
processes

Article

Optimal Design of a U-Shaped Oscillating Water Column
Device Using an Artificial Neural Network Model

Arun George 1, Il-Hyoung Cho 1,* and Moo-Hyun Kim 2

����������
�������

Citation: George, A.; Cho, I.-H.; Kim,

M.-H. Optimal Design of a U-Shaped

Oscillating Water Column Device

Using an Artificial Neural Network

Model. Processes 2021, 9, 1338.

https://doi.org/10.3390/pr9081338

Academic Editors: Keyyong Hong

and Bo Woo Nam

Received: 28 June 2021

Accepted: 27 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Ocean System Engineering, Jeju National University, Jeju 63631, Korea;
arunmvgeorge@gmail.com

2 Department of Ocean Engineering, Texas A&M University, College Station, TX 77843, USA;
m-kim3@tamu.edu

* Correspondence: cho0904@jejunu.ac.kr; Tel.: +82-647-543-482; Fax: +82-647-513-480

Abstract: A U-shaped oscillating water column (U-OWC) device has been investigated to enhance
power extraction by placing the bottom-mounted vertical barrier in front of a conventional OWC.
Then, the optimal design of a U-OWC device has been attempted by using an artificial neural network
(ANN) model. First, the analytical model is developed by a matched eigenfunction expansion method
(MEEM) based on linear potential theory. Using the developed analytical model, the input and output
features for training an ANN model are identified, and then the database containing input and output
features is established by a Latin hypercube sampling (LHS) method. With 200 samples, an ANN
model is trained with the training data (70%) and validated with the remaining test data (30%).
The predictions on output features are made for 4000 random combinations of input features for
given significant wave heights and energy periods in irregular waves. From these predictions,
the optimal geometric values of a U-OWC are determined by considering both the conversion
efficiency and wave force on the barrier. It is found that a well-trained ANN model shows good
prediction accuracy and provides the optimal geometric values of a U-OWC suitable for wave
conditions at the installation site.

Keywords: U-shaped oscillating water column; matched eigenfunction expansion method; optimal
design; artificial neural network model; conversion efficiency; machine learning

1. Introduction

The idea of extracting electricity from wave energy is attracting the attention of devel-
opers and researchers once again due to its abundance as well as its low environmental
impact. In particular, the development of new energy sources is unavoidable in an era of
challenging global issues such as climate change and rising levels of CO2. However, there
also exist economic and technical challenges that have to be overcome for commercializa-
tion. Furthermore, commercial competitiveness with other sources of renewable energy is
vital if these new energy sources are to survive. Several efforts have been taken to resolve
the expensive installation and power transmission costs, as well as the unpredictability of
the ocean environment. Recently, several efforts have included combined power generation,
where at least two power sources among wind, wave, and current power are used for a
single supporting structure; direct consumption of generated power at the site; and the
storing of generated power into hydrogen fuel cells without a transmission cable.

There are a large number of concepts and technologies related to wave power genera-
tion. In particular, over 1000 wave energy conversion techniques have been patented in
Japan, North America, and Europe however, the number of wave energy converters (WECs)
that approach the commercialization stage is limited. Developed WECs can be classified
into three types: attenuator, point absorber, and terminator. Attenuators lie parallel to the
predominant wave direction and ‘ride’ the waves. An example of an attenuator WEC is the
Pelamis. A point absorber is a device that has small dimensions relative to the incident
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wavelength. They can be floating structures that heave up and down on the water surface
or can be submerged below the water level to rely on pressure differentials. Because of their
small size, wave direction is not important for these devices. Power buoy and Wavebob are
point absorber types. Terminator devices are positioned at right angles to the propagating
direction of incident waves; they have a flap, arm, and are pivoted to allow forward and
backward movement as the waves pass by. A historical device of this type is the nodding
duck designed by Salter [1].

For the first-stage conversion from wave energy to mechanical energy, the WECs
have to transform the wave energy into hydraulic, pneumatic, and potential energy.
The oscillating water column (OWC) uses airflow to drive the pneumatic turbine, which is
directly coupled to a generator. The oscillating flux at the internal surface induces oscil-
lating air pressure, rotates the turbine by pushing air through it via pressure difference,
and finally produces electricity from the generator. The typical pneumatic turbines used
at OWC are the Wells turbine and the Impulse turbine. They are self-rectifying turbines,
which deliver a uni-directional torque for bi-directional airflow. Since Masuda [2] proposed
the OWC device first, numerous researchers have studied this interesting topic sustainedly
through analytical, numerical, and experimental approaches [3–7]. The OWC devices are
presently installed and operated in many regions throughout the world, as the technology
has been stabilized. The Land Installed Marine Powered Energy Transformer (LIMPET)
is known as the world’s first wave power generation system that is operated through
connection with an existing power grid [8]. It was set up on the island of Islay offshore of
the Scottish west coast, started operations in November 2000, and presently supplies power
to the UK. The Korea Research Institute of Ships and Ocean Engineering (KRISO) recently
constructed an OWC pilot plant with a capacity of 500 kW. The chamber has dimensions
of 31.2 × 37.0 m. It was installed on a seabed with a water depth of 15 m in a test site
for prototype WECs near Chagwido Island, Jeju. It is currently operating to evaluate its
performance [9].

A new concept OWC device, modified from the conventional OWC system,
was proposed by Boccotti [10]. It is called a U-shaped oscillating water column device,
which adds a bottom-mounted vertical barrier in front of the existing OWC device. Con-
sequently, wave energy is not transmitted directly into the internal fluid region of the
air chamber, and the incident wave induces oscillatory motion of the U-shaped water
column formed by the vertical barrier as shown in Figure 1. Conclusively, the air turbine is
operated by the airflow in the chamber, which is caused by the internal surface displace-
ment at one end of the U-shaped column. Investigations of hydrodynamic performance
for a U-OWC device have been performed theoretically, numerically, and experimentally
by many researchers since the concept was published. Boccotti [10] used the unsteady
Bernoulli equation to establish the basis for a theoretical model of the oscillation of a
U-shaped column. Later, Boccotti et al. [11] conducted a model experiment to verify the
theoretical model. Malara and Arena [12] developed a hybrid numerical model applying
the eigenfunction expansion method based on linear potential theory to the outer region
of the U-OWC and the unsteady Bernoulli equation to the inner region. Malara et al. [13]
derived the boundary integral equation based on the linear potential theory and devel-
oped a three-dimensional numerical model of the U-OWC device. Malara and Arena [14]
proposed a semi-analytical approach for the estimation of hydrodynamic efficiency when
multiple U-OWCs are arranged. It was found that an arrangement of several U-OWC
devices reduces the hydrodynamic efficiency compared to independent U-OWC devices.
Ning et al. [15] examined the effects of a vertical barrier on hydrodynamic performance us-
ing the higher-order boundary element method (HOBEM) based on the nonlinear potential
theory including nonlinear free-surface boundary conditions.



