 ms, (j) 119.91 ms, (k) 120.00 ms, (l) 120.91 ms, (m) 121.36 ms,
(n) 121.82 ms, (o) 122.55 ms.
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Figure 11. Flame structure of individual Mg microparticle, (a) flame picture at 118.27 ms (Figure 10 b), (b) gray values along
central horizonal line, (c) gray values along central vertical line inside the flame ring structure.

From Figure 10f–h, the flame structure took a significant transformation. The trans-
formation of flame structure can also be observed from the images of other burning Mg
microparticles, as shown in the region remarked by dotted oval of Figure 12.
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Figure 12. The transformation of flame structure during the combustion of individual Mg microparti-
cle. (a) Flame structure before transformation, (b) Flame structure after transformation.

3.2. Effect of Particle Diameter on Combustion Characteristics

The ignition and combustion characteristics of individual Mg microparticles depend
on the particle diameter and the ignition power density, as shown in Figures 13 and 14.
The total combustion time was divided into two parts, i.e., the ignition delay time and
gas phase combustion time after ignition. The ignition delay time played a significant
role in the combustion evolution of individual Mg microparticles. In comparison to the
ignition delay time, the gas phase combustion time was shorter. At the same ignition
power density (1.61 × 105 W/cm2), the ignition delay time and the total combustion time
significantly increased with the increase in the particle diameter. The gas phase combustion
time depended on the particle diameter and the diffusion rate of oxygen in air.
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diameter (~65 µm) versus the laser ignition power density.

3.3. Effect of Ignition Power Density on Combustion Characteristics

Figure 14 shows that for individual Mg microparticles with the particle diameter of
~65 µm, their ignition delay time and the total combustion time largely decreased with
the increase in the laser ignition power density. To shorten the total combustion time of
individual Mg microparticles, it should be feasible to lower the ignition delay time through
increasing the ignition power density or through reducing the particle diameter.

According to the above combustion process, the energy equation of an individual Mg
microparticle in each stage can be obtained.

In the heating stage, only the surface reaction of Mg microparticle is considered, the
energy equation can be expressed as:

mpCp
dTp

dt
=

.
QL +

.
QHSR −

.
Qloss (1)

where mp and Cp are the mass and specific heat of the Mg microparticle, respectively.
.

QL,
.

QHSR,
.

Qloss are the laser ignition power, the release heat of heterogeneous oxidation
reaction, and the heat loss containing the convection heat loss and the conduction loss to
the chamber wall, respectively.

In the melting stage, only the surface reaction is considered, the temperature of the Mg
microparticle remains at the melting point, and thus the energy equation can be written as:

.
mslhsl =

.
QL +

.
QHSR −

.
Qloss (2)

where
.

msl and hsl are the melting rate and the latent heat of phase change, respectively.
In the combustion stage, the gas phase reaction and the surface reaction coexist, and

the temperature of the Mg microparticle remains at the boiling point, and thus the energy
equation can be considered as:

.
mlghlg =

.
QL +

.
QHSR +

.
QRad −

.
Qloss (3)

where
.

mlg and hlg are the evaporating rate and latent heat of vaporization, respectively.
.

QRad is the radiation heat from the gas phase combustion.
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From the Equations (1)–(3), the increase in particle diameter results in the reduction in
temperature rise rate, the melting rate and evaporating rate owing to the enhancement of
particle mass mp. It delayed the ignition time and made the total combustion time longer.
The elevation of ignition power density is beneficial to accelerate the temperature rise,
melting, and evaporating rate, which shortens the ignition delay and total combustion time.

3.4. Combustion Residue Analysis

The morphology of combustion residue of the Mg microparticle was characterized by
SEM and is shown in Figure 15. It can be seen from Figure 15a that after the combustion
of Mg microparticle, the residue was approximately circular, flat, and slightly embedded
in the surface of the glass substrate. Figure 15b shows the magnification of the local
residue marked by dotted rectangle. The observation of the residue clearly shows that the
morphology of the residue was not flying debris, while formed by solidification of falling
oxides. The equivalent diameter of the range covered by combustion residue was about 2–3
times of the maximum cross-sectional diameter of the individual Mg microparticle before
combustion. It is testified that the individual Mg microparticle took gas phase combustion.
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Figure 15. SEM photography of combustion residue of individual Mg microparticle, (a) the whole residue (1000×), (b) the
local residue (4000×).

