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Abstract: One of the influential models in the artificial neural network (ANN) research field for
addressing the issue of knowledge in the non-systematic logical rule is Random k Satisfiability.
In this context, knowledge structure representation is also the potential application of Random k
Satisfiability. Despite many attempts to represent logical rules in a non-systematic structure, previous
studies have failed to consider higher-order logical rules. As the amount of information in the logical
rule increases, the proposed network is unable to proceed to the retrieval phase, where the behavior
of the Random Satisfiability can be observed. This study approaches these issues by proposing
higher-order Random k Satisfiability for k ≤ 3 in the Hopfield Neural Network (HNN). In this regard,
introducing the 3 Satisfiability logical rule to the existing network increases the synaptic weight
dimensions in Lyapunov’s energy function and local field. In this study, we proposed an Election
Algorithm (EA) to optimize the learning phase of HNN to compensate for the high computational
complexity during the learning phase. This research extensively evaluates the proposed model using
various performance metrics. The main findings of this research indicated the compatibility and
performance of Random 3 Satisfiability logical representation during the learning and retrieval phase
via EA with HNN in terms of error evaluations, energy analysis, similarity indices, and variability
measures. The results also emphasized that the proposed Random 3 Satisfiability representation
incorporates with EA in HNN is capable to optimize the learning and retrieval phase as compared to
the conventional model, which deployed Exhaustive Search (ES).

Keywords: Hopfield Neural Network; random 3 satisfiability; election algorithm; potential super-
vised learning

1. Introduction

A hallmark of any Artificial Neural Network (ANN) is the ability to behave according
to the pre-determined output or decision. Without an “optimal” behavior, ANN will result
in producing random outputs or decisions, which leads to useless information modelling.
Although, ANNs can learn and model complex relationships, which is important to repre-
sent real-life problems, it lacks the interpretability of the results obtained and approximated.
There is no simple correlation between the strength of the connection between neurons
(the weights) and the results being approximated. Understanding the relationship between
the ANN structure and the behavior of the output is a major goal in the field of Artificial
Intelligence (AI). One of the notable ANN that has an association feature form of learning
model is Hopfield Neural Network (HNN) [1]. The information is stored in the form
bipolar representation and connected by synaptic weight. After the introduction of HNN,
this network has been modified vigorously to solve optimization problems [1], medical
diagnosis [2–4], electric power sector [5], investment [6], and many more. Despite achieving
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extraordinary development in various performance metrics for any given problem, the
optimal structure of HNN is still debatable among the ANN practitioners. To this end, the
choice of the most optimal symbolic structure that governs HNN must be given fair share
of attention.

The satisfiability (SAT) logical rule has a simple and flexible structure to represent
the real-world problems. Satisfiability (SAT) is an NP-complete problem that was proven
by [7] and plays a fundamental role in computational complexity theory [8–10]. One of
the potential applications for SAT is the logical representation of the ANN. The goal of the
logical representation is to represent the dataset and later filtered by the optimal logical
rule. An interesting study conducted by [11] emphasized the complementary relationship
between the logic and ANN in the field of AI. According to this study, computational logic
is well-suited to represent structured objects and structure-sensitive processes for rational
agents, while the ability to learn and to adapt to new environments is met by ANNs.
One of the earliest efforts in implementing the logical rule in ANN was proposed by [12].
This work was inspired by the equivalence of the symmetrical mapping between the
propositional logical rule with the energy function of the ANN [13,14]. After the emergence
of logical rule in ANN, several logical rules have been proposed. The work by [15]
proposed a higher-order Horn Satisfiability in Radial Basis Function Neural Network
(RBFNN). The proposed work has been extended to another variant of logical rule namely
2 Satisfiability (2SAT) [16]. In this work, 2SAT became a logical structure to determine
the parameters involved in RBFNN, thus fixing the number of hidden layers. The result
from the performance evaluation in this work demonstrates the effectiveness of 2SAT in
governing the structure of RBFNN. The first non-satisfiable logical rule namely Maximum k
Satisfiability (MAXkSAT) in HNN was introduced by [17]. Despite achieving non-zero cost
function during learning phase, the results showed a solid performance of the proposed
model in obtaining global minimum energy and the highest value of the ratio of satisfied
clause. Unfortunately, the mentioned studies focused on using the systematic logical rule
where the number of variables in each clause is always constant. The prospect of the
non-systematic logical rule in ANN is still poorly understood.

One of the challenges in embedding logical rule in HNN is the effectiveness of the
learning phase. Output of the final state in HNN is structure-dependent and requires
effective learning mechanism. Despite obtaining the optimal final state in previous stud-
ies such as in [17], finding logical assignments that lead to the optimal value of the cost
function becomes convoluted as the number of logical clause increase. This is due to the
probability of finding that the optimal cost function value of the HNN will reduce to zero.
As a result, the final state of HNN governed by logical rule will be trapped into local
minimum energy or suboptimal state. For instance, the work of [18] demonstrates the
main weaknesses of conventional HNN in terms of retrieval capacity as the number of
neurons increases. To overcome this issue, utilizing metaheuristic algorithm to find the
optimal neuron assignment that leads to the minimization of the cost function has been
proposed. [19] proposed Genetic Algorithm (GA) in learning 2SAT logical rule in HNN.
The proposed metaheuristics is reported to obtain the optimal final state that corresponds
to absolute minimum energy of the logical rule. The final state of the neuron exhibits
higher value of global minima ratio, lower hamming distance and lower computational
time. Ref. [20] proposed Artificial Immune System (AIS) to complement 3 Satisfiability
(3SAT) in Elliot based HNN. The proposed method has been compared with other con-
ventional metaheuristics algorithm such as Exhaustive Search (ES) and GA. The use of
metaheuristics was extended to another logical variant that is not satisfiability. Ref. [21]
proposed an interesting comparison among the prominent metaheuristics in learning Maxi-
mum 2 Satisfiability (MAX2SAT) logical rule. In this study, Artificial Bee Colony (ABC)
integrated with MAX2SAT is observed to outperform other major metaheuristics. Despite
the possibility of overfitting during learning phase of HNN, ABC remains competitive
in finding the optimal assignment that minimizes the cost function of the MAX2SAT. In
another development, [22] proposed Imperialist Competitive Algorithm (ICA) to opti-
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mize 3 Satisfiability (3SAT) in HNN. The proposed method was implemented in logic
mining paradigm where the proposed ICA is reported to optimize the logical extraction
of the benchmark datasets. However, all the mentioned metaheuristics algorithms only
learn systematic logical rule (either systematic second order or third-order logical rule).
The proposed metaheuristics only discover single search space and no effective solution
partitioning to locate the alternative neuron assignment that minimizes the cost function.

