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Abstract: Grain viability is of key importance in the production of malt. This paper presents the
results of research on the influence of vacuum impregnation of grains of various cereals on theirservice
life. One malting barley cultivar, two wheat cultivars, and a rye cultivar mix were tested. The grain
was subjected to wet vacuum impregnation and wet vacuum impregnation carried out cyclically
under the pressure of 5 kPa. Then, samples of the impregnated grain were sown and its germination
capacity was tested every 24 h to 120 h. The control sample was grain soaked under atmospheric
pressure. Vacuum impregnation did not cause any significant changes in the germination capacity
of the examined cereal varieties. The vacuum-impregnated grain displayed a higher initial water
content and germinated faster. It was found that the impregnation did not disturb the internal
structure of the grain, indicated by the fact that the most delicate part of the grain, i.e., the embryo,
retained its vital functions in every examined case.
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1. Introduction

For many years, scientists have been developing the concept of sustainable develop-
ment in agriculture and food production [1]. Specific attempts have been made to include
malt production in sustainable agriculture development programs, both in the European
Union and around the world [2,3]. Many short-term and long-term concepts have been
proposed. The short-term programs are schemes that do not require large investment
outlays, in contrast to long-term systems [4]. Business models for these programs were
created as well [5].

The programs were implemented and commercialized almost immediately. Cur-
rently, they are used by malt producers by choice and are constantly being modified and
improved [6–8].

The process of vacuum impregnation significantly accelerates the mass transfer in the
liquid–solid system. Mass transfer is, in turn, the basis of many other diverse processes
used in food production. The knowledge already accumulated allows us to state that
impregnation is a process that enables the formation of the structure, sensory and functional
properties of products and increases their physicochemical stability [9–12]. There are many
processes in the cereal industry based on mass exchange. This field involves both milling
and malting, similar to the fodder industry. The scientific literature lacks available studies
on the vacuum impregnation of cereal grains.

The process of vacuum impregnation can take place according to many schemes. It
generally consists of four phases. In the first phase, the pressure in the system is lowered.
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In the second phase, the system is kept under reduced pressure. In the third phase, the
atmospheric pressure is restored in the system. The last phase is to keep the system
under atmospheric pressure. The first and third phases, or, more precisely, the dynamics
of pressure changes in these phases, are most often omitted; the most important are
phases 2 and 4. According to one of the leaders in the US vacuum impregnation market,
three methods of vacuum impregnation can be distinguished: dry vacuum impregnation
(DVI), wet vacuum impregnation (WVI), and dry vacuum impregnation and pressure
(DVP) [13].The differences between these methods and the course of the process itself are
presented in Figure 1.
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Figure 1. The process of vacuum impregnation and its phases: phase 1—pressure change during time tA, phase 2—vacuum
maintenance during time t1, phase 3—pressure change during time tB, phase 4—relaxation during time t2.

In the course of vacuum impregnation, in the porous raw material/liquid system,
two groups of interconnected phenomena can be distinguished: the phenomenon of mate-
rial deformation and its relaxation (deformation relaxation phenomena (DRP))—dominant
in phases 1 and 2 of the process—and phenomena related to the operation of the hydrody-
namic mechanism (hydrodynamic mechanism (HDM))—in phases 3 and 4 [10,14–16].

Many different factors influence the impregnation process. Two groups of factors
are most often characterized: external and internal [17]. The external ones include the
parameters of the impregnation and the conditions in which it is carried out, as well as the
properties of the impregnating liquid, while the internal ones are related to the properties
of the impregnated material. The first group includes the impregnation pressure [16,18–26],
the time for which the system is maintained under reduced pressure (vacuum period time),
and the time for which the system is maintained under atmospheric pressure (relaxation
time) [25,27–29]. Among the parameters of the impregnating solution, the following are
mentioned: the viscosity coefficient of the solution, its concentration, and temperature. The
amount of impregnating solution in relation to the amount of the impregnated material or
the size and shape of this material are considered to be less important [29]. At low viscosity
coefficients of liquids, deformation of the material does not occur [11,19,25].