Processes 2021, 9, 1338 3 of 24

Processes 2021, 9, x FOR PEER REVIEW 3 of 26 
 

 

ing crucial advances in solving problems that have held out against the artificial intelli-

gence (AI) community for a long time. It has turned out to be outstanding at discovering 

complicated structures in high-dimensional data [17] and is therefore relevant to many 

fields of science, business, and government. Lawrence et al. [18] developed a hybrid neu-

ral network model for face recognition. Their system combines a local image sampling, a 

self-organizing map (SOM) neural network, and a convolutional neural network. Dahl et 

al. [19] proposed a novel context-dependent (CD) model for large-vocabulary speech 

recognition (LVSR) that leverages recent advances in the use of deep belief networks for 

phone recognition. They used a pre-trained deep neural network hidden Markov model 

(DNN-HMM) hybrid architecture that trains the DNN to produce a distribution over 

senones (tied triphone states) as its output. Rifaioglu et al. [20] reviewed deep learning-

based identification of the interaction between drugs and their targets, something known 

as virtual screening. Recently, researchers have applied different machine learning tech-

niques to optimize WECs systems. Sarkar et al. [21] used a machine learning algorithm to 

obtain the optimal layout of WECs in arrays. Deberneh [22] used wave data from near-

shore floating buoys to train different machine learning regression models to predict the 

optimal site for nearshore wave energy harvesting. Masoumi [23] classified regions in the 

United States to improve decision-making in the design of wave-wind hybrid systems. 

They used an unsupervised K-means clustering algorithm based on wave height, wave 

period, and wind speed. 

In the present study, the hydrodynamic performance of a 2D U-OWC is investigated 

in irregular waves using an analytical model. Then, an artificial neural network (ANN) 

model belonging to a supervised machine learning algorithm is used to obtain the optimal 

geometry of a U-OWC for maximizing power generation. As an analytical model, a MEEM 

based on linear potential theory is used to obtain hydrodynamic parameters (flow rates, 

air pressure, etc.). A sample set of input features comprising geometry of a vertical barrier 

and submergence depth of a chamber is created using the Latin hypercube sampling 

(LHS) method. Using the analytical model, output features such as conversion efficiency 

and wave force are calculated for given input features and wave conditions. Finally, a 

database including all the features is established for each energy period and a detailed 

feature study is conducted on the database to obtain correlations between the features. To 

search for the optimal geometric features for maximizing extracted power, an artificial 

neural network (ANN) model is chosen. After preprocessing the database, an ANN model 

is designed and trained to predict output features like conversion efficiency and wave 

forces in irregular waves. Using the well-trained ANN model, predictions are made for a 

very large sample set (4000 samples) and from these predictions, optimal design parame-

ters of a U-OWC are determined.  

This paper is organized as follows: Section 2 describes the analytical model of a 2D 

U-OWC device. In Section 3, the numerical calculation is performed using a developed 

analytical model. Section 4 designs an ANN model and predicts the conversion efficiency 

and wave force from irregular waves. Conclusions are presented in Section 5. 

 

Figure 1. Schematic sketch of a U-OWC device.

An ANN model that is made up of multiple hidden layers allows the computational
model to learn the correlation between features in the dataset [16]. ANN models are making
crucial advances in solving problems that have held out against the artificial intelligence (AI)
community for a long time. It has turned out to be outstanding at discovering complicated
structures in high-dimensional data [17] and is therefore relevant to many fields of science,
business, and government. Lawrence et al. [18] developed a hybrid neural network model
for face recognition. Their system combines a local image sampling, a self-organizing map
(SOM) neural network, and a convolutional neural network. Dahl et al. [19] proposed
a novel context-dependent (CD) model for large-vocabulary speech recognition (LVSR)
that leverages recent advances in the use of deep belief networks for phone recognition.
They used a pre-trained deep neural network hidden Markov model (DNN-HMM) hybrid
architecture that trains the DNN to produce a distribution over senones (tied triphone
states) as its output. Rifaioglu et al. [20] reviewed deep learning-based identification of
the interaction between drugs and their targets, something known as virtual screening.
Recently, researchers have applied different machine learning techniques to optimize WECs
systems. Sarkar et al. [21] used a machine learning algorithm to obtain the optimal layout
of WECs in arrays. Deberneh [22] used wave data from nearshore floating buoys to train
different machine learning regression models to predict the optimal site for nearshore
wave energy harvesting. Masoumi [23] classified regions in the United States to improve
decision-making in the design of wave-wind hybrid systems. They used an unsupervised
K-means clustering algorithm based on wave height, wave period, and wind speed.

In the present study, the hydrodynamic performance of a 2D U-OWC is investigated
in irregular waves using an analytical model. Then, an artificial neural network (ANN)
model belonging to a supervised machine learning algorithm is used to obtain the optimal
geometry of a U-OWC for maximizing power generation. As an analytical model, a MEEM
based on linear potential theory is used to obtain hydrodynamic parameters (flow rates,
air pressure, etc.). A sample set of input features comprising geometry of a vertical barrier
and submergence depth of a chamber is created using the Latin hypercube sampling (LHS)
method. Using the analytical model, output features such as conversion efficiency and
wave force are calculated for given input features and wave conditions. Finally, a database
including all the features is established for each energy period and a detailed feature study
is conducted on the database to obtain correlations between the features. To search for the
optimal geometric features for maximizing extracted power, an artificial neural network
(ANN) model is chosen. After preprocessing the database, an ANN model is designed and
trained to predict output features like conversion efficiency and wave forces in irregular
waves. Using the well-trained ANN model, predictions are made for a very large sample
set (4000 samples) and from these predictions, optimal design parameters of a U-OWC are
determined.

This paper is organized as follows: Section 2 describes the analytical model of a 2D
U-OWC device. In Section 3, the numerical calculation is performed using a developed
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analytical model. Section 4 designs an ANN model and predicts the conversion efficiency
and wave force from irregular waves. Conclusions are presented in Section 5.