Currently, Election Algorithm (EA) proposed by [23] starts to gain popularity in
solving various optimization problems. EA is inspired by the social behavior of indi-
viduals during electoral activity. EA simulates the actual political electoral systems that
are organized by governments such as presidential election that starts with grouping the
population into parties and selecting a representative of each party to convey their beliefs
and ideas to the public. Parties compete against each other for seeking the most votes
and the candidate who gets the most votes will be the leader. This strategy has a good
resemblance to other papers which utilizes candidate as their potential solution of the
objective function. In [24], the authors introduced Election Campaign Optimization (ECO)
algorithm by considering the solution of the function as a candidate. In this case, the
higher prestige of a particular candidate, the larger the cover range that results in smaller
mean square deviation. Another resemblance of EA is reported in Evolutive Election
Based Optimization (EVEBO) [25]. EVEBO is reported to utilize different types of elec-
toral system to conduct series of optimization effort for both combinatorial and numerical
problems. For this reason, EVEBO has more degree of freedom to be applied for a wide
range of problems. Emami later proposed [26] the Chaotic Election Algorithms (CEA) by
introducing migration operator to complement the existing EA. CEA enhances the EA by
implementing chaotic positive advertisement to accelerate the convergence because the
distance function that is used to find the eligibility consumes more computation time. In
the development of logic programming in HNN, [27] has successfully implemented the
first non-systematic logical rule namely Random 2 Satisfiability (RAN2SAT) in HNN. The
proposed work utilized EA to find the correct assignment that leads to minimize the cost
function. The proposed EA in this work was inspired by the work of [23] where there were
three operators have been introduced to optimize the learning phase of HNN for RAN2SAT.
They adopt an interesting distance function to complement the structure of RAN2SAT.
The proposed method can perform the learning phase with minimal error and result in
high retrieval capacity. However, despite their great potential, the computational ability of
EA in doing higher order Random k Satisfiability (RANkSAT) has not been demonstrated.
Higher order RANkSAT creates both upsides and downsides during learning phase of
HNN. Third order logic in RANkSAT for k = 3 (RAN3SAT) can be easily satisfied but the
computational capacity will increase dramatically. On the other hand, the first order logic
is hard to satisfy and tend to consume more learning iteration. In this case, EA provides
solution partitioning mechanism to reduce the impact of high-density capacity due to third
order logic by increasing the probability of the network to obtain the correct assignment for
first order logic. This view has been supported by the recent simulation work by [28]. This
work showed the learning capacity of RAN3SAT in HNN reduced dramatically when the
number of first order logic increases. As a result, the final neuron state tends to be trapped
in local minimum solution. Thus, EA that is integrated with the third order logic is needed
to complete the learning phase of RAN3SAT in HNN.

In this paper, a novel Random 3 Satisfiability logical rule will be embedded into
HNN using EA as a learning mechanism. Different from the previous work, the proposed
work in this paper will consider all combinational structure of k = 1, 2, 3 which creates
3-Dimensional (3D) decision system in HNN. This modification will provide flexibility and
diversity of a logical structure in HNN. The compatibility of RAN3SAT as a symbolic rule
in HNN is considered in this study creates a new perspective of assessing the variation of
the final neuron state. The above merits are attributed to the following three objectives of
the studies:
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(i) To formulate a random logical rule that consist of first, second and third-order logical
rule namely Random 3 Satisfiability in Hopfield Neural Network.

(ii) To construct a functional Election Algorithm that learns all the logical combination of
Random 3 Satisfiability during the learning phase of Hopfield Neural Network.

(iii) To conduct a comprehensive analysis of the Random 3 Satisfiability incorporated with
Election Algorithm for both learning and retrieval phase.

An effective HNN model incorporating the new logical rule was constructed and the
proposed network is seen to be beneficial in knowledge extraction via logical rule. This pa-
per has been organized as follows, Sections 2 and 3, Random 3 Satisfiability representation
and the procedure of encoding the logical structure in HNN was explained. In Section 4,
the mechanism of Election Algorithm will be discussed in detail. While Section 5 includes
a brief introduction of Exhaustive Search. In Section 6, the implementation of the proposed
model HNN-RAN3SAT model will be discussed. Furthermore, in Section 7, the experimen-
tal setup will be presented and the performance metrics for both HNN-RAN3SAT models
will be presented in Section 8. Finally, Sections 9 and 10 will end the paper with discussion
of the results obtained in learning and retrieval phase and the conclusion of the paper.

2. Random 3 Satisfiability Representation

Random k Satisfiability (RANkSAT) is a nonsystematic Boolean logic representation in
which the total number of variables (literals or negated literals) in each clause is at most k.
The logical rule consists of non-fixed clause length. In this section, we will be discussing
the extended version of RANkSAT for k = 3 namely Random 3 Satisfiability (RAN3SAT).
The general formulation for RAN3SAT or PRAN3SAT is given as follows:

PRAN3SAT =
NC
∧

i=1
C(k)

i , where k = 1, 2, 3 (1)

where C(k)
i refers to the clause i th with k variables which denoted as:

C(k)
i =


Ai ∨ Bi ∨ Di , k = 3

Ei ∨ Fi , k = 2
Gi , k = 1

(2)

According to Equation (1), NC refers to the total number of the clauses in PRAN3SAT

where NC = n
(

C(3)
)
+ n

(
C(2)

)
+ n

(
C(1)

)
, and n

(
C(k)

)
indicates the number of clauses

that contains k variables. Ai is a variable in PRAN3SAT that can be literal (Ai) or negated
literal (¬Ai). Furthermore, PRAN3SAT consists of irredundant variables which means no
repetition of the same variable (either in positive or negative literals) among C(k)

i in the
logical structures [29]. Meanwhile, a variable is said to be a redundant if the variable exists
more than one time in a logical rule.

PRAN3SAT = (A ∨ B ∨ ¬C) ∧ (D ∨ ¬E) ∧ (¬F ∨ ¬G) ∧ H ∧ ¬I ∧ ¬J ∧ K ∧ L (3)

According to Equation (3), PRAN3SAT will be fully satisfied or P RAN3SAT = 1 if the state
of the variables reads (A, B, C, D, E, F, G, H, I, J, K, L) = (1, 1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1).
Note that, the mentioned state is not unique especially dealing with C(2)

i and C(3)
i . One of

the main motivations in representing the variable in the form Equation (3) is the ability to
store the information in Bipolar state where each state represents the potential pattern for
the dataset [30].
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3. RAN3SAT Representation in Hopfield Neural Network

Hopfield Neural Network (HNN) was proposed by [1] to solve various optimization
problems. HNN consists of N interconnecting neurons that is described by an Ising spin
variable [31]. The conventional representation of HNN is given as follows:

Si =

{
1, if WijSj ≥ ψ

−1, otherwise
(4)

where Wij is the synaptic weight from neuron Si to Sj and ψ is a pre-defined threshold. As
indicated by [32], the neuron does not permit any self-connection and employs a symmetri-
cal neuron connection. In other words, the neuron connection in HNN can be represented
in the form of symmetrical matrix with zero diagonal. This useful feature makes HNN
an optimal platform to store important information. The final state of Equation (4) can
be analyzed by computing the final energy and comparing it with the absolute minimum
energy. As pointed out in [28,33], the main weakness of HNN is the lack of symbolic rule
that governs the network. According to [28], the selection of ψ = 0 will ensure the network
dynamic reach the nearest optimal solution. Lack of effective symbolic rule makes HNN,
numerically difficult to obtain the absolute minimum energy. In this context, implementing
PRAN3SAT as a logical rule in HNN (HNN-RAN3SAT) will effectively represents the neuron
connections in the form of symbolic representation. To encode PRAN3SAT into HNN, a space
Ŝ will be defined over a set of N variables {A, B, . . .}. Each variable can be represented as
a neuron and contains two states:

S i =

{
1 , if Ai is TRUE
−1 , if Ai is FALSE

(5)

One of the perspectives in defining the optimal implementation of PRAN3SAT in HNN
is the minimization of the cost function. To find the cost function that corresponds to all
the neuron where E :Ŝ→ R , PRAN3SAT must be in Conjunctive Normal Form (CNF). By
using De Morgan’s Law, the inconsistency of PRAN3SAT can be obtained by converting
the CNF

(
¬ ∧

(
∨A(i)

i

))
to Disjunctive Normal Form (DNF) ∨

(
∧¬A(i)

i

)
. By complying

with the convention, conjunction, and disjunction of C(k)
i were represented as arithmetic

multiplication and arithmetic summation respectively. Therefore, the generalized cost
function EPRAN3SAT for PRAN3SAT is be given as:

EPRAN3SAT =
1
23

n(C(3))

∑
j

(
3

∏
i

Ai

)
j

+
1
22

n(C(2))

∑
j

(
2

∏
i

Ai

)
j

+
1
2

n(C(1))

∑
j

Aj (6)

where A i →
{

(1− SA) , if ¬Ai
(1 + SA) , otherwise

(7)

Note that, EPRAN3SAT 6= 0, if at least C(k)
i is not fully satisfied and EPRAN3SAT = 0

signifies the state of PRAN3SAT were fully satisfied. On the other hand, the updating rule of
HNN-RAN3SAT maintains the following dynamics.