On the other hand, the internal factors related to the impregnated material include its
biological, chemical, and mechanical properties and a set of material properties referred
to in the literature as “three-dimensional architecture”. This term covers the porosity
of the material, the size and shape of pores, and their course, etc. The influence of the
above-mentioned factors often shows synergism, which makes it difficult to prioritize
their importance [17,19,21–23,25,26,30,31]. In recent years, many possibilities of using
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vacuum impregnation have been found. All directions of these applications result from
the fact that impregnation intensifies the mass transfer process in the liquid-solid sys-
tem [16,20,23–26,31–33].

The applications of impregnation in food processing can be separated into two groups,
and their aim is to shorten the duration of production processes by reducing the duration
of technological operations or preparatory operations, modifying the composition of the
material, giving it new features, or introducing various substances into the product struc-
ture, which results in the improvement of food quality. This procedure is also recognized
as a tool for the production of new products. Impregnation is often a pre-heat treatment.
It protects the product against the tearing and disintegration of cells during drying, can-
ning, or freezing [32,34,35]. The aim of this study was to determine the effect of grain
impregnation on its service life.

2. Materials and Methods

The research material was the grain of malting barley of the Kangoo variety and rye
(varietal mix) and wheat of the Rywalka and Sukces variety. The grain was pre-soaked using
vacuum impregnation and pre-soaked under atmospheric pressure. The impregnating
liquid was, in all circumstances, water. During the research carried out for the purposes
of this study, wet impregnation and cyclically repeated wet impregnation were used. The
impregnation process was carried out in a chamber with a capacity of 2 dm3; the chamber
was immersed in a water bath. The tests were carried out at a temperature of 20 ◦C, and
this was also the temperature of the impregnating liquid.

In the cyclic WVI tests, the impregnation cycle was repeated 3, 5, and 10 times
without interrupting the contact of the impregnating liquid and the impregnated material.
Atmospheric pressure impregnation carried out in parallel to the above tests was used as
a reference system. The measuring stand in which the impregnation was carried out is
presented in Figure 2.
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Figure 2. Scheme of the stand for vacuum impregnation process: 1—vacuum chamber, 2—water
bath, 3—cover, 4—vacuum pump, 5—reservoir for liquid, 6—reservoir for raw material.

Then, the soaked grain was germinated on metal plates on three layers of tissue paper.
All the applied procedures were in line with the Analytica EBC methodology. Each time,
a sample of 500 grains was sown. The grain germinated in the climatic chamber. The
percentage of seeds germinated after 12, 24, 48, 72, and 120 h was examined.

The grain germination process was tested in three repetitions. In all cases, the arith-
metic mean and the standard deviation of the values of the determined quantities were
calculated. The test results were analyzed statistically. This was carried out in three stages.
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In the first one, it was checked whether the obtained data had a normal distribution. This
was done using the Shapiro–Wilk test. In the second stage, variance analysis was per-
formed. In the third stage, the results of all studies were also analyzed for the significance
of the influence of individual factors adopted in the field of research on the results obtained.
The significance of the influence of all factors on the measured values was tested using
Tukey’s HSD significant difference test at the significance level of α = 0.05.

3. Results

Figure 3 presents a diagram illustrating the research on the germination capacity, i.e.,
the number of sprouted grains of malting barley variety Kangoo over time, impregnated
under various conditions. The impregnated barley grain showed slight fluctuations in its
germination capacity during the first 48 h of germination. In the course of germination, the
values of this parameter were evened out. These fluctuations were invisible in the case of
rye grain. The vacuum-impregnated grain germinated faster than the grain impregnated
under atmospheric pressure (control test).
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Figure 3. The germination capacity of malting barley cv. Kangoo over time, depending on the
method of impregnation (WVI 1—1 cycle of WVI, WVI 3—3 cycles of WVI, WVI 5—5 cycles of WVI,
WVI 10—10 cycles of WVI).