2. Analytical Model

A U-shaped OWC device installed at a constant water depth (h) is used as the analytical
model. A U-OWC device is composed of an air chamber of length (a) and height (H) and a
chamber wall that is submerged at d2 below the water surface. The airflow in the chamber
escapes through the turbine installed at the top. A bottom-mounted vertical barrier with a
height of d1 is placed apart at a distance of b from the chamber (see Figure 1). By adding
a vertical barrier in front of the chamber, it looks like an oscillating U-tube, different
from a conventional OWC. A two-dimensional Cartesian coordinate system is introduced,
the origin is positioned at the location where the chamber wall and water surface meet,
and the positive direction of the z-axis is set vertically downward. The energy of the
incident wave going in the positive x-direction is partially reflected and some enters into
the chamber and oscillates the water surface there. Electricity is produced by rotating the
turbine installed on the top of the chamber.

It is assumed that the fluid is incompressible and inviscid, and the flow is irrotational
so that linear potential theory can be used. The fluid particle velocity can then be described
by the gradient of a velocity potential Φ(x, z, t). Assuming harmonic motion of frequency
ω, the velocity potential can be written as Φ(x, z, t) = Re

{
− igA

ω φ(x, z)e−iωt
}

, where
A is the incident wave amplitude. Similarly, we can write down the wave elevation
ζ(x, t) = Re

{
η(x)e−iωt} and oscillating air pressure Pc(t) = Re

{
pce−iωt} in the chamber.

Under the assumption of linear potential theory, the velocity potential can be ex-
pressed as the sum of the scattering potential (φ1), i.e., the sum of incident potential
(φ0 = eik(x+b) f0(z)

f0(0)
) and diffraction potential (φD), and the radiation potential (φ2) due to

oscillating air pressure in the chamber in the absence of an incident wave, as shown in
Equation (1).

φ = − igA
ω

φ1 + pcφ2 (1)

The diffraction φ1 and radiation φ2 potentials satisfy the following boundary-value problem

∂2φj

∂x2 +
∂2φj

∂z2 = 0, j= 1, 2 (2)

with the following boundary conditions
∂φj
∂z −

ω2

g φj = 0, x ≤ 0
∂φj
∂z −

ω2

g φj =
iω
ρg δj2, 0 ≤ x ≤ a,

on z = 0 (3)

∂φj

∂x
= 0, on

x = a , 0 ≤ z ≤ h
x = 0 , 0 ≤ z ≤ d2
x = −b, c ≤ z ≤ h

(4)

∂φj

∂z
= 0, on z = h (5)

lim
x→−∞

(
∂

∂x
+ ik)

(
φ1 − φ0

φ2

)
= 0. (6)

where c = h− d1, δjk is the Kronecker delta defined by δjk = 1 if j = k, and δjk = 0 if j 6= k.

2.1. Matched Eigenfunction Expansion Method

For applying a MEEM, the fluid domain is divided into three regions, as shown in
Figure 1. Region (1) is defined by x ≤ −b, region (2) by −b ≤ x ≤ 0, and region (3)
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by 0 ≤ x ≤ a. By the method of separation of variables, the velocity potentials in each
region can be written as:

φ
(1)
j (x, z) = e−k0(x+b) f0(z)

f0(0)
δj1 +

∞

∑
n=0

Ajnekn(x+b) fn(z), (7)

φ
(2)
j (x, z) =

∞

∑
n=0

(
Bjnekn(x+b) + Cjne−knx

)
fn(z), (8)

φ
(3)
j (x, z) =

∞

∑
n=0

Djn cosh kn(x− a) fn(z)−
i

ρω
δj2 (9)

where n = 0 represents the propagating mode, while each n ≥ 1 corresponds to evanescent
modes. The eigenvalues (k0 = −ik, kn, n = 1, 2, . . .) are the solutions of the dispersion
equation given by kn tan knh = −ω2

g , n ≥ 0.

The vertical eigenfunctions fn(z), (n = 0, 1, 2, ..) are given by fn(z) = N−1
n cos kn(z − h),

with N2
n = 1

2

(
1 + sin 2knh

2knh

)
. The vertical eigenfunctions fn(z) form a complete orthogonal

set in [0,h]:

1
h

∫ h

0
fn(z) fm(z)dz = δmn (10)

where δmn is the Kronecker delta.
The unknown coefficients Ajn, Bjn, Cjn, Djn in Equations (7)–(9) can then be determined

by invoking the continuity of potential and horizontal velocity across x = −b, 0.

∂φ
(1)
j

∂x

∣∣∣∣∣
x=−b

=
∂φ

(2)
j

∂x

∣∣∣∣∣
x=−b

=

{
U(1)

j (z), 0 ≤ z ≤ c
0, c ≤ z ≤ h

∂φ
(2)
j

∂x

∣∣∣∣∣
x=0

=
∂φ

(3)
j

∂x

∣∣∣∣∣
x=0

=

{
0, 0 ≤ z ≤ d2

U(2)
j (z), d2 ≤ z ≤ h

(11)

φ
(1)
j (−b, z) = φ

(2)
j (−b, z), 0 ≤ z ≤ c

φ
(2)
j (0, z) = φ

(3)
j (0, z), d2 ≤ z ≤ h

(12)

where U(1)
j (z), U(2)

j (z) are the unknown horizontal fluid velocities at the openings.
After substituting Equations (7)–(9) into Equation (11), then multiplying both sides by

{ fm(z) : m = 0, 1, 2, ...} and integrating over [0, h], we obtain the following equations

Ajn = 1
knh

∫ c
0 U(1)

j (z) fn(z)dz +
δn0δj1
f0(0)

,

Bjn = 1
knh(1−e2knb)

(∫ c
0 U(1)

j (z) fn(z)dz− eknb∫ h
d2

U(2)
j (z) fn(z)dz

)
,

Cjn = 1
knh(1−e2knb)

(
eknb∫ c

0 U(1)
j (z) fn(z)dz−

∫ h
d2

U(2)
j (z) fn(z)dz

)
,

Djn = − 1
knhsinhkna

∫ h
d2

U(2)
j (z) fn(z)dz, n = 0, 1, 2, . . .