The local field of each neuron can be found by:

hi =
N

∑
k=1,k 6=j

N

∑
j=1,j 6=k

W(3)
ijk

SjSk +
N

∑
j=1,i 6=j

W(2)
ij

Sj + W(1)
i

(8)

The updating rule is given by:

Si(t + 1) =
{

1, if tan h(hi) ≥ 0
−1, otherwise

(9)
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Note that, Equations (8) and (9) guarantee the network to decrease monotonically
with dynamics. The final energy that corresponds to the final state of the neuron is given
as follows [12]:

HPRAN3SAT = −1
3

N

∑
i=1

N

∑
j=1

N

∑
k=1

W(3)
ijk SiSjSk −

1
2

N

∑
i=1

N

∑
j=1

W(2)
ij SiSj −

N

∑
i=1

W(1)
i Si (10)

The synaptic weight of the HNN-RAN3SAT can be pre-calculated [34] by comparing
Equations (10) and (6). The important assumptions when considering PRAN3SAT into
Equations (8)–(10) are:

(i) The variables in PRAN3SAT are irredundant and if there is m ∈ {1, · · · , N} such that
im /∈ C(k) ∧ in, il ∈ C(k) →Wiminij = Wi mi n = 0, ∀n, l ∈ {1, · · · , N}, k ∈ {1, 2, 3} .
Hence all the clauses are independent to each other.

(ii) The no self-connection among all neurons in C(k) where Wii = 0, ∀i ∈ {1, . . . , N}
and the symmetric property of HNN leads to Wij = Wji and Wijk is equivalent to all
permutation order of ijk such as Wjik, Wkij etc.

By using the above assumptions, let us simplify Equation (10) starting with the first
term, we get:

− 1
3

N

∑
i=1

N

∑
j=1

N

∑
k=1

W(3)
ijk SiSjSk = −1

3

[
W111S1S1S1 + W112S1S1S2 + . . .
+W123S1S2S3 + W213S2S1S3 + . . . + WNNNSNSNSN

]
(11)

According to the assumption (ii), the synaptic weight associated with the self-connection is
zero or W111S1S1S1 = W112S1S1S2 = · · · = 0. Moreover, if there are at least two neurons belong
to independent clauses, the synaptic weights between them will be zero as well. Therefore, the
remainder of the above terms will be the terms to which neurons belong in the same clause. By
considering assumption (ii) where the synaptic weights of HNN-RAN3SAT are symmetrical, the
remaining synaptic weights are defined as follows:

WijkSiSjSk = WjikSjSiSk = WikjSiSkSj = WjkiSjSkSi = WkijSkSiSj = WkjiSkSjSi (12)

By substituting Equation (12) to Equation (11), we obtain the first term as:

− 1
3

N
∑

i=1

N
∑

j=1

N
∑

k=1
W(3)

ijk SiSjSk = − 3!
3

n(C(3))

∑
r=1

(
W(3)

ijk SiSjSk

)
r

= −2
n(C(3))

∑
r=1

(
W(3)

ijk SiSjSk

)
r
, i, j, k ∈ {1, · · · , N}

(13)

where the sub index r that corresponds to the number of C(3). Using the same process, the second
term of the of Equation (10) is given as follows:

− 1
2

N

∑
i=1

N

∑
j=1

W(2)
ij SiSj = −

n(C(3))+n(C(2))

∑
r=1

(
W(2)

ij SiSj

)
r

(14)

The sub-index in Equation (14) is from one to the number of the clauses containing two and
three variables. This is because the connection in C(3) will consist of connection with two variables
as well. By substituting information in Equations (13) and (14) into Equation (10), the expanded
representation of final energy for HNN-RAN3SAT is given as:

HPRAN3SAT = −2
n(C(3))

∑
r

(
W(3)

ijk SiSjSk

)
r
−

n(C(3))+n(C(2))

∑
r

(
W(2)

ij SiSj

)
r

−
N
∑

i=1
W(1)

i Si, i, j, k ∈ {1, · · · , N}
(15)
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Equation (15) provides an alternative energy representation for HNN-RAN3SAT because each
term will identify the contribution for each clause. By comparing Equations (6) and (15), the general-
ized synaptic weight for HNN-RAN3SAT is given as follows:

W(k) ∈
{
− 1

2i(k− 1)!
,+

1
2i(k− 1)!

}
(16)

where k is the dimension of the weights (the number of neurons that are being connected), i is the
number of variables inside the clause. For example, for k = 3 with 2 variables inside a clause i = 2,

the derived synaptic weight is given as W(2)
ij ∈

{
− 1

4 ,+ 1
4

}
. Next, the remaining constants of EPRAN3SAT

will be denoted as:

H min
P RAN3SAT

= −n(C(3)) + 2n(C(2)) + 4n(C(1))

8
(17)

where H min
P RAN3SAT

is the absolute minimum energy that HNN-RAN3SAT will achieve. Hence, the
difference between the energy obtained by the final state and the absolute energy is denoted as
follows:

E P RAN3SAT =
∣∣∣HP RAN3SAT − H min

P RAN3SAT

∣∣∣ ≤ Tol (18)

where Tol = 0.001 is taken as a tolerance value [31]. The aim of the HNN-RAN3SAT is to find the
neuron state that corresponds to EPRAN3SAT = 0. Since Equation (8) consists of N variables (N var)
with only one logic of P RAN3SAT , the number of free variables for the system is N − 1. The system
has infinitely many final neuron states. Since all the clauses were independent to each other, the
probability of getting EPRAN3SAT = 0 follows the Binomial distribution. Hence, the probability of
getting the zero cost function in PRAN3SAT is given as follows:

P(EPRAN3SAT = 0) =
3

∏
i=1

(
1− 1

2i

)n(C(i))

(19)

where n
(

C(i)
)

is the number of clauses that contains i variables. Worth noting that, P(EPRAN3SAT = 0)→ 0 ,

as n
(

C(i)
)
→ ∞ . In other words, the probability of finding satisfied neuron assignment approaches

zero when the search space expands. Despite having a capability to pre-calculate H min
P RAN3SAT

, HNN-
RAN3SAT requires neuron assignment that leads to HP RAN3SAT → H min

P RAN3SAT
. In this context, im-

plementing approximating algoritm during the learning phase of HNN-RAN3SAT will optimize
Equation (18) in finding the optimal synaptic weights that correspond to lower value of HP RAN3SAT .
Moreover, this system will have infinite solutions (due to the exponential growth in the search space),
which justify the use of approximation algorithm such as Election Algorithm during learning phase
of HNN.