Figure 4 presents the researched dependencies obtained for wheat grain of the Rywalka
variety, and Figure 5 presents the results obtained for the Sukces variety. Figure 6 presents
the germination capacity of rye grain over time, depending on the impregnation method.

A similar phenomenon could be observed in the case of research on the germination
process of wheat grain cv. Rywalka. The vacuum-impregnated grain germinated faster
than the control grain.

This may mean a significant shortening of the malt production process, the production
cycle of which, depending on the type of malt, is approximately 6–10 days. The results of
the analysis of the significance of the influence of the method of grain preparation on the
germination capacity, carried out using the Tukey’s HSD significant difference test at the
significance level of α = 0.05, are presented in Table 1.
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Figure 4. The germination capacity of wheat grains of Rywalka variety over time, depending on the
impregnation method (WVI 1—1 cycle of WVI, WVI 3—3 cycles of WVI, WVI 5—5 cycles of WVI,
WVI 10—10 cycles of WVI).

Processes 2021, 9, x FOR PEER REVIEW 5 of 9 
 

 

 
Figure 4. The germination capacity of wheat grains of Rywalka variety over time, depending on the 
impregnation method (WVI 1—1 cycle of WVI, WVI 3—3 cycles of WVI, WVI 5—5 cycles of WVI, 
WVI 10—10 cycles of WVI). 

 
Figure 5. The germination capacity of wheat grains of Sukces variety over time, depending on the 
impregnation method (WVI 1—1 cycle of WVI, WVI 3—3 cycles of WVI, WVI 5—5 cycles of WVI, 
WVI 10—10 cycles of WVI). 

 
Figure 6. The germination capacity of rye grain over time, depending on the impregnation method 
(WVI 1—1 cycle of WVI, WVI 3—3 cycles of WVI, WVI 5—5 cycles of WVI, WVI 10—10 cycles of 
WVI). 

        100
        5 (WVI 1)

        5 (WVI 3)
        5 (WVI 5)

        5 (WVI 10)

12

24

48

72
120

20

40

60

80

100

Germination rate [%]

Germination time [h] Pressure [kPa]

Wheat var. Rywalka

        100
        5 (WVI 1)

        5 (WVI 3)
        5 (WVI 5)

        5 (WVI 10)

12

24

48
72

120

20

40

60

80

100

Germination rate [%]

Germination time [h] Pressure [kPa]

Wheat var. Sukces

        100
        5 (WVI 1)

        5 (WVI 3)
        5 (WVI 5)

        5 (WVI 10)

12

24

48
72

120

20

40

60

80

100

Germination rate [%]

Germination time [h] Presssure [kPa]

Rye

Figure 5. The germination capacity of wheat grains of Sukces variety over time, depending on the
impregnation method (WVI 1—1 cycle of WVI, WVI 3—3 cycles of WVI, WVI 5—5 cycles of WVI,
WVI 10—10 cycles of WVI).
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Figure 6. The germination capacity of rye grain over time, depending on the impregnation method
(WVI 1—1 cycle of WVI, WVI 3—3 cycles of WVI, WVI 5—5 cycles of WVI, WVI 10—10 cycles
of WVI).
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Table 1. The analysis of the significance of the influence of the examined factors on the germination capacity A.

Factor Value Rye Barley Wheat
var. Sukces

Wheat
var. Rywalka

Treatment variant

WVI 97 a 97.1 a 98 a 97 a
WVI 3 93.3 a 91.7 a 98.3 a 97 a
WVI 5 95 a 93.9 a 96.7 a 94.7 a

WVI 10 93.7 a 92.2 a 95 a 96.3 a

Pressure (kPa)
5 94 a 94.8 a 97.2 a 96.9 a

100 91 b 92.5 a 94.3 a 92.3 a
A Means followed by the same letter in the columns are not statistically different at 5% probability.