(13)

Using the above equations, four unknowns Ajn, Bjn, Cjn, Djn can be expressed by

two unknowns U(1)
j (z), U(2)

j (z) and then applying the continuity of the velocity potential
given by Equation (12), the following equations are readily derived

∞
∑

n=0

fn(z)
knh

(
1 + 1

tanhknb

)∫ c
0 U(1)

j (z) fn(z)dz

−
∞
∑

n=0

fn(z)
knhsinhknb

∫ h
d2

U(2)
j (z) fn(z)dz = −2 f0(z)

f0(0)
δj1

(14)
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−
∞
∑

n=0

fn(z)
knhsinhknb

∫ c
0 U(1)

j (z) fn(z)dz

+
∞
∑

n=0

fn(z)
knh

(
1

tanhkna +
1

tanhknb

)∫ h
d2

U(2)
j (z) fn(z)dz = − i

ρω δj2.
(15)

Following Evans and Porter (1995), we can expand the horizontal fluid velocities
U(1)

j (z) and U(2)
j (z) at the openings as a series of Chebyshev polynomials

U(1)
j (z) =

∞
∑

q=0
a(1)jq u(1)

q (z), on 0 ≤ z ≤ c

U(2)
j (z) =

∞
∑

q=0
a(2)jq u(2)

q (z), on d2 ≤ z ≤ h
(16)

where a(1)jq , a(2)jq (q = 0, 1, 2, . . .) are the unknown expansion coefficients. u(1)
q (z), u(2)

q (z),
satisfying the free-surface boundary condition and the square-root singularity at the edge
of the plate, are given by

û(1)
q (z) = u(1)

q (z)− ω2

g
∫ c

z u(1)
q (t)dt = 2(−1)q

π
√

c2−z2 T2q
( z

c
)
,

u(2)
q (z) = 2(−1)q

π
√

(h−d2)
2−(h−z)2 T2q

(
h−z

h−d2

)
,

(17)

where T2n(x) = sin[(2n+1)θ]
sin θ , x = cos θ is the 2nd-order Chebyshev polynomial of the

second kind.
Substituting Equation (16) into Equations (14) and (15), the coupled algebraic equa-

tions are obtained as follows:

∞
∑

q=0
a(1)jq

∞
∑

n=0

F(1)
qn fn(z)

knh

(
1 + 1

tanhknb

)
−

∞
∑

q=0
a(2)jq

∞
∑

n=0

F(2)
qn fn(z)

knhsinhknb = −2 f0(z)
f0(0)

δj1,

−
∞
∑

q=0
a(1)jq

∞
∑

n=0

F(1)
qn fn(z)

knhsinhknb +
∞
∑

q=0
a(2)jq

∞
∑

n=0

F(2)
qn fn(z)

knh

(
1

tanhkna +
1

tanhknb

)
= − i

ρω δj2,

(18)

where

F(1)
qn =


∫ c

0 u(1)
q (z) f0(z)dz =

(−1)q cosh khI2q(kc)
N0

, n = 0∫ c
0 u(1)

q (z) fn(z)dz =
cos knhJ2q(knc)

Nn
, n = 1, 2, ..

F(2)
qn =


∫ h

d2
u(2)

q (z) f0(z)dz =
(−1)q I2q(k(h−d2))

N0
, n = 0∫ h

d2
u(2)

q (z) fn(z)dz =
J2q(kn(h−d2))

Nn
, n = 1, 2, ..

By multiplying both sides of Equation (18) by u(1)
q′ (z), u(2)

q′ (z), (q′ = 0, 1, 2, . . .), re-
spectively, and integrating over 0 ≤ z ≤ c and d2 ≤ z ≤ h, we can obtain the final algebraic
equations by truncating n and q after N and M terms.

M

∑
q=0

a(1)jq

N

∑
n=0

F(1)
qn F(1)

q′n
knh

(
1 +

1
tanhknb

)
−

M

∑
q=0

a(2)jq

N

∑
n=0

F(2)
qn F(1)

q′n
knhsinhknb

= −
2F(1)

q′0
f0(0)

δj1, (19)

−
M
∑

q=0
a(1)jq

N
∑

n=0

F(1)
qn F(2)

q′n
knhsinhknb +

M
∑

q=0
a(2)jq

N
∑

n=0

F(2)
qn F(2)

q′n
knh

(
1

tanhkna +
1

tanhknb

)
= − i

ρω δj2
∫ h

d2
u(2)

q′ (z)dz = − i
ρω δj2δq′0

(20)

By solving the coupled algebraic Equations (19) and (20), the unknown expansion
coefficients a(1)jq , a(2)jq (j = 1, 2; q = 0, 1, 2, . . . , M) can be readily determined. Subsequently,
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the unknowns Ajn, Bjn, Cjn, Djn(j = 1, 2; n = 0, 1, 2, . . . , N) in each region can be obtained
from Equations (13) and (16).

2.2. Flux at the Internal Surface

The flux (Q(t) = Re
{

qe−iωt}) at the internal surface can be obtained by integrating
the scattered and radiated potentials over the internal surface.

q = −
∫ a

0
∂φ
∂z dx = Aq1 + pcq2,

q1 = ig
ω

∫ a
0

∂φ
(3)
1

∂z

∣∣∣∣
z=0

dx,

q2 = −
∫ a

0
∂φ

(3)
2

∂z

∣∣∣∣
z=0

dx = −(B− iC),

(21)

where q1 is the flux at the internal surface due to incident wave, and q2 due to the oscillating
pressure inside the chamber. C is in phase with the flux acceleration and has a similar
characteristic of the added mass (i.e., radiation admittance). B is in phase with the flux
velocity having an attribute of radiation damping (i.e., radiation conductance).

The horizontal wave forces Fi = Re
{

fi e−iωt} (i = 1, 2) on the vertical barrier and
chamber wall can be found by integrating pressure differences.

f1 = ρgA
∫ h

c

[
φ
(1)
1 (−b, z)− φ

(2)
1 (−b, z)

]
dz,

f2 = ρgA
∫ d2

0

[
φ
(2)
1 (0, z)− φ

(3)
1 (0, z)

]
dz,

(22)

The reflection coefficient of a U-OWC is written by

R f =

(
A10 +

iω
g

pc A20

)
f0(0). (23)

2.3. Oscillating Air Pressure

To determine the oscillating air pressure Pc = Re
{

pc e−iωt} in the chamber, a continu-
ity equation is used, for which the rate of change of mass inside the chamber is equal to the
mass flux through the turbine. It is assumed that the air in the chamber is a compressible
fluid, and the compression and expansion follow an adiabatic process.