4. Election Algorithm
Election algorithm (EA) is classified as an evolutionary algorithm by [35] and swarm intelli-

gence algorithm by [23]. EA simulates the behavior of candidates in a presidential election process.
Besides, EA is an iterative random population-based that starts with initializing the population
randomly. EA works as a metaheuristic method depends on maximizing or minimizing the objective
function of candidate solutions in the search space of the optimization problem. This method starts
with a promising initial solution, whose objective value is used as an upper or a lower bound of
objective function to generate better solutions and improve areas in search space. The integration of
metaheuristic method with the other techniques from AI as ANNs and mathematical programming
can improve a solution generated by ANN [36]. In this study, EA will be implemented for PRAN3SAT
in HNN, which resulted in the proposed HNN-RAN3SATEA. The reason is that EA divides the search
space area of the population into small ones. EA consists of three operators—positive advertisement,
negative advertisement, and coalition. Through each operator, the population will be updated; the
first operator will try to focus only on the small areas separately to improve them, and later next
operators will try to explore wide areas in the search space. This will accelerate the convergence to
the optimal solution. The mechanism of EA that implemented for PRAN3SAT in HNN consists of four
stages:

1. Stage 1: Initialize Population

The population includes potential solutions of the search space of PRAN3SAT is generated
randomly. Everyone Si = (v1, v2, . . . , vn), vi ∈ {−1, 1} is a potential (candidate) solution of the
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problem. Let the search space of PRAN3SAT be Ŝ P RAN3SAT = {S1, S2, . . . , S2n}. Considering the
eligibility or the fitness value of each Si that qualifies it to be a candidate is the objective function
f : Ŝ→ {0, 1, 2, . . .} of the optimization problem that was given by Equation (18).

fLj =
NC

∑
i=1

C(k)
i , k = 1, 2, 3 (20)

C(k)
i =

{
0, False
1, True

(21)

The goal is maximizing the eligibility value or reducing the cost function value.

2. Stage 2: Forming Initial Parties

After initialization, the second stage will begin by dividing the search space of PRAN3SAT into
Nparty equal parts. Each party consists of Nj potential solutions given by the equation:

Nj =
Npop

Nparty
(22)

where Npop is the size of the population. The potential solution with the highest eligibility value in
each party will be elected as a candidate.

3. Stage 3: Advertisement Campaign

In this stage, after formatting initial parties and choosing the initial candidate solution of each
party, each candidate will start his own advertisement campaign that includes three steps positive
advertisement, negative advertisement, and coalition.

(a) Positive Advertisement
The candidate will start their campaign by influencing the voters in the same party to increase

his popularity. In general, people can be influenced by the one who has the same ideas and beliefs.
In this algorithm and in discrete space, this process can be formalized by calculating the distance
between the candidate (SL) and the voters (Sv) of PRAN3SAT by using Equation (23). Meanwhile, the
number of voters that support the candidate NS is randomly selected by using Equation (24):

d
(

fLj , fvj

)
=
∣∣∣ fLj − fvj

∣∣∣ (23)

where fLj , fv j are the fitness values of the candidate and the voter in party j respectively.

NSj = Njσ
p, j = 1, 2, 3, 4 (24)

where σp is a positive advertisement rate σP ∈ [0, 0.5]. The candidates in each party will try to
affect to their supporters. which means update the states of potential solutions (voters) randomly by
flipping several variables of S i from 1 to −1 or vice-versa, by the given equation. Note that, ωvj

i
is

the eligibility distance coefficient and Nvar is the number of the variables of the PRAN3SAT in party j
as in Equation (27).

Svj
i
= Nvarωvj

i
(25)

ωvj
i
=

1

d
(

fLj , fvj
i

)
+ 1

(26)

Nvar = 3n
(

C(3)
)
+ 2n

(
C(2)

)
+ n

(
C(1)

)
(27)

After the supporters are updated according to their candidate and their eligibility, there is a
possibility for a voter to be a candidate (voter has higher eligibility than the candidate). Therefore, to
increase the quality of the solutions in the parties, the candidate will be replaced by the solution with
the highest fitness value (more qualified supporter). In other cases, if the voter and candidate share
the same eligibility, the candidate position will remain (no replacement will be made). If the optimal
solution is found in the positive advertisement, it would remain as a candidate through the next
steps until the first iteration ends, then it will be announced as the best solution in the election stage.
Figure 1 shows the process of updating the old candidate with new candidate after calculating the

number of variables that need to be flipped based on Equations (25) and (26). Given, d
(

fLj , fvj

)
= 1

and ωvj
i
= 1

2 . Therefore, Svj
i
= 6 which means six variables need to be flipped randomly. After the
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updating process, the old candidate with three fitness value has been replaced with a new candidate
with five fitness value.
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(b) Negative Advertisement
In this stage, widening the area of search space is required. The candidates try to

attract voters from other parties. We presented Equation (28) to decide the number of
voters, the candidate can attract from other parties (parties with highest fitness candidate):

NS∗ = σn
(

Nj − NSj

)
(28)

where σn ∈ [0, 1] is the negative advertisement rate. After random selection, voters from
other parties, the same steps, and equations that reflect the candidate’s influence on the
supporters from outside will be used. The eligibility distance coefficient is given as follows:

ωv∗i
=

1

d
(

fLj , fv∗i

)
+ 1

(29)

where d
(

fLj , fv∗i

)
is the metric function of the eligibility of the candidate and voters. The

formula of updating voters in parties is based on the following:

Sv∗i
= Nvar ωv∗i

(30)

By using Equation (20), we can calculate the eligibility of the new supporters (potential
solutions of PRAN3SAT). Again, if there exists a voter with fitness value greater than the
candidate, the candidate will be replaced by this voter.

(c) Coalition
In this stage, different parties cooperate and form a coalition to explore more areas in

search space of PRAN3SAT . The coalition stage utilized the same steps and formulations as
in negative advertisement. First, the two parties will be united randomly to decide who is
going to be a new candidate after this union. First, find the eligibility distance function and
distance coefficient by using Equation (29). After that, we decide the number of variables
that needs to update in each voter from this combined party by using Equation (30). Now,
all the voters’ fitness value has been updated. Finally, we compare the fitness value of the
voters and old candidates. If the old candidate still has the highest fitness value, then the
old candidate will proceed to election day. But if other situations happened, for instance, a
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voter has a higher fitness value compared to the old candidate. This fittest voter will be a
new candidate to compete on election day with another party.

4. Stage 4: The Election Day

In this stage, the best solution (the candidate) in each party will be tested. If the
solution has achieved the maximum fitness value f NC = n

(
C(3)

)
+ n

(
C(2)

)
+ n

(
C(1)

)
,

this solution will be announced as the optimal solution. Otherwise, the second iteration
will take place. The steps will be repeated until the conditions are met. Figure 2 and Algo-
rithm 1 summarize the steps involved in EA during the learning phase of HNN-RAN3SAT
and Pseudo code of EA respectively.