The results of this analysis confirm that there is no significant effect of vacuum
impregnation on the service life of the grain. Vacuum impregnation does not reduce the
viability of the grain, which may indicate that it does not affect the tissue structure of
the material.

4. Discussion

In recent years, we have seen the rapid development of a new branch of food engi-
neering, known as Food Matrix Engineering, which, inter alia, deals with the study of
the structure of materials [36,37]. For example, the effects of four pretreatments (boiling
water immersion, vacuum impregnation, freeze/thaw and uniaxial compression) prior to
drying apples on changes in tissue microstructure were investigated. Quantitative structure
analysis showed that initial freezing/thawing and compression caused more damage to
the apple structure, leading to greater cell cavities compared to vacuum impregnation and
boiling water immersion and even the control [38].

The use of pulse vacuum acidification of zucchini slices, the course of which is the
same as the course of cyclic vacuum impregnation at a pressure of 20 and 40 kPa, was not
found to cause any structural changes in its tissue. The indicator of the structural changes
was the change in the sample volume before and after treatment. However, zucchini is a
low-porosity material; hence, the effectiveness of vacuum impregnation is low in this case
as, presumably, this low porosity limited the influence of the deformation and relaxation
phenomena, which have a great influence on impregnation. On the other hand, in similar
studies on mushrooms, significant changes in the volume of the samples were found and,
consequently, significant changes in the structure of the material tested [22,39].

In studies of the enrichment of apples with quercetin glycosides from apple peel, apart
from measuring its content in the tissue after vacuum impregnation, the tissue structure
was analyzed using computer microtomography (µCT). The µCT analyzes showed that
the vacuum impregnation was more effective in the inner parts of the apple than in the
outer parts and caused changes in the structure of the tested material. However, it did not
affect the integrity of the tissue, which distinguishes this procedure from other process
methods [40].

In the study of vacuum impregnation of citrus peel (orange, mandarin, lemon, grape-
fruit) using various isotonic solutions, the level of deformation of the peel sample after
impregnation was determined along with pressure changes. The microstructure of the peel
was analyzed (Cryo-SEM method) before and after the process. The results reflect large
structural changes. The volume changes of the samples ranged from 12 to 33% in relation
to the initial volume. The high porosity of the albedo zone was considered to be the reason
for such a reaction of the tested materials [41].

When indicating the occurrence of structure changes caused by vacuum impregnation,
it is also emphasized that the impregnation does not affect the integrity of the cells of
plant tissues. It has been experimentally proven that vacuum impregnation is a tool that
modifies the original composition of fruits and vegetables without destroying their internal
cellular structure [27,42]. The scientific literature lacks available studies on the process
of vacuum impregnation of cereal grains. What distinguishes these raw materials from
materials that have been and are widely researched in this respect in the scientific literature
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is the low water content. All their properties result from this fact. Their structure and
properties are related to this feature. Most studies on these raw materials take into account
the influence of this factor. It is the water content that largely determines the behavior of
the grain in processing.

5. Conclusions

This research aimed to determine the influence of impregnation on the vitality of the
grain, allowing us to draw the following conclusions.

Vacuum impregnation did not cause any significant changes in the germination
capacity of the examined cereal varieties. The vacuum-impregnated grain obtained a
higher initial water content and germinated faster. It was found that the impregnation did
not disturb the internal structure of the grain, indicated by the fact that the most delicate
part of the grain, i.e., the embryo, retained its vital functions in every examined case.

Vacuum impregnation of the grains of the tested species does not significantly change
their viability. Even a 10-fold cyclic impact associated with a pressure change up to
5 kPa does not significantly affect the germination capacity after 24 h. The increase in
water content in the grain as a result of vacuum impregnation and the lack of changes
in its viability makes it possible to use impregnation in malting. The impregnation may
advantageously alter the initial conditions in the malt production process.
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