ρa
dVc

dt
+

ρaVo

γPatm

dPc

dt
= −ρaQt. (24)

where ρa is the air density; γ(= 1.4) the specific heat for an adiabatic situation;
Patm atmospheric pressure and; Vo(= aH) the volume of the air chamber. The flux
Qt(= CtPc) through the turbine is assumed to be proportional to the air chamber pressure.
Ct(= K̂D/ρaN̂) is the function of the damping coefficient (K̂) that is dependent on the
shape of a turbine, turbine diameter (D), and rotational velocity (N̂) of a turbine.

In Equation (24), dVc
dt is the linearized rate of total upward displacement of the water

surface inside the chamber and is equal to the upward flux −Q(t) at the internal surface.
For simple harmonic motion, dVc

dt can be written by

dVc

dt
= −Q(t) = −Re

{
(Aq1 + pcq2)e−iωt

}
. (25)

When combining Equation (25) with Equation (24), we obtain the chamber pressure

pc =
AqD

Ct + B− i
(

ωVo
γPatm

+ C
) . (26)
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2.4. Extracted Power

The power output is the time-averaged rate of work done by the chamber pressure
pushing air through the turbine.

P =
1
2

Ct|pc|2 =
1
2

Ct|AqD|2

(Ct + B)2 + ( ωVo
γPatm

+ C)
2 . (27)

Thus, the conversion efficiency can be calculated by dividing the incident wave power
Pw = 1

2 ρgA2Cg per unit width of a regular wave with amplitude A.

E f f =
P

Pw
=

Ct

ρgCg

∣∣∣ pc

A

∣∣∣2. (28)

where Cg is the group velocity.
There is an optimal turbine constant that maximizes the conversion efficiency at

each wave frequency. The optimal turbine constant, (Ct)opt, can be obtained by imposing
dE f f /dCt = 0, which yields

(Ct)opt =

√
B2 + (

ωVo

γPatm
+ C)

2
(29)

2.5. Extracted Power in Irregular Waves

The variance of the oscillating chamber pressure in irregular waves can be written by
using Equation (26).

σ2
p =

∫ ∞

0

∣∣∣ pc

A
(ω)

∣∣∣2 · Sηη(ω)dω (30)

where Sηη is the incident wave spectrum. In the present study, a Pierson–Moskowitz (PM)
spectrum is used

Sηη(ω) = 262.99
H2

1/3

T4
Eω5

exp

(
−1051.97

T4
Eω4

)
(31)

where H1/3(= 4
√

m0) is the significant wave height and TE(= 2π
m−1
m0

) the energy period
and mn(=

∫ ∞
0 Sηη(ω)ωndω) the n-th order moment of the area under the spectral curve.

When the irregular wave is incident to the OWC, the maximum power per unit width
is given by

Pirr = (Ct)optσ
2
p , (32)

As the optimal turbine constant (Ct)opt is a function of wave frequency, in irregular
waves, we use the (Ct)opt value at the particular wave frequency that may be equal to the
resonance frequency of piston-mode or energy frequency.

The maximum conversion efficiency of OWC attainable in irregular waves is

ηirr =
Pirr

Pw,irr
. (33)

where the denominator Pw,irr in Equation (33) is the irregular wave power per unit width
and given by

Pw,irr = ρg
∫ ∞

0
Sηη(ω)Cg(ω)dω ≈ 1

64π
ρg2H2

1/3TE (34)

Both the wave force spectrums on the vertical barrier (i = 1) and chamber wall (i = 2)
in irregular waves are defined as

S(i)
f (ω) =

∣∣∣∣ fi(ω)

A

∣∣∣∣2 · Sηη(ω), i = 1, 2 (35)
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The significant wave forces can be obtained from integrating the above spectrums

( fi)1/3 = 4
√∫ ∞

0
S(i)

f (ω)dω, i = 1, 2 (36)

3. Numerical Calculation
3.1. Validation Test

For verifying the validity of the present MEEM solutions, the calculation results are
compared with those of Evans and Porter (1995) in Figure 2. The comparison model
is a typical two-dimensional rectangular OWC device with no vertical barrier (d1 = 0).
The non-dimensional chamber length (a/h) and submerged depth (d2/h) are 1/8 and 0.5,
respectively. The x-axis is the dimensionless frequency (ω2h/g), and the y-axis denotes the
fluxes (q1, q2(= −B + iC)) at the internal surface due to the incident wave and oscillating
chamber pressure. The radiation conductance (B) and radiation admittance (C) are non-
dimensionalized by B = ρg

ωa B and C = ρg
ωa C. The number of eigenfunctions of the z-axis

used in the calculation is N = 100, and the number of Galerkin expansion series is M = 10.
The analytical solutions are in exact agreement with the results of Evans and Porter (1995).
From the comparison, N = 100 and M = 10 are equally used in the following calculations.

3.2. Design Features

Figure 3a shows the flux at the internal surface by the incident wave as a function
of the barrier height (d1= 0, 2, 4, 6 m) and wave frequency. The chamber length (a)
and submerged depth (d2) are 3 m equally, the barrier distance (b) 1.5 m, and the water
depth (h) 10 m. Two resonance peaks are shown within the entire wave frequency range
(0 < ω < 3 rad/s). The first resonance, which seems a little wider and belongs to the lower-
frequency region, occurs in the chamber region (3). It is called the piston-mode resonance,
where the water surface goes up and down in unison at resonance, being different from
the sloshing-mode resonance. The second spike-like peak attributes to the piston-mode
resonance in the fluid region (2) existing between the vertical barrier and chamber wall.
In particular, the second resonance is more conspicuous in the enclosed fluid region, which
can be made by increasing the barrier height, and disappears when d1 = 0, as expected.
As the barrier height increases, the first resonance frequency decreases to 1.34, 1.26, 1.10,
and 0.94 rad/s, and its peak value and width are also reduced. In Figure 3b,c, the flux
by the oscillating air pressure is investigated under the same conditions as in Figure 3a.
The non-dimensional radiation admittance (C) increases with the wave frequency and
changes abruptly from a positive to a negative value at the particular frequencies which
coincide with the piston-mode resonance frequencies of each region. On the other hand, the
non-dimensional radiation conductance (B) has a maximum value at the same frequencies.
This unique phenomenon occurs when a fluid region inducing resonance is present inside
the oscillating system. As the barrier height increases, both the peak value and peak
frequency at the first resonance decrease.
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Figure 3. Induced flux by the incident waves (a), radiation conductance (b), and radiation admittance
(c) as a function of the barrier height (d1) for h = 10 m, a = 3 m, d2 = 3 m, b = 1.5 m.