Algorithm 1: Pseudo Code of the Proposed HNN-RAN3SATEA

1 Generate initial population NPOP
2 while (i < max(r)) or ( fLi < fNC)
3 Forming Initial Parties by using Equation (22)
4 for

(
j ≤ NParty

)
do

5 Calculate the similarity between the voter and the candidate utilizing Equation (23)
6 end
7 {Positive Advertisement}
8 Evaluate the number of voters by using Equation (24)
9 for i ≤ NSj do
10 Evaluate the reasonable effect from the candidate ωvj

i
by using Equation (26)

11 Update the neuron state according to Equation (25)
12 if fvj

i
> fLj

13 Assign vj
i as a new Lj

14 Else
15 Remain Lj
16 End
17 {Negative advertisement}
18 Evaluate the number of voters Nv∗j
19 for i ≤ Nv∗j do
20 Evaluate the reasonable effect from the candidate ωvj

i
by using Equation (29)

21 Update the neuron state according to Equation (30)
22 if fv∗i > fLj

23 Assign v∗i as a new Lj
24 Else
25 Remain Lj
26 End
27 {Coalition}
28 for i ≤ Nj + Nk do
29 Evaluate the reasonable effect from the candidate ωvj

i
, by using Equation (29)

30 Update the neuron state according to Equation (30)
31 if fv∗i > fLj

32 Assign v∗i as a new Lj
33 Else
34 Remain Lj
35 End
36 end while
37 return output the final neuron state
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5. Exhaustive Search (ES)

Exhaustive search (ES) is one of the oldest techniques to enumerate and search for the
solution. ES operates as a “generate and test” mechanism for all candidate solutions of the
problem in search space until the optimal solution is obtained [37]. The main advantage
of the ES algorithm is ES guarantees to obtain a solution (satisfied clause) by checking
all candidate solutions in the search space. However, this algorithm consumes more
computational time with intractable problems when the variables start increasing and
the search space starts expanding exponentially with time [30]. Generally, ES algorithm
consists of three main steps as stated below [38].

1. Step 1: Initialization.

Generate the potential bit strings {S1, S2, . . . , Sn}.
2. Step 2: Fitness Evaluation.

Compute the number of satisfied clauses (fitness value of Si) by using Equation (20).

3. Step 3: Test the solutions.
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If the candidate has maximum fitness value, then the potential solution will return as
output. Else, repeat the Step 1 and 2.

6. Summary of Learning and Retrieval Phase of HNN-RAN3SAT

This section demonstrates the full implementation of PRAN3SAT in HNN (or the HNN-
RAN3SAT model). The main framework of the proposed HNN-RAN3SAT model is divided
into two main phases. At first, the learning phase of the HNN-RAN3SAT model is in-
troduced to check the satisfied assignment of PRAN3SAT by using learning algorithms to
generate the optimal synaptic weights. In this study, Election Algorithm (EA) and Ex-
haustive Search (ES) are utilized as the learning algorithms. Then, the retrieval phase
generates the correct final neuron states that lead to global minimum energy of the HNN-
RAN3SAT model. The subsection below shows a detailed explanation of each phase in the
HNN-RAN3SAT model.

6.1. Learning Phase in HNN-RAN3SAT

The purpose of embedding PRAN3SAT into the learning phase of HNN-RAN3SAT
model is to create a network that will “behave” according to PRAN3SAT logical structure.
PRAN3SAT has prominent characteristics such as bipolar representation and easy to repre-
sent in the form of neuron makes PRAN3SAT is compatible with HNN. The main concern in
learning PRAN3SAT is the random structure of negated and positive literal in Ck

i which leads
to learning complexity of HNN to achieve EPRAN3SAT = 0. To reduce possible combinatorial
explosion, EA is implemented in HNN to find the optimal assignment for PRAN3SAT that
leads to EPRAN3SAT = 0. In this work, EA will utilize effective operator that has been men-
tioned in the previous section to computation burden for HNN-RAN3SAT. Conventionally,
HNN will utilize ES [17] to obtain the optimal assignment that leads to EPRAN3SAT = 0. If the
proposed EA failed to obtain to get the correct assignment, HNN-RAN3SAT will retrieve a
suboptimal final state which leads to local minima energy. In other words, HNN-RAN3SAT
will only retrieve the random pattern. In summary, the learning phase of HNN-RAN3SAT
will require EA to find the assignment that leads optimal synaptic weight. From this
synaptic weight, HNN will operate as a system that “behave” according to the proposed
PRAN3SAT . The steps in executing learning phase of HNN-RAN3SAT model is summarized
as follows:

1. Step 1: Convert PRAN3SAT into CNF type of Boolean Algebra.
2. Step 2: Assign neuron for each variable in PRAN3SAT .
3. Step 3: Initialize the synaptic weights and the neuron state of HNN-RAN3SAT.
4. Step 4: Define the inconsistency of the PRAN3SAT logic by taking the negation

of PRAN3SAT .
5. Step 5: Derive the EPRAN3SAT using Equation (6) that is associated with the defined

inconsistencies in Step 4.
6. Step 6: Obtain the neuron assignments that leads to (using EA and ES), EPRAN3SAT = 0.
7. Step 7: Map the neuron assignment associated with the optimal synaptic weight.

Precalculated synaptic weight can be obtained by comparing EPRAN3SAT with the Final
Energy function in Equation (15).

8. Step 8: Store synaptic weights as a Control Addressable Memory (CAM).
9. Step 9: Calculate the value of Hmin

PRAN3SAT
by using Equation (17).

6.2. Retrieval Phase in HNN-RAN3SAT

After completing the learning phase of HNN-RAN3SAT, we will be using the synaptic
weight obtained in the learning phase into the retrieval phase. This is a phase where
the HNN demonstrate the behavior of PRAN3SAT . According to [39], the neuron state
produced by HNN should have non-linear relationship with the input state. Inspired
by this motivation, we utilize Hyperbolic Tangent Activation Function (HTAF) [40] to
squash the neuron output. The quality of the final neuron state will be checked based
the differences between the calculated energy function HPRAN3SAT and minimum energy
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function Hmin
PRAN3SAT

. The following steps explain the calculation involved in retrieval phase
of HNN-RAN3SAT model.

1. Step 1: Calculate the local field of each neuron in HNN-RAN3SAT model using
Equation (8).

2. Step 2: Compute the neurons state value by using HTAF [40] and classify the final
neuron state based on Equation (9).

3. Step 3: Calculate the final energy of the HNN-RAN3SAT model using Equation (15).
4. Step 4: Verify whether the final energy obtained satisfy the condition in Equation (18).

If the difference in energy is within the tolerance value, we consider the final neuron
state as global minimum solution.

Worth mentioning that, the effective learning phase of HNN-RAN3SAT will optimize
the state produced by the retrieval phase. In this case, the choice of Metaheuristics Algorithm
in obtaining EPRAN3SAT = 0 is paramount in ensuring the optimality of HNN-RAN3SAT.

7. Experimental Setup

The experimental setup for this study mostly follows the experiment set of [27].
The simulations for HNN-RAN3SATEA were executed on Dev C++ (Developed and
Manufactured by Embarcadero Technologies, Inc, Texas, US) Version 5.11 running on the
computer that has 4GB RAM and using Windows 8. The CPU threshold time for generating
data will be 24 h and the simulation will be terminated if CPU time exceeds 24 h [41].
Notably, the models used a simulated dataset obtained by Dev C++ with 100,000 number of
learning to generate PRAN3SAT . Here, the probability of generating a literal is equal to the
probability of generating a negated literal. Additionally, the logical structure of PRAN3SAT
consists of first, second and third order logic. The selection of clauses in a logical structure
is set by random. Besides that, the use of HTAF is important in this study since we want to
generate correct final neuron states. The characteristics of HTAF that were differentiable
and nonlinear is important in constructing the proposed model as HTAF is a mathematical
function that attached to the neurons. The nonlinear HTAF helps the proposed model
to learn complex patterns in data. Additionally, the proposed model still operates if no
activation function is utilized. However, the proposed model unable to learn the pattern of
classification problem which is the same as a linear classifier. The effectiveness of this paper
will be tested by comparing two models: HNN-RAN3SATEA and HNN-RAN3SATES in
terms of accuracy and efficiency. The parameter assignments in HNN-RAN3SATEA and
HNN-RAN3SATES models are summarized in Tables 1 and 2.