The content of elements in combustion residue of the individual Mg microparticle was
obtained by EDS analysis, as shown in Figure 16. It was found that the atomic percentage
of Mg was 52.08%, and that of O is 32.57%. It indicates that Mg did not completely react
with O, since the atomic percentage of MgO is 1:1. In addition to Mg and O elements,
there were also Si, Cl, K, Ca, and other elements, which indicates that the glass substrate of
the combustion chamber had indeed melted and bonded with the combustion residue of
Mg microparticle.
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Figure 16. EDS spectrum of combustion residue of individual Mg microparticle, (a) The location of EDS analysis area in the
residue (in the square box), (b) the content of elements, At% represents the percentage of atomic number.

3.5. Combustion Physical Model Analysis

To accurately describe the actual reaction characteristics of Mg microparticles, many
researchers have carried out many experimental and theoretical studies on the combustion
characteristics of single Mg microparticles. Based on the combustion theory of hydrocarbon
fuel droplets, Brzustowski et al. [23] established a simplified rapid reaction model of Mg
particles. It was assumed that the reaction process is controlled by diffusion, and the gas
phase composition depends on the equivalence ratio. The fast reaction is completed in “thin
surface area” and the reaction rate is infinitely fast. However, it was found by Edward [19]
that the reaction rate of Mg on the surface is not infinite. In this work, the reaction zone
demonstrated thick characteristics.

Combined with experimental phenomenon and theoretical research of Mg combustion,
the combustion reaction model of an individual Mg microparticle is shown in Figure 17.
As the Mg microparticle is heated by the laser, the temperature of microparticle surface
quickly increases. The Mg expands (Figure 7) and takes solid state reaction with O2 in
air. With the increase in temperature, inside the microparticle, Mg melts from solid phase
to liquid phase (Figure 8), and the temperature keeps constant. During melting, the O2
dissolves the liquid state Mg and takes liquid phase reaction. After completely melting, the
temperature continues to rise. Liquid phase Mg begins to evaporate and transforms into
gaseous Mg vapor (Figure 9). Evaporated Mg takes a gas phase reaction with the diffusive
O2. As the heat released owing to exothermic reaction surpasses the heat loss to the air, the
Mg vapor is ignited and takes a gas phase combustion (Figure 10). During combustion, the
reaction zone δ is large, leading to a relatively wide flame thickness (Figure 11).
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4. Conclusions

The experiments on combustion of individual Mg microparticles were conducted in
the self-built experimental setup that combines the laser ignition with the microscopic high-
speed cinematography. Based on the results and theoretical analysis, some conclusions can
be reached as following:

1. The combustion process of individual Mg microparticles including four stages, i.e.,
expansion with migration, melting, gasification, ignition, and combustion, can be
directly and clearly identified. The melting time is further longer than the evaporation
time and gas phase combustion time. The melting plays a key role in the whole
combustion process;

2. After individual Mg microparticles are ignited, initial outer flame presents the ring
structure, unlike the reported thin flame layer with infinite fast reaction rate in the
references, suggesting that the reaction zone or the flame thickness of Mg vapor in
naturally diffusive air is wide;

3. The particle diameter and the ignition power density have significant effects on
the ignition delay and combustion time. The ignition delay time shortens with the
decrease in the particle diameter and the increase in the laser ignition power density.
Since the gas phase combustion time is very short, the ignition delay time dominates
the total combustion time.

This work will be beneficial to obtain the direct evidence through observing the
complete combustion process of individual microparticles and to deeply understand the
combustion mechanism.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr9081276/s1, Video S1: Supplementary material, video 1.
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