Figure 4 shows the non-dimensional wave forces on the barrier and chamber wall
when the barrier height d1 increases to 2, 4, and 6 m. As the barrier height increases,
the wave force on the barrier increases, while the wave force on the chamber wall decreases
by the effect of wave blocking by the barrier. The maximum wave forces occur at each
resonance frequency. With an increase of the barrier height, the first resonant wave force on
the barrier moves to the low-frequency region and increases, whereas the second resonant
wave force shows the sharp reduction of resonant width.
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Figure 4. Non-dimensional wave forces on the barrier (a) and chamber wall (b) as a function of the
barrier height (d1) for h = 10m, a = 3 m, d2 = 3 m, b = 1.5 m.
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Figure 5 plots the optimum turbine constant ((Ct)opt) given in Equation (29) according
to the barrier height. The optimum turbine constant is a kind of PTO (Power Take-off)
damping constant that inevitably appears when converting wave energy into mechanical
energy. As seen in Figure 5, the optimum turbine constant is a function of wave frequency
and has a maximum value at each resonance frequency. Based on this, we can select the
optimum turbine constant responding to the frequency of the incoming waves.

Processes 2021, 9, x FOR PEER REVIEW 14 of 26 
 

 

 

Figure 5. Optimal turbine constant as a function of the barrier height (
1d ) for 

210m, 3m, 3m, 1.5mh a d b    . 

 

(a) extraction power 

 

(b) conversion efficiency 

Figure 6. Extraction power (a), and conversion efficiency (b) at the optimal turbine constant as a 

function of the barrier height (
1d ) for 

210m, 3m, 3m, 1.5mh a d b    . 

 [rad/s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

[m
2
/P

a
 s

e
c
]

0.000

0.001

0.002

0.003

0.004

0.005

d
1
=0m

d
1
=2m

d
1
=4m

d
1
=6m

( )t optC

 [rad/s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

[k
W

 /
m

2
]

0

10

20

30

40

d
1
=0m

d
1
=2m

d
1
=4m

d
1
=6m

2

max /P A

 [rad/s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

d
1
=0m

d
1
=2m

d
1
=4m

d
1
=6m

 ff opt
E

Figure 5. Optimal turbine constant as a function of the barrier height (d1) for h = 10 m, a = 3 m,
d2 = 3 m, b = 1.5 m.

Figure 6 shows the extracted power and conversion efficiency when the optimum
turbine constant given in Figure 5 is applied. As expected, it can be seen that the ex-
tracted power and conversion efficiency gives peak values at each resonance frequency.
In particular, the first resonance that occurs in the chamber significantly affects the power
extraction compared with the second spike-like resonance. However, though the second
resonance may be insignificant, it helps expand the range of the wave frequency of good
performance, and consequently plays an important role in absorbing wave energy from
irregular waves. In addition, power extraction and conversion efficiency are both sensitive
to barrier height. Furthermore, if adjusting the barrier height mechanically, we can enhance
the power extraction. In Figure 6, the U-shaped OWC with the added proper vertical
barrier has a positive effect on the wave energy production, especially at the low-frequency
region and is, as a whole, superior to the conventional OWC without a barrier. This con-
clusion is, however, based on potential theory and does not consider minor power loss by
viscous-flow separation when passing through the front barrier.

In Figure 7, the conversion efficiency is plotted with the change of the barrier distance (b).
The barrier distance has more influence on the spike-like resonance frequency by changing
the size of the fluid region (2). It can be seen that the second resonance frequency moves to
the low-frequency region as the barrier distance increases. However, the first resonance
does not show significant change except a slight decrease in the resonance width. This
means that the barrier height is a more important design parameter than the barrier distance
in the power extraction of a U-OWC.
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Figure 6. Extraction power (a), and conversion efficiency (b) at the optimal turbine constant as a
function of the barrier height (d1) for h = 10 m, a = 3 m, d2 = 3 m, b = 1.5 m.

3.3. Efficiency in Irregular Waves

Next, let us consider the power production and conversion efficiency of a U-OWC
device in irregular waves. As seen in Equation (32), we need the optimal turbine constant,
which is a function of wave frequency. It is impossible to change the turbine constant
instantaneously in irregular waves with wave frequencies changing from moment to
moment. Therefore, we have to choose an appropriate representative value of the optimum
turbine constant. In the present study, the (Ct)opt value at the first resonance frequency
is chosen as the representative value in irregular waves. The wave spectrum used in the
calculation is a PM (Pierson–Moskowitz) spectrum with a significant wave height H1/3
of 1.0 m. Figure 8a shows the conversion efficiency as a function of the energy period and
barrier height. The other variables are fixed at h = 10 m, a = 3 m, d2 = 3 m, b = 1.5 m.
Corresponding to the barrier height, the first resonance period in the chamber region is
4.69, 4.98, 5.71, and 6.68 s with the barrier heights d1 = 0, 2, 4, and 6 m. It is seen that the
U-OWC gives the maximum conversion efficiency of 0.70 at TE = 4.5 s and d1 = 2.0 m,
which shows an improved efficiency over the conventional OWC with no-barrier which
had a maximum conversion efficiency of 0.56. The further increase of the barrier height
reduces the conversion efficiency regardless of the energy period. This means that there
exists an optimal value of the barrier height.
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Figure 7. Conversion efficiency of a U-OWC device at the optimal turbine constant as a function of the
submergence depth of the chamber wall (a) and barrier distance (b) for h = 10 m, a = 3 m, d1 = 4 m.

The non-dimensional significant wave force on the barrier is shown in Figure 8b as a
function of the barrier height and energy period. The higher the barrier height, the larger
the wave forces on the barrier especially at longer waves. Considering the above results, we
have to design the optimal barrier height with a strategy that gives the higher conversion
efficiency and lower wave force.
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Figure 8. Conversion efficiency (a) and non-dimensional wave force (b) on a barrier as a function
of the barrier height (d1) and energy period TE in irregular waves for h = 10 m, a = 3 m, d2 = 3 m,
b = 1.5 m, H1/3 = 1 m.