Table 1. List of parameters utilized in HNN-RAN3SATEA model.

Parameter Parameter Value

Neuron combination (c) 100
Number of Trials (t) 100

Maximum Number of Iterations 100,000
Size of population

(
Npop

)
120

Number of parties
(

Nparty
)

4
Positive advertisement rate (σp) 0.5

Negative advertisement rate (σn) 1
Tolerance value (Tol) 0.001

Threshold Time 1 day
Activation Function Hyperbolic Tangent activation function (HTAF)

Initialization of neuron states Random
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Table 2. List of parameters utilized in HNN-RAN3SATES model.

Parameter Parameter Value

Neuron combination (c) 100
Number of Trials (t) 100

Maximum Number of Iterations 100,000
Size of population

(
Npop

)
100

Tolerance value (Tol) 0.001
Threshold Time 1 day

8. Performance Metric for HNN-RAN3SAT Models

Four types of matrices performance will be utilized to evaluate the efficiency of HNN-
RAN3SAT models in terms of error analysis, energy analysis and similarity index. For error
analysis, the evaluation for the learning and retrieval phase will be based on root mean
square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE).
Meanwhile, global minima ratio (Zm) is evaluated in energy analysis. Finally, Jaccard (J),
Sokal Sneath (SS), Dice (D), and Kulczynski (K) are evaluated in similarity index. The
purposes of evaluating each metric will be explained further below.

8.1. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE)

Root mean square error (RMSE) and mean absolute error (MAE) has been widely used
in evaluating the accuracy of the models by measuring the difference between the values
predicted by the model and the target values. RMSE is sensitive to outliers, and it is more
appropriate to use than the MAE when the model follows the normal distribution [42]. Note
that, mean absolute percentage error (MAPE) is the average of absolute percentage errors.
MAPE is highly adapted for predicting applications, especially in situations sufficient data
is available [43]. In real-world applications, MAPE is frequently used when the amount to
predict does not equal zero. This is due to the MAPE produces infinite values when the
actual values are zero or close to zero, which is a common occurrence in some fields [44].
In the current study, the formula of calculating RMSE, MAE, and MAPE in the learning
phase is modified as [27]:

RMSE Learning =
n

∑
i=1

√
1
n
( fNC − fi)

2 (31)

MAE Learning =
n

∑
i=1

1
n
| fNC − fi| (32)

MAPE Learning =
n

∑
i=1

100
n
| fNC − fi|
| fNC|

(33)

where fNC is the highest fitness achieved in the network based on the HNN-RAN3SAT
model, fi is the fitness values that achieved during learning phase and n is the number of
iterations before fNC = fi. Notably, i is the iterations generated by the simulation before
achieved its full iteration, n or can be written as i ≤ n. The RMSE, MAE, and MAPE in the
testing phase will be expressed as [43]:

RMSE Testing =
n

∑
i=1

√
1
n
(Pi −Oi)

2 (34)

MAE Testing =
n

∑
i=1

1
n
|Pi −Oi| (35)

MAPE Testing =
n

∑
i=1

100
n
|Pi −Oi|
|Pi|

(36)
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where Pi is the target value (global energy) and Oi refers to the predicted value (calculated
energy) by the proposed model.

8.2. Global Minima Ratio (Zm)

Zm is the ratio between the total global minimum energy and the total number of runs
in the testing phase [22]. Zm can be expressed as:

Z m =
1
tc

n

∑
i=1

NHi (P RAN3SAT )
(37)

where t is the number of trials, c is the number of neuron combination and NH is the
number of global minimum energy of the proposed model. This measurement is good to
compare the performance of the models since HNN-RAN3SATES when the number of
variables increases the model fails to reach global minimum energy.

8.3. Similarity Index

A similarity index measures the relationship between final states of the neuron in the
retrieval phase and benchmark neurons (the ideal neuron state) that can be defined as [18]:

Smax
i =

{
1, i f A
−1, i f ¬A

(38)

Here, some similarity indices for neuron state that will be utilized in this study to
distinguish global minimum solutions produced by HNN presented in Tables 3 and 4.

Table 3. Similarity indices used in the current study.

Similarity Index The Formula

Jaccard (J) J = l
l+m+n

Sokal Sneath (SS) SS = l
l+2(m+n)

Dice (D) D = 2l
2l+m+n

Kulczynski (K) K = 0.5
(

l
l+m + l

l+n

)

Table 4. Neuron state for parameters in similarity index.

Parameter S max
i S i

l 1 1
m 1 −1
n −1 1
o −1 −1

The neuron variation of HNN model is the number of solutions can be produced in
each neuron combination and can be calculated by Equations (39) and (40):

V =
λ

∑
i=1

Fi (39)

Fi+1 =

{
1, xi+1 6= xi
0, xi+1 = xi

(40)

where λ is the total number of solutions produced by the HNN model. xi is the solution
produced in the i-th trial.



Processes 2021, 9, 1292 16 of 27

9. Result and Discussion

Firstly, to test the performance of the proposed HNN-RAN3SAT model, the compar-
ison between the learning algorithms of EA and ES is analyzed in each phase. Various
evaluation metrics utilized to study the influence of different learning algorithms in the
HNN-RAN3SAT model. All compared learning algorithms are conducted independently
on the simulated datasets generated randomly by Dev C++. Further analysis on the perfor-
mance of HNN-RAN3SATEA and HNN-RAN3SATES revolves around the learning phase
and retrieval phase performance analysis.

9.1. Learning Phase Performance

This section evaluates the capability of the proposed EA in doing PRAN3SAT in HNN
(HNN-RAN3SATEA). The proposed model will be compared with the benchmark learning
method proposed by [28] (HNN-RAN3SATES). The main emphasis of this comparison is to
evaluate whether the proposed learning method can embed the behavior of PRAN3SAT into
HNN model. Inspired by works such as [45,46], this section will utilize learning error met-
rics such as Root Mean Square Error

(
RMSELearning

)
, Mean Absolute error

(
MAELearning

)
and Mean Absolute Percentage Error

(
MAPELearning

)
.