4. Design Optimization Using an ANN Model

For obtaining optimal design parameters of the U-OWC in irregular waves, we adopt
a supervised ANN model. The creation of the database, feature study, ANN model
description, and training and validation of the model are explained in this section.

4.1. Database

Using the analytical model described in Section 2, the database is created from the
following input features; barrier height (d1), submergence depth of a chamber wall (d2),
and barrier distance (b), and the following output features; conversion efficiency (ηirr)
and non-dimensional significant wave force

(
( f1)1/3/ρgd1 A

)
on the barrier. All other

parameters are taken as fixed values: water depth (h = 10 m), chamber length (a = 5 m),
and significant wave height ( H1/3 = 1 m). Three databases are made for three different
energy periods (TE = 4 , 5 , 6 s).

The sampling method is of great importance in the ANN model. A good sampling
method can result in a more reasonable sample distribution, leading to a better neural
network model with higher accuracy. In the present study, Latin hypercube sampling
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(LHS) [24] is utilized to generate random sample points. The sample space of three input
features is taken as follows: 

d1 ∈ [0, 6.66]
d2 ∈ [1, 6]
b ∈ [0.1, 5]

(37)

Using the LHS, we can fill the sample space within its bounds by maximizing the
stratification of each edge distribution, which improves uniformity. A sample set containing
200 samples was established and scatter diagrams of the samples are displayed in Figure 9.
Each input feature fills the whole sample space and the standard deviation seems to be
small as shown in Figure 9.
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Figure 9. Scatter diagrams of the samples of input feature: (a) barrier height, (b) submergence depth of a chamber wall,
and (c) barrier distance.

4.2. Characteristics of Features

A feature study is conducted on the database to obtain the correlation between the
input and output features. Figures 10 and 11 show the scatter plots of the conversion
efficiency (ηirr) and non-dimensional significant wave force (( f1)1/3/ρgd1 A) on the barrier
at fixed energy period TE = 5 s in irregular waves. Variation of each output feature
versus three input features is displayed in the separate figure. There exists a significant
correlation between the conversion efficiency and barrier height as shown in Figure 10a
and the correlation coefficient is 0.467 at TE = 5 s. The correlation between the conversion
efficiency and other input features (d2,b) is observed to be less significant when compared
to d1.
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Figure 11. Variation of non-dimensional significant wave force on the barrier versus input feature: (a) barrier height,
(b) submergence depth of a chamber wall and, (c) barrier distance at TE = 5 s in irregular waves.

Variation of non-dimensional significant wave force (( f1)1/3/ρgd1 A) on the barrier as
a function of the input features is shown in Figure 11. It is observed that a strong correlation
occurs between the wave force and barrier height (d1). The correlation coefficient is 0.884.
The wave forces increase steadily with the barrier height as expected. As in the previous
figure, the correlation of ( f1)1/3/ρgd1 A with other input features (d2,b) is insignificant.

Figure 12 shows the distribution of the output features (ηirr, ( f1)1/3/ρgd1 A). Both the
output features are randomly distributed on the sample space but show a high probability
of occurrence in the specific range of ηirr ∈ [0.5, 0.7] and ( f1)1/3/ρgd1 A ∈ [1.2, 1.4]
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4.3. Preprocessing of the Data

The whole data is split into the training and test data. The training data are used to
train the ANN model, while the test data are reserved to evaluate the trained ANN model.
Approximately 70 percent of the 200 data is allotted to the training data and the remaining
30 percent is assigned to test data. All data are allocated randomly.
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The input features in the present database have inherent numerical values that are
different from each other, which may affect the performance of the ANN model. So,
the input features are scaled to a standard range using the standard scaler x−x

σ(x) , where x
means a mean value and σ(x) standard deviation.

4.4. Description of an ANN Model

An ANN regression model based on a feedforward neural network is used to predict
the optimal design features of the U-OWC. The advantage of an ANN model lies in the fact
that it is capable of learning the strong nonlinear relationship between the input and output
features. Before training the ANN model, we need to optimize the hyperparameters [25]
of the model: the number of hidden layers, learning rate, batch size, and regularization
parameter. To obtain these optimal hyperparameters, an exhaustive search algorithm is
used with the ANN regression model. The best hyperparameters for each energy period
are listed in Table 1.

Table 1. Optimal hyperparameters of an ANN model.

Hyperparameter TE = 4 s TE = 5 s TE = 6 s

hidden layer (30,30) (30, 30, 30) (20, 20, 20)
learning rate 0.001 0.001 0.005

batch size 20 50 100
regularization parameter 0.1 0.01 0.01

The general architecture of the present ANN model with hidden layers is shown in
Figure 13. The leftmost input layer consists of neurons representing three input features.
Each neuron in the hidden layer transforms the data from the previous layer with a
weighted linear summation followed by a nonlinear activation function. For a single
neuron with m input features, the linear summation can be written as,

h(x) = b̃ +
m

∑
i=1

wixi (38)

where wi is the weight from the input layer to the hidden layer; xi is the input features; b̃ is
the bias of the hidden layer.
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In the present model, rectified linear unit (ReLU) [26] is taken as a nonlinear activation
function, which is defined as f (x) = max(0, x) where x is the input to the neuron. In the
output layer, there is no activation function. The data always propagate in the forward
direction from the input to the output layer through hidden layers.

The iterative solver for the ANN model is limited-memory Broyden–Fletcher–
Goldfarb–Shanno (LBFGS) [27]. It updates the model parameters such as weights and
biases by minimizing the loss function. The maximum number of iterations of the solver is
set to be 250. The LBFGS converges faster with better solutions on small datasets. The loss
function is the mean square error function which can be represented as,

J
(

w, b̃
)
=

1
n

n

∑
i=1

[ŷi − yi]
2

(39)

where ŷi and yi are the predicted and true values of the i-th sample, respectively and n is
the number of sample points in the training data. Another important specification of the
ANN model is the learning rate which controls how quickly the features get updated in the
learning process. The current model uses ‘invscaling’ learning rate that the initial learning
rate decreases gradually at each time step.

4.5. Training and Validation of the ANN Models

An ANN model is trained with the training data and validated with the test data.
Figure 14 shows the learning rate curves of an ANN model at TE = 5 s which indicates
the performance of the model on the training and validation as a function of the size of
the training data. The value of the loss function (root mean squared error) is initially
zero and starts to go up as the size of the training data increases. However, it will finally
reach a low plateau, where adding new data points to the training dataset does not make
the averaged error better or worse. Likewise, the ANN model is not capable of being
generalized properly at the initial stage, that is the reason why the validation error is
quite large.
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Figure 14. Learning rate curves for an ANN model at TE = 5 s in irregular waves.

After training the ANN model with the training data, the conversion efficiency
(ηirr) and non-dimensional significant wave force (( f1)1/3/ρgd1 A) on the barrier are pre-
dicted with the test data. The resulting predictions are compared with the true values.
The deviation of the predicted values(circle) from the true values(line) is shown in Figure 15
and a good agreement between them is observed.
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To further verify the accuracy of the ANN model, three error metrics are used; mean
squared error (MSE), mean absolute error (MAE), and R2 score. The mean squared error
(MSE) and mean absolute error (MAE) with L sample points in the test data are defined as

MSE(y, ŷ) = 1
L

L−1
∑

i=0
(yi − ŷi)

2,

MAE(y, ŷ) = 1
L

L−1
∑

i=0
|yi − ŷi|.

(40)

The R2 score provides an indication of goodness of fit and therefore a measure of how
well unseen samples are likely to be predicted by the present model. The estimated R2

score is defined as:

R2(y, ŷ) = 1−

L
∑

i=1
(yi − ŷi)

2

L
∑

i=1
(yi − y)2

(41)

where the upper bar denotes a mean value.
The error metrics for two output features are given in Table 2. If judging with the MSE

and MAE value close to 0, and R2 score close to 1.0, the present ANN models have a good
prediction accuracy and meet the engineering requirement.

Table 2. Error metrics of two output features for three different energy periods.

TE = 4 s TE = 5 s TE = 6 s

Error Metrics ηirr
(f1)1/3
ρgd1A

ηirr
(f1)1/3
ρgd1A

ηirr
(f1)1/3
ρgd1A

MSE 0.0005 0.006 0.0004 0.003 0.0005 0.003
MAE 0.016 0.054 0.015 0.034 0.013 0.028
score 0.981 0.945 0.987 0.979 0.951 0.991

To obtain optimal design features, the predictions are carried out using the trained
ANN model with a large dataset. The database used for predictions is made with the LHS
methodology containing 4000 samples. The sample points are distributed uniformly within
the given bounds for each input feature (see Figure 16).
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Figure 16. Dataset of design input feature for prediction: (a) barrier height, (b) submergence depth of a chamber wall,
(c) barrier distance.

Since we already have a trained ANN model, the prediction of the output features
for this large dataset is quite easy. From the predictions, we choose 25 combinations of
design features that yield high conversion efficiency. Figure 17 shows the bar plots for
conversion efficiency (ηirr) and non-dimensional significant wave force (( f1)1/3/ρgd1 A)
at these combinations for a fixed energy period of 5 s. The maximum predicted conver-
sion efficiency is about 0.723 (marked in red) and the corresponding predicted value of
significant wave force is 1.15. The significant wave force can be reduced by 8% at another
combination (marked in green) and the conversion efficiency for this combination is 0.71,
slightly less (1.8%) than the maximum value (0.723). When considering both the structural
safety of a bottom-mounted vertical barrier and conversion efficiency as similar weighting,
the latter combination can be taken as optimal design features. However, this kind of
decision can vary depending on the designer’s preference in weighting.
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Figure 17. Predicted values of (a) conversion efficiency and (b) non-dimensional significant wave force on the barrier at
TE = 5 s in irregular waves.

The optimal geometric values of d1,d2, and b belonging to this combination (marked in
green) are about 2.51 m, 2.65 m, and 2.18 m, respectively (Figure 18). The same methodology
is followed for the remaining energy periods TE = 4.6 s and the optimal geometric values
of the U-OWC are summarized in Table 3 following the same design procedure.
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Figure 18. Optimal geometric values of barrier height (a), submergence depth of a chamber wall (b), and barrier distance (c)
of a U-OWC at TE = 5 s in irregular waves.

Table 3. Optimal geometric values of the U-OWC for different energy periods.

TE(s) d1 (m) d2 (m) b ηirr
(f1)1/3
ρgd1A

4 0.268 1.065 2.282 0.773 0.257

5 2.518 2.650 2.187 0.710 1.060

6 3.188 4.715 3.912 0.723 1.050

5. Conclusions

Using a developed analytical model (MEEM) based on linear potential theory, it is
found that there exist two resonance peaks in the power-extraction (or conversion efficiency)
curve of a U-OWC device. The first resonance is associated with the piston-mode resonance
inside the chamber, while the second spike-like resonance is caused by the similar fluid
motion between the barrier and chamber wall. The combination of two peaks helps to
expand the range of high wave-energy conversion. The corresponding wave forces on the
front barrier are also computed from the analytic solutions. It is shown that a U-OWC with
a barrier height of d1 = 2.0 m has a maximum conversion efficiency of 0.70, which is higher
than that (=0.56) of a conventional OWC with no-barrier (d1 = 0 m) in irregular waves.

Subsequently, the optimal design of the U-OWC is determined by using a machine
learning method. In this regard, three input features, the vertical barrier geometry
(height, distance) and submergence depth of the chamber wall, and two output features,
the conversion efficiency and wave forces on a front barrier, are chosen. Using the analyti-
cal model described in Section 2, the database from randomly distributed input and output
features is created using Latin hypercube sampling (LHS). From the feature study on the
database, it is observed that there exists a strong correlation between barrier height and
the output features. The present ANN model is shown to be trained well with R2 score
of 0.95 even if a database is comparatively small in size (200 samples). Using the trained
ANN model, the optimal geometric values of d1,d2, and b are predicted to be 2.51 m, 2.65 m,
and 2.18 m from a large dataset (4000 samples) in irregular waves with TE = 5 s.

The developed ANN model can supply guidelines in determining the optimal design
values of a U-OWC suitable to wave conditions at the installation site. The present design
tool based on an ANN model is especially valuable when the number of input features
is large.

The analytical model is based on a potential theory, therefore, it cannot take into
account energy dissipation by the formation of vortices at the ends of the barrier and
chamber wall. Therefore, the conversion efficiency and wave forces may overestimate
the actual values. To consider the viscous effects in the design of a U-OWC, either the
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numerical simulations by CFD codes or physical experiments need to be paralleled as a
supplementary measure of the present analytical model.
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