Figures 3–5 demonstrate the RMSELearning, MAELearning and MAPELearning results for
HNN-RAN3SATES and HNN-RAN3SATEA respectively for NN = 18 until NN = 300
neurons. The graphs emphasize the accuracy of the learning phase of the proposed model
as opposed to the conventional model, where lower error evaluations indicating higher
accuracy. Generally, similar trends observed in Figures 3–5, where HNN-RAN3SATES
recorded the highest measures as compared to HNN-RAN3SATEA for every NN. Based
on the results, HNN-RAN3SATEA outperformed HNN-RAN3SATES when the number
of neurons increased. According to Figure 3, the deviation of the error is much lower as
the number of neurons increased. Note that the high value of RMSELearning manifests
the significant gap between the average fitness difference of the HNN-RAN3SAT model
with the lowest fitness value. Despite acquiring single objective function

(
EPRAN3SAT = 0

)
during learning phase, EA managed to complete the learning phase with lower value
of RMSELearning compared to the conventional method. Note that PRAN3SAT consists of

Ck
i where k = 1, 2 and 3 that requires effective state update. By increasing n

(
Ck

i 6= 1
)

in
PRAN3SAT will create a fitness gap between optimal string fitness and the current fitness.
In terms of probability of obtaining EPRAN3SAT = 0, C(3)

i is observed to achieve satisfied
clause or P

(
EP3SAT = 0

)
> P

(
EP2SAT = 0

)
but will result in more entry for synaptic weight

structure. To make matters worse, probability for P
(

C(1)
i = 1

)
reduced exponentially as

the number of C(1)
i → ∞ . In this case, the high RMSELearning value is due to high number

of n
(

C(1)
i

)
in PRAN3SAT . Next, to effectively update all the state combination in C(k)

i ,
HNN-RAN3SATEA employed positive advertisement which accelerates the learning to
achieve EPRAN3SAT = 0. The potential neuron space was divided into several parties where
the eligibility distance coefficient ω increases both fitness of the most eligible candidate
(highest fitness) and the least eligible candidate (lowest fitness). If the fitness gap is high
(between the candidate and the voter), the next positive advertisement campaign will
further reduce the gap until the best candidate is found. Another interesting observation is
the most eligible candidate that achieve

(
EPRAN3SAT = 0

)
will assist other candidates in the

party via update of ω. A similar mechanism was employed in other parties that potentially
reduce the fitness gap between all solution in HNN-RAN3SATEA. However, the proposed
positive advertisement in HNN-RAN-3SATEA has the capacity to reduce the eligibility
of the voters or candidate but this effect is not obvious because there is no RMSELearning
fluctuation for all values of NN. Unlike other metaheuristics algorithms that consist only 1
single space such as Genetic Algorithm, EA has additional parties with different updating
rule. Hence, the fitness gap between the least eligible candidate with optimal fitness can be
reduced which will result in lower value of RMSELearning. Based on Figure 3, RMSELearning
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value for HNN-RAN3SATEA remains low although the number of neurons increases to
NN ≥ 200. This behavior has been reported in the work of [27] where EA effectively
update the neurons state of lower order logical rule. Additionally, for HNN-RAN3SATES,
the solution search space for this model is not well-defined and there is a high chance
for the model to achieve non-improving solution or local maxima. This is due to very
minimal effort by the model to improve the fitness of the current solution string. With the
increase of number of neurons, HNN-RAN3SATES has irregular space that will increase
the complexity of the method to 2n. The increase of complexity will result in high value
of RMSELearning. The high value of RMSELearning demonstrates low effectiveness of the
proposed method in completing the learning phase of HNN.
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On the other hand, according to Figure 4, the absolute error for HNN-RAN3SATEA is
much lower as the number of neurons increased. Note that, the high value of MAELearning
signifies the actual difference between the average fitness and the maximum fitness of
the HNN-RAN3SAT model. The key strategy by HNN-RAN3SATEA to maintain a low
MAELearning value is the negative advertisement. Negative advertisement capitalizes
the exploration capability to identify the potential optimal candidates. During negative
advertisement, the composition of the voters in HNN-RAN3SATEA changed where eligible
candidates have been attracted to the stronger party. The change of position of the voter
will increase the chances for the voter to increase eligibility because the stronger party has
a higher eligibility value. Thus, individual eligibility for all the voters and candidates will
increase and the absolute error reduced dramatically. Indirectly, negative advertisement
divides the composition of the strong party that has less of n

(
C(1)

i 6= 1
)

compared to

weak party that has more of n
(

C(1)
i = 1

)
. Although there is potential n

(
C(2)

i 6= 1
)

and

n
(

C(3)
i 6= 1

)
during the change of position but the MAELearning value suggested most of

the error accumulated from the C(1)
i that is very sensitive to the state change. This finding

has a good agreement with the work of [27,28] where C(1)
i is the main Satisfiability issue

in Random Satisfiability. Note that, third order clause C(3)
i in PRAN3SAT was reported

to be easily satisfied due to more state option, thus showing the potential MAELearning

value for C(3)
i is almost zero. It is worth mentioning that negative advertisement will

improve the candidate of the party because the new positioning of the voters into a new
party will change the solution space of the party. For example, if one of the voters that
has EPRAN3SAT = 4 was attracted to other party in which the candidate of the party has
EPRAN3SAT = 2, the change of candidate will occur. The new positioning of the candidate
will improve the overall eligibility of the party. Another scenario to consider is when all
the candidates from the weak party move to strong party and the overall eligibility of the
candidate in the weak party decreases, thus increasing the MAELearning value. In this case,
the weak party will be slowly disregarded during the next trial of HNN-RAN3SATEA. As
of state update, negative advertisement allows a similar update to positive advertisement.
The update will increase the individual fitness in all parties and hence, reduce the value of
MAELearning. Additionally, HNN-RAN3SATES does not acquire any systematic exploration
method. The fitness value for each individual solution string varies from near-optimal
fitness to very low fitness without any potential improvement. There is a high chance
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that both C(2)
i and C(3)

i will not satisfied during the next iteration. The inefficient state
exploration will result in high MAELearning value. In short, the result in Figure 4 confirms
that HNN-RAN3SATEA offers great optimization capability to diversify the candidates
and provide more chances for the individual voter to improve with respect to the current
candidate. The MAELearning value demonstrates the compatibility of the C(3)

i as a logical
rule in HNN as the number of neuron increase.

As shown in Figure 5, the percentage error for HNN-RAN3SATEA is lower compared
to HNN-RAN3SATES as the number of neurons increased. One of the key hindrances of
learning PRAN3SAT in HNN is the random assignment of the negated literal. Negated literal
in C(k)

i mostly impact first and second order logic where the probability to obtain C(k)
i 6= 1

is high. Note that, the high value of MAPELearning signifies a high percentage of unsatisfied
clause of PRAN3SAT . HNN-RAN3SATEA managed obtain lower value of MAPELearning
compared to HNN-RAN3SATEA because the effectiveness of Coalition to reduce the
potential local maxima during the learning phase. According to Figure 5, the MAPELearning
value when NN ≤ 50 is almost zero compared to HNN-RAN3SATES that reaches 60–70%
percentage of unsatisfied clauses. This implies the effectiveness of the HNN-RAN3SATEA
in discovering other solution space if the HNN achieves the non-improving solution.
During Coalition, eligibility of the candidate in the strong parties improved by combining
the effect of distance coefficient from another strong party. In this case, the eligibility of
the candidate will increase with respect to other eligible candidates from other parties.
In other words, Coalition expedites the process of finding neuron state that corresponds
to EPRAN3SAT = 0 during learning phase. In summary, HNN-RAN3SATEA managed to
complete the learning phase for all values of NN compared to HNN-RAN3SATES that
achieve 100% percentage error when NN ≤ 55.

9.2. Retrieval Phase Performance

This section encompasses the analysis of the retrieval phase for the proposed model,
HNN-RAN3SATEA with the benchmark model, HNN-RAN3SATES as proposed by [28] in
terms of error evaluation, energy analysis, neuron variation and similarity analysis measure.
The testing error evaluations are based on the RMSE, MAE and MAPE to comply with
learning error evaluation. The energy evaluation will utilize the ratio of global solution as
coined by the work of [18]. In terms of similarity index (SI), several performance metrics
such as Jaccard (J), Sokal Sneath (SS), Dice (D) and Kulczynski Index (K) inspired by the
work of [28] will be implemented in this study. Building from the similarity aspects, the
total variation V also will be considered to assess the quality of the final neuron state. As of
physical meaning for each figure, Figures 6–8 demonstrate the accuracy of the testing phase
(retrieval phase) of our proposed model with respect to the benchmark model. Lower error
measures the effectiveness of the HNN-RAN3SAT model to generate the final state that
achieved global minimum energy. The numerical comparison of the number of global
minimum energy in the form of ratio is shown in Figure 9. Figures 10–13 demonstrate the
similarity indices of the final states obtained by the HNN-RAN3SAT model. The higher
index depicts more overfitting behavior of the final state produced by HNN-RAN3SAT
model. As of Figure 14, the value V in the graph indicates the effectiveness of the HNN-
RAN3SAT model in retrieving different final state from each other. In other words, high
value of V indicates HNN-RAN3SAT model produce non-repeating final neuron state
which leads to more diversified neuron states.

According to Figures 6–8, the error values that were reported for HNN-RAN3SATEA
are RMSEtesting = 0, MAEtesting = 0 and MAPEtesting = 0 for 18 ≤ NN ≤ 300. This is due
to the effective synaptic weight management that correspond to the “learned” PRAN3SAT
during learning phase of HNN-RAN3SATEA. The capability of local search and global
search operator in EA has successfully creates partitioning of the search spaces during
learning phase, which improves the synaptic weight management during retrieval phase.
However, the error measures for HNN-RAN3SATES model are growing rapidly, particu-
larly when NN ≥ 84. The non-effective synaptic weight management in ES reduces the
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correctness of synaptic weights being retrieved during the retrieval phase. The outcomes
will drive into the non-optimal states being retrieved and thus, HNN-RAN3SAT model
starts retrieving the local minimum energy (refer Figure 9). Conversely, HNN-RAN3SATEA
model consistently reaches the global minimum energy, and this is explained by the results
in Figures 6–8 which means HNN-RAN3SAT recalls the correct final states.

The results in Figure 9 demonstrate the performance of the HNN-RAN3SATEA with
respect to HNN-RAN3SATES based on the ratio of global minimum solutions, Zm. In
addition, the consistent trend of HNN-RAN3SATEA which exhibit Zm = 1 has verified the
performance of HNN-RAN3SAT model in term of energy analysis. According to [28], the
optimal synaptic weight management in EA contributes to the optimal testing phase in
retrieving the consistent final neuron states. Therefore, the conditions such as the optimal
final neuron states and correct synaptic weight, were the effect of the optimization operators
in EA. Based on Figure 9, the fluctuations can be seen throughout the simulations for HNN-
RAN3SATES except for NN ≥ 180, where the suboptimal states and non-systematic
synaptic weight management have deteriorated the Zm values. With this analysis, we
can highlight the relationship between the ineffective learning by ES has influenced the
learning phase, particularly when NN ≥ 180. The mechanism of ES, which deploys the
intensive explorations within a larger search space, causing an ineffective learning phase
that eventually affects synaptic weight management [46]. There will be a the possibility
of retrieving non-optimal synaptic weight during the retrieval phase. Also, it needs to
mention that in terms of solution space, EA approached the most systematic partition
solution space in the model, which improves global and local search and finds the solution
in all defined space. In contrast, ES has no effort of improving the global-local search in its
solution space.
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Furthermore, to investigate the quality of the solutions produced by HNN-RAN3SAT,
similarity indices were calculated to compare each neuron of the string with the benchmark
neuron that is determined by Equation (38) [28]. The general trend for Jaccard, Sokal
Sneath, Dice and Kulczynski recorded by HNN-RAN3SATES as shown in Figures 10–13
were increasing until the peak at NN = 120, and stop getting any value when NN > 180
due to the presence of more local solutions. To support the analysis, the value of the global
minima ratio Zm that approaches zero within the aforementioned range. This indicates
the variables of each state for PRAN3SAT (neurons of the string) obtained are not all equal
the ideal neuron. HNN-RAN3SATEA model has similarity index values ranging from
0.4–0.8 and managed to generate the results for 18 ≤ NN ≤ 300. The most interesting to
ponder here is the difference in the similarity index values achieved in a specific number
of neurons. For example, when NN = 120, the similarity analysis were J = 0.63775,
SS = 0.46816, D = 0.778813 and K = 0.809763. Lower similarity index was found to
be recorded based on the J and SS due to lower similarity values of the positive state
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as the positive benchmark states. This indicates the final states generated exhibits less
overfitting, affecting the neuron variations. The effective synaptic weight management has
been contributed due to the effectiveness of the local search and global search operators
in EA as coined by [27]. The number of neuron variations as shown in Figure 14 also is
very crucial to illustrate how HNN-RAN3SATEA can recall different solutions in each
trial which means exploring different solutions and different areas in the search space. By
taking a direct comparison towards V when NN = 120, where V = 10, 000 has manifested
the lower similarity index reflects the higher variability of the final solutions. On contrary,
the fluctuation in trend of V can be seen in HNN-RAN3SATES where the model stops
getting any value when NN > 180. This is due to the non-effective synaptic weight
management and training via ES, where the exploration being done in a tremendous search
space, without any intervention of optimization operators [46].

Overall, HNN-RAN3SATEA outperformed the HNN-RAN3SATES in terms of the
solution quality based on similarity analysis and the variability according to total variation
measures. The final neuron states attained by the proposed model are certified to be less
over-fit based on the lower similarity index and higher neuron variation achieved at the end
of the simulations. In addition, the error evaluation and energy analysis also demonstrated
the capability of HNN-RAN3SATEA in generating the global minimum solutions that
correspond to the global minimum energy. The analysis also has verified the compatibility
of PRAN3SAT with EA in HNN logic programming, with a promising potential to be applied
in the logic mining [45] paradigm in the next exploration.

10. Conclusions

The main findings of this research prove the compatibility of PRAN3SAT logical repre-
sentation analysis via Election Algorithm (EA) with HNN in both learning and retrieval
phase based on error evaluations, energy analysis, similarity measures, and variability. The
results via computer simulation have extensively shown that the formulated propositional
logical rule PRAN3SAT consists of first, second, and third order logical rule has been suc-
cessfully embedded optimally in Hopfield Neural Network, indicating the flexibility of the
logical representation. Another finding of this research is that EA is an effective method for
tackling PRAN3SAT as well as RAN2SAT in work [27]. In the context of learning algorithm,
the results have manifested the capability of EA during the learning phase of PRAN3SAT
logic in HNN as opposed to the conventional algorithm namely, Exhaustive Search (ES)
by the learning accuracy and efficiency. In addition, particularly the proposed model has
demonstrated the capacity in optimizing the retrieval phase based on the performance
indicators such as error measures, energy analysis, similarity index, and variability evalua-
tion. Based on the analysis, all research objectives have been achieved after conducting
the simulations.

The research raises important questions about the role of EA that has verified the
capability of the higher-order propositional logic in HNN, specifically referring to the
proposed non-systematic RAN3SAT logic. Based on the promising results obtained by
encoding PRAN3SAT in HNN with EA, the new logical structure RAN3SAT can be further
applied in logic mining due to its flexibility to represent non-systematic data. Additionally,
the proposed logical structure can be extended as a main logic mining representation
of various data ranging from medical, engineering, and finance data set. The potential
performance metrics such as median absolute deviation (MAD) [47], area under curve
(AUC) [48], F1 score [49], logarithmic loss [50], and dissimilarity index analysis can be
potentially considered in future work to enhance the analysis.
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